Heterogeneity of arthropod communities on the canopy of Ouratea hexasperma (Ochnaceae): does canopy size matter?

Palavras-chave: biodiversity; cerrado; tree; community ecology.

Resumo

Arthropods exhibit high diversity, wide ecological range, broad distribution, and are found in various environments and microhabitats. In the Cerrado biome, many arthropods interact with specific plants, which function as their habitat and foraging grounds. The shrub-tree species Ouratea hexasperma is common in the Cerrado and displays considerable variation in individual canopy size. A direct positive relationship linking area and richness is a widely studied topic in Ecology, with such relationship also being observed in island-like environments. Considering each canopy as an island-like community, in this study, we analyzed the relationship between arthropod richness (measured as family richness) and tree canopy size. We collected and identified 17 arthropod families from nine orders on O. hexasperma trees, with Insecta being the most abundant taxon, followed by Arachnida and Myriapoda. However, Arachnida presented the highest number of families (seven). Our results show a positive correlation between canopy size and arthropod richness, indicating that larger canopies support richer arthropod communities. Thus, our findings support the species-area relationships on small geographic scales.

Downloads

Não há dados estatísticos.

Referências

Araujo, W. S., Ribeiro, A. B., & Santos, B. B. (2011). Abundance of gall-inducing insects in Ouratea hexasperma: response to vigor or escape from hypersensitivity? Journal of Biodiversity and Ecological Sciences, 1(2), 151-156.

Barros-Henriques, R. P. (1999). Ecologia da polinização de Ouratea hexasperma (St. Hil.) Bail (Ochnaceae) em Cerrado no Brasil central. Boletim do Herbário Ezechias Paulo Heringer, 4.

Basset, Y., Horlyck, V., & Wright, J. (2002). The study of forest canopies. In Y. Basset, V. Horlyck, & J. Wright (Eds.), Studying forest canopies from above: The international canopy crane network (pp. 57-60). Editorial Panamericana de Colombia.

Bispo, H. A. T., Santos, J. P. B., Souza, J. S., Silva, K. A., & Boscardin, J. (2022). Arthropods associated to tree canopies in the edges of a forest fragment in the Cerrado of Minas Gerais, Brazil. Idesia, 40(1), 39-47. https://doi.org/10.4067/S0718-34292022000100039

Blaise, C., Mazzia, B., Bischoff, A., Millon, A., Ponel, P. & Blight, O. (2022). Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards. Scientific Reports, 12(3680), 1-10. https://doi.org/10.1038/s41598-022-07529-1

Brescovit, A. D., Rheims, C. A., & Bonaldo, A. B. (2004). Chave de identificação para famílias de aranhas brasileiras. Instituto Butantan.

Butz, E. M., Schmitt, L. M., Parker, J. D., & Burghardt, K. T. (2023). Positive tree diversity effects on arboreal spider abundance are tied to canopy cover in a forest experiment. Ecology, 104(8), 1-10. https://doi.org/10.1002/ecy.4116

Carvalho, L. S., Costa, É. L. S., Lo-Man-Hung, N. F., Candiani, D. F., Rodrigues, B. V. B., Dias, S. C., & Bonaldo, A. B. (2024). What is better for sampling canopy spiders in the Amazon rainforest: a good tree or a good canopy? Boletim do Museu Paraense Emílio Goeldi. Ciências Naturais, 19(3), 1-20. http://doi.org/10.46357/bcnaturais.v19i3.1003

Crowley, L. M., Ivison, K., Enston, A., Garrett, D., Sadler, J. P., Pritchard, J., MacKenzie, A. R., & Hayward, S. A. L. (2023). A comparison of sampling methods and temporal patterns of arthropod abundance and diversity in a mature, temperate, Oak woodland. Acta Oecologica, 118(103873), 1-11. https://doi.org/10.1016/j.actao.2022.103873

Coleman, B. D., Mares, M. A., Willig, M. R., & Hsieh, Y.-H. (1982). Randomness, area, and species richness. Ecology, 63(4), 1121-1133. https://doi.org/10.2307/1937249

Daniel, J. F. S., Carvalho, M. G., Cardoso, R. S., Agra, M. F., & Eberlin, M. N. (2005). Other flavonoids from Ouratea hexasperma (Ochnaceae). Journal of Brazilian Chemistry Society, 16(3B), 634-638. https://doi.org/10.1590/S0103-50532005000400022

Del-Claro, K., & Alves-Silva, E. (2016). Wasps are better plant-guards than ants in the extrafloral nectaried shrub Ouratea spectabilis (Ochnaceae). Sociobiology, 63(1), 705-711. https://doi.org/10.13102/sociobiology.v63i1.908

Entling, M. H., Schweiger, O., Bacher, S., Espadaler, X., Hickler, T., Kumschick, S. Woodcock, B. A., & Nentwig, W. (2012). Species richness-environment relationships of European arthropods at two spatial grains: Habitats and countries. PLoS ONE, 7(9), 1-13. https://doi.org/10.1371/journal.pone.0045875

Fidelis, Q. C., Faranoe, I., Russo, D., Catunda-Jr., F. E. A., Vingola, L., Carvalho, M. G., Tomassi, N., & Mirella, L. (2019). Chemical and biological insights of Ouratea hexasperma (A. St.-Hil.) Baill.: A source of bioactive compounds with multifunctional properties. Natural Product Research, 33(10), 1500-1503. https://doi.org/10.1080/14786419.2017.1419227

Gooriah, L. D., & Chase, J. M. (2020). Sampling effects drive the species-area relationship in lake zooplankton. Oikos, 129(1), 124-132. https://doi.org/10.1111/oik.06057

Hijji, N., Umeda, Y., & Mizutani, M. (2001). Estimating density and biomass of canopy arthropods in coniferous plantations: An approach based on a tree-dimensional parameter. Forest Ecology and Management, 144(1-3), 147-157. https://doi.org/10.1016/S0378-1127(00)00367-4

Lucky, A., Erwin, T. L., & Witman, J. D. (2002). Temporal and spatial diversity and distribution of arboreal Carabidae (Coleoptera) in a western Amazonian rain forest. Biotropica, 34(3), 376-386. https://doi.org/10.1111/j.1744-7429.2002.tb00551

Marja, R., Tscharntke, T., & Batary, P. (2022). Increasing landscape complexity enhances species richness of farmland arthropods, agri-environment schemes also abundance – A meta-analysis. Agriculture, Ecosystems & Environment, 326, 1-7. https://doi.org/10.1016/j.agee.2021.107822

Müller, J., Brandl, R., Brändle, M., Forster, B., Araujo, B.C., Gossner, M.M., Ladas, A.,Wagner, M., Maraun, M., Schall, P., Schmidt, S., Heurich, M., Thorn, S., & Seibold, S. (2018). Lidar-derived canopy structure supports the more-individuals hypothesis for arthropod diversity in temperate forests. Oikos, 127(6), 814-824. https://doi.org/10.1111/oik.04972

Novotny, V., Basset, Y., Miller, S. E., Weiblen, G. D., Bremer, B., Cizek, L., & Drozd, P. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature, 416, 841-844. https://doi.org/10.1038/416841a

Nogués-Bravo, D., & Araújo, M. B. (2006). Species richness, area, and climate correlates. Global Ecology and Biogeography, 15(5), 452-460. https://doi.org/10.1111/j.1466-822X.2006.00240.x

Pires, T., Lange, D., & Del-Claro, K. (2020). Witches’ brooms increases arthropod-plant interactions in Ouratea hexasperma (Baill.) (Ochnaceae). Acta Oecologica, 102, 103508. https://doi.org/10.1016/j.actao.2019.103508

Rodrigues, A. P., Felfili, J. M., & Vale, M. M. (2016). Value of an urban fragment for the conservation of Cerrado in the Federal District of Brazil. Oecologia Australis, 20(1), 109-118. https://doi.org/10.4257/oeco.2016.2001.08

RStudio Team. (2020). RStudio: Integrated development for R. RStudio, PBC. http://www.rstudio.com/

Sallé, A., Cours, J., Le Souchu, E., Lopez-Vaamonde, C., Pincebourde, S., & Bouget, C. (2021). Climate change alters temperate Forest canopies and indirectly reshapes arthropod communities. Frontiers in Forests and Global Change, 4(710854), 1-8. https://doi.org/10.3389/ffgc.2021.710854

Saturnino, R., & Tourinho, A. L. (2011). Apostila curso de treinamento em “Aracnologia: sistemática, coleta, fixação e gerenciamento de dados”. INPA.

Stein, A., & Kreft, H. (2015). Terminology and quantification of environmental heterogeneity in species-richness research. Biological Reviews, 90(3), 815–836. https://doi.org/10.1111/brv.12135

Stork, N. E., & Hammond, P. M. (1997). Sampling arthropods from tree crowns by fogging with insecticides: Lessons from studies of oak tree beetle assemblages in Richmond Park (UK). In N. E. Stork, J. Adis, & R. K. Didham (Eds.), Canopy Arthropods (pp. 3-25). Chapman and Hall.

Tafesse, B., Kusch, E., Bekele, T., Demissew, S, Warkineh, B., & Chala, D., (2025), Naturally formed canopy gaps increase tree species diversity in the tropical Moist Afromontane Forest of Gerba Dima, southwest Ethiopia. Forest Ecology and Management, 578, 122475, https://doi.org/10.1016/j.foreco.2024.122475

Tobisch, C., Rojas-Botero, S., Uhler, J., Müller, J., Kollmann, J., Moning, C., Brändle, M., Gossner, M. M., Redlich, S., Zhang, J., Steffan-Dewenter, I., Benjamin, C., Englmeier, J., Fricke, U., Ganuza, C., Haensel, M., Riebl, R., Uphus, L., & Ewald, J. (2023). Plant species composition and local habitat conditions as primary determinants of terrestrial arthropod assemblages. Oecologia, 201, 813-825. https://doi.org/10.1007/s00442-023-05345-6

Torres-Pulliza, D., Dornelas, M. A., Pizarro, O., Bewley, M., Blowes, S. A., Boutros, N., Brambilla, V., Chase, T. J., Frank, G., Friedman, A., Hoogenboom, M. O., Williams, S., Zawada, K. J. A., & Madin, J. S. (2020). A geometric basis for surface habitat complexity and biodiversity. Nature Ecology & Evolution, 4(11), 1495–1501. https://doi.org/10.1038/s41559-020-1281-8

Vaca-Sánchez, M. S., Maldonado-López, Y., González-Rodríguez, A. Oyama, K., Fernandes, G. W., Fagundes, M., López-Barbosa, E. C., Aguilar-Peralta, J. S., & Cuevas-Reyes, P. (2021) Canopy arthropod diversity associated with Quercus laurina: importance of an oak species diversity gradient on abundance, species richness and guild composition. Journal of Insect Conservation, 25, 859-874. https://doi.org/10.1007/s10841-021-00352-5

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag. https://ggplot2.tidyverse.org.

Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). dplyr: A grammar of data manipulation. R package version 1.1.4. https://github.com/tidyverse/dplyr, https://dplyr.tidyverse.org.

Wildermuth, B., Penanhoat, A., Sennhenn-Reulen, H., Matevski, D., Drescher, J., Aubry-Kientz, M., Seidel, D., & Aschuldt, A. (2024), Canopy structure influences arthropod communities within and beyond tree identity effects: Insights from combining LiDAR data, insecticidal fogging and machine learning regression modelling. Ecological Indicators, 160, 1-12. https://doi.org/10.1016/j.ecolind.2024.111901

Zeller, L., Forster, A., Keye, C., Meyer, P., Roschak, C., & Ammer, C. (2023). What does literature tell us about the relationship between forest structural attributes and species richness in temperate forests? – a review. Ecological Indicators, 153, 1-12. https://doi.org/10.1016/j.ecolind.2023.110383

Publicado
2025-08-08
Como Citar
Santos, D. A., Moyses, W., Branco, J. L. C. C., Rodrigues, C. G., & Daud, R. D. (2025). Heterogeneity of arthropod communities on the canopy of Ouratea hexasperma (Ochnaceae): does canopy size matter?. Acta Scientiarum. Biological Sciences, 47(1), e74091. https://doi.org/10.4025/actascibiolsci.v47i1.74091
Seção
Ecologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus