In vitro study of antioxidant activity of lactic acid bacterial strains isolated from Algerian fermented products
Resumo
The aim of this study was to evaluate the antioxidant activity of 17 strains of lactic acid bacteria isolated from traditionally fermented durum wheat. In vitro tests were caried out: resistance to hydrogen peroxide, total phenolic compounds, DPPH and superoxide anion radicals scavenging assay, and finally, ferric reducing antioxidant power. The greatest resistance to hydrogen peroxide was observed in LS09, LS10, and LS17 strains. Among these three strains, the highest content of phenolic compounds was registered in LS17, this strain presented also the highest reducing power activity. Furthermore, the highest ability to scavenge the DPPH radical was observed in LS10, to scavenge superoxide anion radical was in LS09. Moreover, the use of natural antioxidant can be used in food processing to limit the use of chemical antioxidants.
Downloads
Referências
Aldosari, S., Awad, M., Harrington, E. O., Sellke, F. W., & Abid, M. R. (2018). Subcellular reactive oxygen species (ROS) in cardiovascular pathophysiology. Antioxidants, 7(1), 1-16. https://doi.org/10.3390/antiox7010014
Alkalbani, N. S., Turner, M. S., & Ayyash, M. M. (2019). Isolation, identification, and potential probiotic characterization of isolated lactic acid bacteria and in vitro investigation of the cytotoxicity, antioxidant, and antidiabetic activities in fermented sausage. Microbial Cell Factories, 18(1), 1-12. https://doi.org/10.1186/s12934-019-1239-1
Amaretti, A., di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied Microbiology and Biotechnology, 97, 809–817. https://doi.org/10.1007/s00253-012-4241-7
Arasu, M. V., Al-Dhabi, N. A., Ilavenil, S., Choi, K. C., & Srigopalram, S. (2016). In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi Journal of Biological Sciences, 23(1), 6-10. https://doi.org/10.1016/j.sjbs.2015.09.022
Averill-Bates, D. (2024). Reactive oxygen species and cell signaling. Review. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1871(2), 1-11. https://doi.org/10.1016/j.bbamcr.2023.119573
Checa, J., & Aran, J. M. (2020). Reactive oxygen species: Drivers of physiological and pathological processes. Journal of Inflammation Research, 2020(13), 1057-1073. https://doi.org/10.2147/JIR.S275595
Davis, C. D., & Milner, J. A. (2009). Gastrointestinal microflora, food components and colon cancer prevention. Journal of Nutritional Biochemistry, 20(10), 743-752. https://doi.org/10.1016/j.jnutbio.2009.06.001
Dobrinas, S., Soceanu, A., Popescu, V., Popovici, I. C., & Jitariu, D. (2021). Relationship between total phenolic content, antioxidant capacity, Fe and Cu content from tea plant samples at different brewing times. Processes, 9(8), 1-11. https://doi.org/10.3390/pr9081311
Düz, M., Doĝan, Y. N., & Doĝan, İ. (2020). Antioxidant activity of Lactobacillus plantarum, Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. Anais da Academia Brasileira Ciências, 92(4), 1-13. https://doi.org/10.1590/0001-3765202020200105
Feng, T., & Wang, J. (2020). Oxidative stress tolerance and antioxidant capacity of lactic acid bacteria as probiotic: a systematic review. Gut Microbes, 12(1), 1-24. https://doi.org/10.1080/19490976.2020.1801944
Ghosh, N., Das, A., Chaffee, S., Roy, S., & Sen, C. K. (2018). Reactive oxygen species, oxidative damage and cell death. In S. Chatterjee, W. Jungraithmayr, & D. Bagchi (Eds.), Immunity and inflammation in health and disease: Emerging roles of nutraceuticals and functional foods in immune support (pp. 45-55). https://doi.org/10.1016/B978-0-12-805417-8.00004-4
Glennon-Alty, L., Hackett, A. P., Chapman, E. A., & Wright, H. L. (2018). Neutrophils and redox stress in the pathogenesis of autoimmune disease. Free Radical Biology and Medicine, 125, 25-35. https://doi.org/10.1016/j. freeradbiomed.2018.03.049
Halliwell, B. (2022). Reactive oxygen species (ROS), oxygen radicals and antioxidants: where are we now, where is the field going and where should we go? Biochemistry and Biophysical Research Communications, 633, 17-19. https://doi.org/10.1016/j.bbrc.2022.08.098
Hu, Y., Zhao, Y., Jia, X., Liu, D., Huang, X., Wang, C., Zhu, Y., Yue, C., Deng, S., & Lyu, Y. (2023). Lactic acid bacteria with a strong antioxidant function isolated from “Jiangshui,” pickles, and feces. Frontiers in Microbiology, 14, 1-13. https://doi.org/10.3389/fmicb.2023.1163662
Jakubczyk, K., Dec, K., Kałduńska, J., Kawczuga, D., Kochman, J., & Janda, K. (2020). Reactive oxygen species - sources, functions, oxidative damage. Polski Merkuriusz Lekarski, 48(284), 124-127.
Ji, K., Jang, N. Y., & Kim, Y. T. (2015). Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. Journal of Microbiology and Biotechnology, 25(9), 1568-1577. https://doi.org/10.4014/jmb.1501.01077
Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Archives of Toxicology, 97(10), 2499–2574. https://doi.org/10.1007/s00204-023-03562-9
Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 1-21. https://doi.org/10.3390/ijms 22094642
Kuo, H.-C., Kwong, H. K., Chen, H. Y., Hsu, H.-Y., Yu, S.-H., Hsieh, C.-W., Lin, H.-W., Chu, Y.-L., & Cheng, K.-C. (2021). Enhanced antioxidant activity of Chenopodium formosanum Koidz. by lactic acid bacteria: Optimization of fermentation conditions. PLoS ONE, 16(5), 1-13. https://doi.org/10.1371/journal.pone.0249250
Łepecka, A., Szymanski, P., Okon, A., & Zielinska, D. (2023). Antioxidant activity of environmental lactic acid bacteria strains isolated from organic raw fermented meat products. LWT - Food Science and Technology, 174, 1-7. https://doi.org/10.1016/j.lwt.2023.114440
Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., Niu, C., Yang, Z., & Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry, 135(3), 1914-1919. https://doi.org/10.1016/j.foodchem .2012.06.048
Li, T., Jiang, T., Liu, N., Wu, C., Xu, H., & Lei, H. (2021). Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry, 339, 127859. https://doi.org/10.1016/j. foodchem.2020.127859
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757-772. https://doi.org/10.2147/CIA.S158513
Lin, M.-Y., & Yen, C.-L. (1999). Antioxidative ability of lactic acid bacteria, Journal of Agricultural and Food Chemistry, 47(4), 1460-1466. https://doi.org/10.1021/jf981149l
Livinska, O., Ivaschenko, O., Garmasheva, I., & Kovalenko, N. 2016. The screening of lactic acid bacteria with antioxidant properties. AIMS Microbiology, 2(4), 447-459. https://dx.doi.org/10.3934/microbiol.2016.4.447
Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Díaz, C. (2022). Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines, 10(12), 1-47. https://doi.org/10.3390/biomedicines10123051
Lyu, J. I., Ryu, J., Seo, K.-S., Kang, K.-Y., Park, S. H., Ha, T.-H., Ahn, J.-W., & Kang, S.-Y. (2022). Comparative study on phenolic compounds and antioxidant activities of Hop (Humulus lupulus L.) strobile extracts. Plants, 11(1), 1-10. https://doi.org/ 10.3390/plants11010135
Microsoft Corporation. (2019). Microsoft Excel (Versão 2019) [Software]. Microsoft Corporation.
Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., & Prajapati, J. (2015). Probiotics as potential antioxidants: a systematic review. Journal of Agricultural and Food Chemistry, 63(14), 3615-3626. https://doi.org/10.1021/jf506326t
Mu, G., Gao, Y., Tuo, Y., Li, H., Zhang, Y., Qian, F., & Jiang, S. (2018). Assessing and comparing antioxidant activities of lactobacilli strains by using different chemical and cellular antioxidant methods. Journal of Dairy Science, 101(12), 10792-10806. https://doi.org/10.3168/jds.2018-14989
Muñoz, R., de las Rivas, B., López de Felipe, F., Reverón, I., Santamaría, L., Esteban-Torres, M., Curiel, J. A., Rodríguez, H., & Landete, J. M. (2016). Biotransformation of phenolics by Lactobacillus plantarum in fermented foods. In J. Farias, C. Martínez-Villaluenga, & E. Peñas (Eds.), Fermented Foods in Health and Disease Prevention (pp. 63-83). Academic Press. https://doi.org/10.1016/B978-0-12-802309-9.00004-2
Noureen, S., Riaz, A., Arshad, M., & Arshad, N. (2019). In vitro selection and in vivo confirmation of the antioxidant ability of Lactobacillus brevis MG 000874. Journal of Applied Microbiology, 126(4), 1221-1232. https://doi.org/10.1111/jam.14189
Osman, M. A., Mahmoud, G. I., & Shoman, S. S. (2021). Correlation between total phenols content, antioxidant power and cytotoxicity. Biointerface Research in Applied Chemistry, 11(3), 10640-10653. https://doi.org/10.33263/BRIAC113.1064010653
Piluzza, G., & Bullitta, S. (2011). Correlations between phenolic content and antioxidant properties in twenty-four plant species of traditional ethnoveterinary use in the Mediterranean area. Pharmaceutical Biology, 49(3), 240-247. https://doi.org/10.3109/13880209.2010.501083
Prior, R., Wu, X., & Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. Journal of Agricultural and Food Chemistry, 53(10), 4290-4302. https://doi.org/10.1021/jf0502698
Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary polyphenols and their role in oxidative stress-induced human diseases: Insights into protective effects, antioxidant potentials and mechanism(s) of action. Frontiers in Pharmacology, 13(806470), 1-15. https://doi.org/10.3389/fphar.2022.806470
Rwubuzizi, R., Kim, H., Holzapfel, W. H., & Todorov, S. D. (2023). Beneficial, safety, and antioxidant properties of lactic acid bacteria: A next step in their evaluation as potential probiotics. Heliyon, 9(4), 1-12. https://doi.org/10.1016/j.heliyon.2023.e15610
Sangouni, A. A., Taghdir, M., Mirahmadi, J., Sepandi, M., & Parastouei, K. (2022). Effects of curcumin and/or coenzyme Q10 supplementation on metabolic control in subjects with metabolic syndrome: A randomized clinical trial. Nutrition Journal, 21(62), 1-10. https://doi.ord/10.1186/s12937-022-00816-7
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11(694), 1-21. https://doi.org/10.3389/fphys.2020.00694
Shi, Y., Cui, X., Gu, S., Yan, X., Li, R., Xia, S., Chen, H., & Ge, J. (2019). Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics and Antimicrobial Proteins, 11(4), 1086-1099. https://doi.org/10.1007/s12602-018-9452-5
Skorokhod, I., & Kurdysh, I. (2014). The low-molecular weight antioxidants of microorganisms. Mikrobiolohichnyi Zhurnal, 76(3), 48-59.
Srivastava, K. K., & Kumar, R. (2015). Stress, oxidative injury and disease. Indian Journal of Clinical Biochemistry, 30(1), 3-10. https://doi.org/10.1007/s12291-014-0441-5
Talib, N., Mohamad, N. E., Yeap, S. K., Hussin, Y., Aziz, M. N. M., Masarudin, M. J., Sharifuddin, S. A., Hui, Y. W., Ho, C. L., & Alitheen, N. B. (2019). Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules, 24(14), 1-18. https://doi.org/10.3390/molecules24142606
Tang, W., Xing, Z., Li, C., Wang, J., & Wang, Y., (2017). Molecular mechanisms and in vitro antioxidant effects of Lactobacillus plantarum MA2. Food Chemistry, 221, 1642-1649. https://doi.org/10.1016/j.foodchem.2016.10.124
Vougiouklaki, D., Tsironi, T., Tsantes, A. G., Tsakali, E., Van Impe, J. F. M., & Houhoula, D. (2023). Probiotic properties and antioxidant activity in vitro of lactic acid bacteria. Microorganisms, 11(5), 1-13. https://doi.org/10.3390/microorganisms11051264
Wang, Y.-C., Yu, R.-C., & Chou, C.-C. (2006). Antioxidative activities of soymilk fermented with lactic acid bacteria and bifid bacteria. Food Microbiology, 23(2), 128-135. https://doi.org/10.1016/j.fm.2005.01.020
Wu, D., Sun, M. Z., Zhang, C., & Xin, Y. (2014). Antioxidant properties of Lactobacillus and its protecting effects to oxidative stress caco-2 cells. Journal of Animal and Plant Sciences, 24(6), 1766-1771.
Yamamoto, Y., Poole, L. B., Hantgan, R. R., & Kamio, Y. (2002). An iron-binding protein, dpr, from Streptococcus mutans prevents iron dependent hydroxyl radical formation in vitro. Journal of Bacteriology, 184(11), 2931–2939. https://doi.org/10.1128/JB.184.11.2931-2939.2002
Yang, J., Dong, C., Ren, F., Xie, Y., Liu, H., Zhang, H., & Jin, J. (2021). Lactobacillus paracasei M11-4 isolated from fermented rice demonstrates good antioxidant properties in vitro and in vivo. Journal of the Science of Food and Agriculture, 102(88), 3107-3118. https://doi.org/10.1002/jsfa.11652
Yang, S., & Lian, G. (2020). ROS and diseases: role in metabolism and energy supply. Molecular and Cellular Biochemistry, 467, 1-12. https://doi.org/10.1007/s11010-019-03667-9
Zhang, X., Yu, S., Li, X., Wen, X., Liu, S., Zu, R., Ren, H., Li, T., Yang, C., & Luo, H. (2023). Research progress on the interaction between oxidative stress and platelets: Another avenue for cancer? Pharmacological Research, 191, 1-12. https://doi.org/10.1016/j.phrs.2023.106777
Zhang, Y., Hu, P., Lou, L., Zhan, J., Fan, M., Li, D., & Liao, Q. (2017). Antioxidant activities of lactic acid bacteria for quality improvement of fermented sausage. Journal of Food Science, 82(12), 2960-2967. https://doi.org/10.1111/1750-3841.13975
Zuo, L., & Wijegunawardana, D. (2021). Redox Role of ROS and Inflammation in pulmonary diseases. In Y. X. Wang (Ed.), Advances in experimental medicine and biology (v. 1304) (pp. 187-204). Springer. https://doi.org/10.1007/978-3-030-68748-9_11
Copyright (c) 2025 Nabila Benhamada, Ouahiba Benhamada, Sara Mellit, Imène Moussaoui, Tayeb Idoui (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.