In vitro study of antioxidant activity of lactic acid bacterial strains isolated from Algerian fermented products

  • Nabila Benhamada University of Mohamed Seddik Ben Yahia https://orcid.org/0000-0001-8088-8561
  • Ouahiba Benhamada University of Mohamed Seddik Ben Yahia
  • Sara Mellit University of Mohamed Seddik Ben Yahia
  • Imène Moussaoui University of Mohamed Seddik Ben Yahia
  • Tayeb Idoui University of Mohamed Seddik Ben Yahia
Palavras-chave: LAB; antioxidant property; DPPH; natural antioxidants.

Resumo

The aim of this study was to evaluate the antioxidant activity of 17 strains of lactic acid bacteria isolated from traditionally fermented durum wheat. In vitro tests were caried out: resistance to hydrogen peroxide, total phenolic compounds, DPPH and superoxide anion radicals scavenging assay, and finally, ferric reducing antioxidant power. The greatest resistance to hydrogen peroxide was observed in LS09, LS10, and LS17 strains. Among these three strains, the highest content of phenolic compounds was registered in LS17, this strain presented also the highest reducing power activity. Furthermore, the highest ability to scavenge the DPPH radical was observed in LS10, to scavenge superoxide anion radical was in LS09. Moreover, the use of natural antioxidant can be used in food processing to limit the use of chemical antioxidants.

Downloads

Não há dados estatísticos.

Referências

Aldosari, S., Awad, M., Harrington, E. O., Sellke, F. W., & Abid, M. R. (2018). Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology. Antioxidants, 7(1), 1-16. https://doi.org/10.3390/antiox7010014

Alkalbani, N. S., Turner, M. S., & Ayyash, M. M. (2019). Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microbial Cell Factories, 18(1), 1-12. https://doi.org/10.1186/s12934-019-1239-1

Amaretti, A., di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology and Biotechnology, 97, 809–817. https://doi.org/10.1007/s00253-012-4241-7

Arasu, M. V., Al-Dhabi, N. A., Ilavenil, S., Choi, K. C., & Srigopalram, S. (2016). In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi Journal of Biological Sciences, 23(1), 6-10. https://doi.org/10.1016/j.sjbs.2015.09.022

Averill-Bates, D. (2024). Reactive oxygen species and cell signaling. Review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1871(2), 1-11. https://doi.org/10.1016/j.bbamcr.2023.119573

Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 2020(13), 1057-1073. https://doi.org/10.2147/JIR.S275595

Davis, C. D., & Milner, J. A. (2009). Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 20(10), 743-752. https://doi.org/10.1016/j.jnutbio.2009.06.001

Dobrinas, S., Soceanu, A., Popescu, V., Popovici, I. C., & Jitariu, D. (2021). Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from tea plant samples at different brewing times. Processes, 9(8), 1-11. https://doi.org/10.3390/pr9081311

Düz, M., Doĝan, Y. N., & Doĝan, İ. (2020). Antioxidant activity of Lactobacillus plantarum, Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. Anais da Academia Brasileira Ciências, 92(4), 1-13. https://doi.org/10.1590/0001-3765202020200105

Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1), 1-24. https://doi.org/10.1080/19490976.2020.1801944

Ghosh, N., Das, A., Chaffee, S., Roy, S., & Sen, C. K. (2018). Reactive oxygen species, oxidative damage and cell death. In S. Chatterjee, W. Jungraithmayr, & D. Bagchi (Eds.), Immunity and inflammation in health and disease: Emerging roles of nutraceuticals and functional foods in immune support (pp. 45-55). https://doi.org/10.1016/B978-0-12-805417-8.00004-4

Glennon-Alty, L., Hackett, A. P., Chapman, E. A., & Wright, H. L. (2018). Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radical Biology and Medicine, 125, 25-35. https://doi.org/10.1016/j. freeradbiomed.2018.03.049

Halliwell, B. (2022). Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochemistry and Biophysical Research Communications, 633, 17-19. https://doi.org/10.1016/j.bbrc.2022.08.098

Hu, Y., Zhao, Y., Jia, X., Liu, D., Huang, X., Wang, C., Zhu, Y., Yue, C., Deng, S., & Lyu, Y. (2023). Lactic acid bacteria with a strong antioxidant function isolated from “Jiangshui,” pickles, and feces. Frontiers in Microbiology, 14, 1-13. https://doi.org/10.3389/fmicb.2023.1163662

Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species - sources, functions, oxidative damage. Polski Merkuriusz Lekarski, 48(284), 124-127.

Ji, K., Jang, N. Y., & Kim, Y. T. (2015). Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. Journal of Microbiology and Biotechnology, 25(9), 1568-1577. https://doi.org/10.4014/jmb.1501.01077

Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9

Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 1-21. https://doi.org/10.3390/ijms 22094642

Kuo, H.-C., Kwong, H. K., Chen, H. Y., Hsu, H.-Y., Yu, S.-H., Hsieh, C.-W., Lin, H.-W., Chu, Y.-L., & Cheng, K.-C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PLoS ONE, 16(5), 1-13. https://doi.org/10.1371/journal.pone.0249250

Łepecka, A., Szymanski, P., Okon, A., & Zielinska, D. (2023). Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT - Food Science and Technology, 174, 1-7. https://doi.org/10.1016/j.lwt.2023.114440

Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., & Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914-1919. https://doi.org/10.1016/j.foodchem .2012.06.048

Li, T., Jiang, T., Liu, N., Wu, C., Xu, H., & Lei, H. (2021). Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry, 339, 127859. https://doi.org/10.1016/j. foodchem.2020.127859

Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757-772. https://doi.org/10.2147/CIA.S158513

Lin, M.-Y., & Yen, C.-L. (1999). Antioxidative ability of lactic acid bacteria, Journal of Agricultural and Food Chemistry, 47(4), 1460-1466. https://doi.org/10.1021/jf981149l

Livinska, O., Ivaschenko, O., Garmasheva, I., & Kovalenko, N. 2016. The screening of lactic acid bacteria with antioxidant properties. AIMS Microbiology, 2(4), 447-459. https://dx.doi.org/10.3934/microbiol.2016.4.447

Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Díaz, C. (2022). Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines, 10(12), 1-47. https://doi.org/10.3390/biomedicines10123051

Lyu, J. I., Ryu, J., Seo, K.-S., Kang, K.-Y., Park, S. H., Ha, T.-H., Ahn, J.-W., & Kang, S.-Y. (2022). Comparative study on phenolic compounds and antioxidant activities of Hop (Humulus lupulus L.) strobile extracts. Plants, 11(1), 1-10. https://doi.org/ 10.3390/plants11010135

Microsoft Corporation. (2019). Microsoft Excel (Versão 2019) [Software]. Microsoft Corporation.

Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of Agricultural and Food Chemistry, 63(14), 3615-3626. https://doi.org/10.1021/jf506326t

Mu, G., Gao, Y., Tuo, Y., Li, H., Zhang, Y., Qian, F., & Jiang, S. (2018). Assessing and comparing antioxidant activities of lactobacilli strains by using different chemical and cellular antioxidant methods. Journal of Dairy Science, 101(12), 10792-10806. https://doi.org/10.3168/jds.2018-14989

Muñoz, R., de las Rivas, B., López de Felipe, F., Reverón, I., Santamaría, L., Esteban-Torres, M., Curiel, J. A., Rodríguez, H., & Landete, J. M. (2016). Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In J. Farias, C. Martínez-Villaluenga, & E. Peñas (Eds.), Fermented Foods in Health and Disease Prevention (pp. 63-83). Academic Press. https://doi.org/10.1016/B978-0-12-802309-9.00004-2

Noureen, S., Riaz, A., Arshad, M., & Arshad, N. (2019). In vitro selection and in vivo confirmation of the antioxidant ability of Lactobacillus brevis MG 000874. Journal of Applied Microbiology, 126(4), 1221-1232. https://doi.org/10.1111/jam.14189

Osman, M. A., Mahmoud, G. I., & Shoman, S. S. (2021). Correlation between total phenols content, antioxidant power and cytotoxicity. Biointerface Research in Applied Chemistry, 11(3), 10640-10653. https://doi.org/10.33263/BRIAC113.1064010653

Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49(3), 240-247. https://doi.org/10.3109/13880209.2010.501083

Prior, R., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698

Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology, 13(806470), 1-15. https://doi.org/10.3389/fphar.2022.806470

Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), 1-12. https://doi.org/10.1016/j.heliyon.2023.e15610

Sangouni, A. A., Taghdir, M., Mirahmadi, J., Sepandi, M., & Parastouei, K. (2022). Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial. Nutrition Journal, 21(62), 1-10. https://doi.ord/10.1186/s12937-022-00816-7

Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11(694), 1-21. https://doi.org/10.3389/fphys.2020.00694

Shi, Y., Cui, X., Gu, S., Yan, X., Li, R., Xia, S., Chen, H., & Ge, J. (2019). Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics and Antimicrobial Proteins, 11(4), 1086-1099. https://doi.org/10.1007/s12602-018-9452-5

Skorokhod, I., & Kurdysh, I. (2014). The low-molecular weight antioxidants of microorganisms. Mikrobiolohichnyi Zhurnal, 76(3), 48-59.

Srivastava, K. K., & Kumar, R. (2015). Stress, oxidative injury and disease. Indian Journal of Clinical Biochemistry, 30(1), 3-10. https://doi.org/10.1007/s12291-014-0441-5

Talib, N., Mohamad, N. E., Yeap, S. K., Hussin, Y., Aziz, M. N. M., Masarudin, M. J., Sharifuddin, S. A., Hui, Y. W., Ho, C. L., & Alitheen, N. B. (2019). Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules, 24(14), 1-18. https://doi.org/10.3390/molecules24142606

Tang, W., Xing, Z., Li, C., Wang, J., & Wang, Y., (2017). Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry, 221, 1642-1649. https://doi.org/10.1016/j.foodchem.2016.10.124

Vougiouklaki, D., Tsironi, T., Tsantes, A. G., Tsakali, E., Van Impe, J. F. M., & Houhoula, D. (2023). Probiotic properties and antioxidant activity in vitro of lactic acid bacteria. Microorganisms, 11(5), 1-13. https://doi.org/10.3390/microorganisms11051264

Wang, Y.-C., Yu, R.-C., & Chou, C.-C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifid bacteria. Food Microbiology, 23(2), 128-135. https://doi.org/10.1016/j.fm.2005.01.020

Wu, D., Sun, M. Z., Zhang, C., & Xin, Y. (2014). Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress caco-2 cells. Journal of Animal and Plant Sciences, 24(6), 1766-1771.

Yamamoto, Y., Poole, L. B., Hantgan, R. R., & Kamio, Y. (2002). An iron-binding protein, dpr, from Streptococcus mutans prevents iron dependent hydroxyl radical formation in vitro. Journal of Bacteriology, 184(11), 2931–2939. https://doi.org/10.1128/JB.184.11.2931-2939.2002

Yang, J., Dong, C., Ren, F., Xie, Y., Liu, H., Zhang, H., & Jin, J. (2021). Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. Journal of the Science of Food and Agriculture, 102(88), 3107-3118. https://doi.org/10.1002/jsfa.11652

Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1-12. https://doi.org/10.1007/s11010-019-03667-9

Zhang, X., Yu, S., Li, X., Wen, X., Liu, S., Zu, R., Ren, H., Li, T., Yang, C., & Luo, H. (2023). Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacological Research, 191, 1-12. https://doi.org/10.1016/j.phrs.2023.106777

Zhang, Y., Hu, P., Lou, L., Zhan, J., Fan, M., Li, D., & Liao, Q. (2017). Antioxidant activities of lactic acid bacteria for quality improvement of fermented sausage. Journal of Food Science, 82(12), 2960-2967. https://doi.org/10.1111/1750-3841.13975

Zuo, L., & Wijegunawardana, D. (2021). Redox Role of ROS and Inflammation in pulmonary diseases. In Y. X. Wang (Ed.), Advances in experimental medicine and biology (v. 1304) (pp. 187-204). Springer. https://doi.org/10.1007/978-3-030-68748-9_11

Publicado
2025-08-08
Como Citar
Benhamada, N., Benhamada, O., Mellit, S., Moussaoui, I., & Idoui, T. (2025). In vitro study of antioxidant activity of lactic acid bacterial strains isolated from Algerian fermented products. Acta Scientiarum. Biological Sciences, 47(1), e74807. https://doi.org/10.4025/actascibiolsci.v47i1.74807
Seção
Biotecnologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus