Diversity of microbial communities in the rhizosphere soil of the transgenic (AtAREB1) and conventional (BR 16) soybean plants
Resumo
Rhizosphere soil is one of the most diverse microbial environments worldwide and is recognized as an ecosystem undergoing continuous transformation. Microorganisms inhabiting the rhizosphere soil play diverse roles in maintaining and stabilizing the environment. Consequently, plant-associated habitats serve as a dynamic environment influenced by various microbial composition factors. Genetically modified plants have introduced numerous traits into agriculture to address productivity-limiting factors, such as drought. This study aimed to assess the microbial diversity in the rhizosphere soils of drought-tolerant transgenic (AtAREB1) and conventional (cultivar BR 16) soybean plants. Bacterial communities were investigated using a cultivation-independent approach, utilizing pooled samples from the respective soils, followed by pyrosequencing of the 16S rRNA gene. In addition, physicochemical parameters of the soils were evaluated. The results indicated that the microbial diversity in the rhizosphere soil of both transgenic and conventional plants remained unchanged, with similar taxonomic distributions observed in both bacterial communities. Analysis of physicochemical parameters in both soils suggested a potential direct relationship between these properties and the microbial community profile, with implications for soil nutrient content and physical composition. These results are positive for biosafety when using the transgenic cultivar compared with the conventional crop.
Downloads
Referências
Andreote, F. D., Carneiro, R. T., Salles, J. F., Marcon, J., Labate, C. A., Azevedo, J. L., & Araújo, W. L. (2009). Culture-independent assessment of Rhizobiales-related Alphaproteobacteria and the diversity of Methylobacterium in the rhizoplane of transgenic eucalyptus. Microbial Ecology, 57, 82-93. https://doi.org/10.1007/s00248-008-9405-8
Bashir, I., War, A. F., Eafiq, I., Reshi, Z. A., Rashid, I., & Shouche, Y. S. (2022). Phyllosphere microbiome: Diversity and functions. Microbiological Research, 254, 126888. https://doi.org/10.1016/j.micres.2021.126888
Barbosa, E. G. G., Leite, J. P., Marin, S. R. R., Marinho, J. P., Carvalho, J. F. C., Fuganti-Pagliarini, R., Farias, J. R. B., Neumaier, N., Marcelino-Guimarães, F. C., Oliveira, M. C. N., Yamaguchi-Shinozaki, K., Nakashima, K., Maruyama, K., Kanamori, N., Fujita, Y., Yoshida, T., & Nepomuceno, A. L. (2013). Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Molecular Biology Reporter, 31, 719–730. https://doi.org/10.1007/s11105-012-0541-4
Bulgarelli, D., Schlaeppi, K., Spaepen, S., Themaat, E. V. L., & Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
Companhia Nacional de Abastecimento. (2024). Acompanhamento da safra brasileira de grãos - v. 11 - SAFRA 2023/23 - n. 6 - Sexto levantamento | Março, 2024. https://www.conab.gov.br/info-agro/safras/graos/monitoramento-agricola
Debruyn, J. M., Nixon, L. T., Fawaz, M. N., Johnson, A. M., & Radosevich, M. (2011). Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied and Environmental Microbiology, 77, 6295-6300. https://doi.org/10.1128/aem.05005-11
Dini-Andreote, F., Andreote, F. D., Costa, R., Taketani, R. G., van Elsas, J. D., & Araujo, W. L. (2010). Bacterial soil community in a Brazilian Sugarcane field. Plant and Soil, 336, 337–349. https://doi.org/10.1007/s11104-010-0486-z
Dunbar, J., Takala, S., Barns, S. M., Davis, J. A., & Kuske, C. R. (1999). Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Applied and Environmental Microbiology, 65, 1662-1669. https://doi.org/10.1128/aem.65.4.1662-1669.1999
Eichorst, S. A., Kuske, C. R., & Schmid, T. M. (2011). Influence of plant polymers on the distribution and cultivation of bacteria in the phylum Acidobacteria. Applied and Environmental Microbiology, 77, 586-596. https://doi.org/10.1128/aem.01080-10
Faria, M. R., Costa, L. S. A. S., Chiaramonte, J. B., Bettiol, W., & Mendes, R. (2021). The rhizosphere microbiome: Functions, dynamics, and role in plant protection. Tropical Plant Pathology, 46, 13-25. https://doi.org/10.1007/s40858-020-00390-5
Fernández, V., Tapia, G., Varela, P., & Videla, L. A. (2005). Redox regulation of thyroid hormone-induced Kupffer cell-dependent IkB-a phosphorylation in relation to inducible nitric oxide synthase expression. Free Radical Research, 39, 411-418. https://doi.org/10.1080/10715760400029637
Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2004). Microbial Diversity in soil: selection of microbial populations by plant soil type and implications for disease suppressiveness. Annual Review of Phytopathology, 42, 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
Garcia, A., Polonio, J. C., Polli, A. D., Santos, C. M., Rhoden, S. A., Quecine, M. C., Azevedo, J. L., & Pamphile, J. A. (2016). Rhizosphere bacteriome of the medicinal plant Sapindus saponaria L. revealed by pyrosequencing. Genetics and Molecular Research, 15(4), gmr15049020. https://doi.org/10.4238/gmr15049020
Grayston, S. J., Griffith, G. S., Mawdsley, J. L., Campbell, C. D., & Bardgett, R. D. (2001). Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biology & Biochemistry, 33, 533-551. https://doi.org/10.1016/S0038-0717(00)00194-2
Hartman, G. L., West, E. D., & Herman, T. K. (2011). Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests. Food Security, 3, 5–17. https://doi.org/10.1007/s12571-010-0108-x
Hartmann, M., & Six, J. (2023). Soil structure and microbiome functions in agroecosystems. Nature Reviews - Earth & Environment, 4, 4-18. https://doi.org/10.1038/s43017-022-00366-w
Hughes, J. B., Hellmann, J. J., Ricketts, T. H., & Bohannan, B. J. (2001). Counting the uncountable statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology, 67, 4399-4406. https://doi.org/10.1128/AEM.67.10.4399-4406.2001
Kalam, S., Basu, A., Ahmad, I., Sayyed, R. Z., El-Enshasy, H. A., Dailin, D. J., & Suriani, N. L. (2020). Recent understanding of soil acidobacteria and their ecological significance: a critical review. Frontiers in Microbiology, 11, 580024. https://doi.org/10.3389/fmicb.2020.580024
Kumar, A., & Dubey, A. (2020). Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. Journal of Advanced Research, 24, 337-352. https://doi.org/10.1016/j.jare.2020.04.014
Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied Environmental Microbiology, 75, 5111–5120. https://doi.org/10.1128/aem.00335-09
Lee, K. C., Webb, R. I., Janssen, P. H., Sangwan, P., Romeo, T., Staley, J. T., & Fuerst, J. A. (2009). Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiology, 9, 5. https://doi.org/10.1186/1471-2180-9-5
Leite, J. P., Barbosa, E. G. G., Marin, S. R. R., Marinho, J. P., Carvalho, J. F. C., Pagliarini, R. F., Cruz, A. S., Oliveira, M. C. N., Farias, J. R. B., Neumaier, N., Guimarães, F. C. M., Yoshida, T., Kanamori, N., Fujita, Y., Nakashima, K., Shinozaki, K. Y., Desidério, J. A., & Nepomuceno, A. L. (2014). Overexpression of the activated form of the AtAREB1 gene (AtAREB1ΔQT) improves soybean responses to water deficit. Genetic and Molecular Research, 13, 6272-6286. https://doi.org/10.4238/2014.august.15.10
Lopes, A. S., Abreu, C. A., & Santos, G. C. G. (2006). Micronutrientes. In Tópicos em Ciências do Solo. Sociedade Brasileira de Ciência do Solo.
Lopes, L. D., Hao, J., & Schachtman, D. P. (2021). Alkaline soil pH affects bulk soil, rhizosphere and root endosphere microbiomes of plants growing in a Sandhills ecosystem. FEMS Microbiology Ecology, 97, fiab028. https://doi.org/10.1093/femsec/fiab028
Marinho, J. P., Kanamorio, N., Ferreira, L. C., Fuganti-Pagliarini, R., Carvalho, J. F. C., Freitas, R. A., Marin, S. R. R., Rodrigues, F. A., Mertz-Henning, L. M., Farias, J. R. B., Neumaier, N., Oliveira, M. C. N., Marcelino-Guimarães, F. C., Yoshida, T., Fujita, Y., Yamaguchi-Shinozaki, K., Nakashima, K., & Nepomuceno, A. L. (2016). Characterization of molecular and physiological responses under water deficit of genetically modified soybean plants overexpressing the AtAREB1 transcription factor. Plant Molecular Biology Reporter, 34, 410–426. https://doi.org/10.1007/s11105-015-0928-0
Meng, S., Liang, X., Peng, T., Liu, Y., Wang, H., Huang, T., Gu, J-D., & Hu, Z. (2023). Ecological distribution and function of comammox Nitrospira in the environment. Applied Microbiology and Biotechnology, 107, 3877-3886. https://doi.org/10.1007/s00253-023-12557-6
Montanari-Coelho, K. K., Costa, A. T., Polonio, J. C., Azevedo, J. L., Marin, S. R. R., Fuganti-Pagliarini, R., Fujita, Y., Yamaguchi-Shinozaki, K., Nakashima, K., Pamphile, J. A., & Nepomuceno, A. L. (2018). Endophytic bacterial microbiome associated with leaves of genetically modified (AtAREB1) and conventional (BR 16) soybean plants. World Journal of Microbiology and Biotechnology, 34, 56. https://doi.org/10.1007/s11274-018-2439-2
O’Neill, B., Grossman, J., Tsai, S. M., Gomes, J. E., Lehmann, J., Peterson, J., Neves, E., & Thies, J. E. (2009). Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology, 58, 23-35. https://doi.org/10.1007/s00248-009-9515-y
Prosser, J. L. (2007). Microorganisms cycling soil nutrients and their diversity. In J. D. van Elsas, J. K. Jansson, & J. T. Trevors (Eds.), Modern soil microbiology (pp. 237-261). CRC Press.
Sohrabi, R., Paasch, B. C., Liber, J. A., & He, S. Y. (2023). Phyllosphere microbiome. Annual Reviews in Plant Biology, 74, 539-568. https://doi.org/10.1146/annurev-arplant-102820-032704
Shin, J. H., Vaughn, J. N., Abdel-Haleem, H., Chavarro, C., Abernathy, B., Kim, K. D., Jackson, S. A., & Li, Z. (2015). Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance. BMC Plant Biology, 15, 26. https://doi.org/10.1186/s12870-015-0422-8
Stackebrandt, E., & Schumann, P. (2006). Introduction to the taxonomy of Axtinobacteria. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (Eds) The Prokaryotes. Springer.
Stuart, R. M., Romão, A. S., Pizzirani-Kleiner, A. A., Azevedo, J. A., & Araújo, W. L. (2010). Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Archives in Microbiology, 192, 307-313. https://doi.org/10.1007/s00203-010-0557-9
Sun, H., Jiang, S., Jiang, C., Wu, C., Gao, M., & Wang, Q. (2021). A review of root exudates and rhizosphere microbiome for crop production. Environmental Sciences and Pollution Research, 28, 54497-54510. https://doi.org/10.1007/s11356-021-15838-7
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T., & Singh, B. K. (2020). Plant–microbiome interactions: from community assembly to plant health. Nature Reviews - Microbiology, 18, 607-621. https://doi.org/10.1038/s41579-020-0412-1
Turrini, A., Sbrana, C., & Giovannetti, M. (2015). Belowground environmental effects of transgenic crops: a soil microbial perspective. Research in Microbiology, 166, 121-131. https://doi.org/10.1016/j.resmic.2015.02.006
United States Department of Agriculture [USDA]. (2024, March). World Agricultural Production. Circular Series, WAP 3-24. Foreign Agricultural Service/USDA. https://fas.usda.gov/data/world-agricultural-production
Verma, S. K., Sahu, P. K., Kumar, K., Pal, G., Gond, S. K., Kharwar, R. N., & White, J. F. (2021). Endophyte roles in nutrient acquisition, root system architecture development and oxidative stress tolerance. Journal of Applied Microbiology, 131, 2161-2177. https://doi.org/10.1111/jam.15111
Yan, B., Liu, N., Liu, M., Du, X., Shang, F., & Huang, Y. (2021). Soil actinobacteria tend to have neutral interactions with other co‐occurring microorganisms, especially under oligotrophic conditions. Environmental Microbiology, 23, 4126-4140. https://doi.org/10.1111/1462-2920.15483
Zhalnina, K., Dias, R., de Quadros, P. D., Davis-Richardson, A., Camargo, F. A., Clark, I. M., McGrath, S. P., Hirsch, P. R., & Triplett, E. W. (2015). Soil pH determines microbial diversity and composition in the park grass experiment. Microbial Ecology, 69, 395-406. https://doi.org/10.1007/s00248-014-0530-2
Copyright (c) 2025 Janaína Fernanda Catosso Maia, Alessandra Tenório Costa, Julio Cesar Polonio, João Lúcio Azevedo, Renata Fuganti-Pagliarini, João Alencar Pamphile, Alexandre Lima Nepomuceno (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.