Synergistic interactions of nisin and Spirulina platensis extracts for foodborne pathogen control

  • Luana de Carvalho Universidade Tecnológica Federal do Paraná
  • Nathália Aparecida Andrade de Souza Universidade Estadual de Londrina
  • Márcia Cristina Furlaneto Universidade Estadual de Londrina
  • Luciana Furlaneto Maia Universidade Tecnológica Federal do Paraná
  • Eliane Colla Universidade Tecnológica Federal do Paraná
Palavras-chave: Antimicrobial synergism; bacteriocin; natural antimicrobial; Arthrospira platensis.

Resumo

The search for naturally derived antimicrobials has emerged due to an increasing concern about the use of synthetic ones. In this investigation, we examined the antibacterial mechanism and potential synergistic effect of Spirulina platensis extracts and Nisin in inhibiting the growth of 23 strains of Gram-positive and Gram-negative foodborne pathogens. We conducted four different extraction protocols to obtain S. platensis compounds, ultimately selecting the alcoholic acid-formic acid-sonication extraction due to its antimicrobial activity against 95.6% of the tested strains. Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus were selected for further analysis. Tests for Minimum Inhibitory Concentration (MIC) and the Checkerboard test revealed MIC values ranging from 0.5 to 0.12 µg mL-1 for Nisin and from 0.5 to 0.06 µg mL-1 for the selected S. platensis extract. When combined, the MIC range was 0.12 to 0.078 µg mL-1. The combination of S. platensis extracts and Nisin showed synergistic effects (Fractional Inhibitory Concentration Index0.302 to 0.18). The growth of foodborne pathogens tested was inhibited after 2, 6, 12, and 24 h with the combination of the compounds. Flow cytometry analysis showed that bacterial membrane permeability of the L. monocytogenes strain increased, while Scanning Electron Microscopy (SEM) illustrated the leakage of intracellular material, indicating cell membrane disruption. These observations suggest that combining S. platensis and nisin could be a promising natural alternative to synthetic preservatives in the food industry.

Downloads

Não há dados estatísticos.

Referências

Abdel-Moneim, E., El-Saadony, M., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., & Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29(2), 1197–1209. https://doi.org/10.1016/j.sjbs.2021.09.046

Abedin, R. M. A., & Taha, H. M. (2008). Antibacterial and antifungal activity of cyanobacteria and green microalgae. Evaluation of medium components by Plackett-Burman design for antimicrobial activity of Spirulina platensis. Global Journal of Biotechnology and Biochemistry, 3(1), 22–31.

Alshuniaber, M. A., Krishnamoorthy, R., & Alqhtani, W. H. (2021). Antimicrobial activity of polyphenolic compounds from Spirulina against foodborne bacterial pathogens. Saudi Journal of Biological Sciences, 28(1), 459–464. https://doi.org/10.1016/j.sjbs.2020.10.029

AOAC International. (1997). Official methods of analysis of AOAC International (16th ed.).

Bag, A., & Chattopadhyay, R. R. (2017). Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p‐coumaric acid against foodborne bacteria Bacillus cereus and Salmonella typhimurium. Letters in Applied Microbiology, 65(5), 366–372. https://doi.org/10.1111/lam.12793

Bermejo, R., Felipe, M. A., Talavera, E. M., & Alvarez-Pez, J. M. (2006). Expanded bed adsorption chromatography for recovery of phycocyanins from the microalga Spirulina platensis. Chromatographia, 63(1), 59–66. https://doi.org/10.1365/s10337-005-0702-9

Bouhdid, S., Abrini, J., Zhiri, A., Espuny, M. J., & Manresa, A. (2009). Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. Journal of Applied Microbiology, 106(5), 1558–1568. https://doi.org/10.1111/j.1365-2672.2008.04124.x

Clinical and Laboratory Standards Institute. (2018). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (10th ed., Vol. 35, No. 2; CLSI standard M07-A10).

El-Sheekh, M. M., Daboor, S. M., Swelim, M. A., & Mohamed, S. (2014). Production and characterization of antimicrobial active substance from Spirulina platensis. Iranian Journal of Microbiology, 6(2), 112–119.

European Committee on Antimicrobial Susceptibility Testing. (2000). Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. Clinical Microbiology and Infection, 6(9), 503–508. https://doi.org/10.1046/j.1469-0691.2000.00149.x

Fadli, M., Saad, A., Sayadi, S., Chevalier, J., Mezrioui, N. E., Pagès, J. M., & Hassani, L. (2012). Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine, 19(5), 464–471. https://doi.org/10.1016/j.phymed.2011.12.003

Galván Márquez, I. J., McKay, B., Wong, A., Cheetham, J. J., Bean, C., Golshani, A., & Smith, M. L. (2020). Mode of action of nisin on Escherichia coli. Canadian Journal of Microbiology, 66(2), 161–168. https://doi.org/10.1139/cjm-2019-0315

Grenier, D., Marcoux, E., Azelmat, J., Lagha, A. B., & Gauthier, P. (2020). Biocompatible combinations of nisin and licorice polyphenols exert synergistic bactericidal effects against Enterococcus faecalis and inhibit NF-κB activation in monocytes. AMB Express, 10(1), 1–8. https://doi.org/10.1186/s13568-020-01056-w

Kitazaki, K., Koga, S., Nagatoshi, K., Kuwano, K., Zendo, T., Nakayama, J., Sonomoto, K., Ano, H., & Katamoto, H. (2017). In vitro synergistic activities of cefazolin and nisin A against mastitis pathogens. Journal of Veterinary Medical Science, 79(11), 1851–1857. https://doi.org/10.1292/jvms.17-0180

Li, Q., Yu, S., Han, J., Wu, J., You, L., Shi, X., & Wang, S. (2022). Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food Chemistry, 380. https://doi.org/10.1016/j.foodchem.2021.132009

Machu, L., Misurcova, L., Ambrozova, J. V., Orsavova, J., Mlcek, J., Sochor, J., & Jurikova, T. (2015). Phenolic content and antioxidant capacity in algal food products. Molecules, 20(1), 1118–1133. https://doi.org/10.3390/molecules20011118

Maddiboyina, B., Vanamamalai, H. K., Roy, H., Gandhi, S., Kavisri, M., & Moovendhan, M. (2023). Food and drug industry applications of microalgae Spirulina platensis: a review. Journal of Basic Microbiology, 63, 573–583. https://doi.org/10.1002/jobm.202200704

Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014

Marrez, D. A., El-Ssayad, M. F., Shaker, A. S., Elaaser, M., & Badr, A. N. (2025). Antimicrobial synergy interaction of microalgae and nisin to improve ice cream shelf life and retaining quality. Food Bioscience, 63. https://doi.org/10.1016/j.fbio.2024.105638

Martelli, F., Cirlini, M., Lazzi, C., Neviani, E., & Bernini, V. (2020). Edible seaweeds and Spirulina extracts for food application: in vitro and in situ evaluation of antimicrobial activity towards foodborne pathogenic bacteria. Foods, 9(10). https://doi.org/10.3390/foods9101442

Maruyama, S., Streletskaya, N. A., & Lim, J. (2021). Clean label: Why this ingredient but not that one? Food Quality and Preference, 87. https://doi.org/10.1016/j.foodqual.2020.104062

Mathur, H., Field, D., Rea, M. C., Cotter, P. D., Hill, C., & Ross, R. P. (2017). Bacteriocin-antimicrobial synergy: a medical and food perspective. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01205

Mazur-Marzec, H., Blaszczyk, A., Felczykowska, A., Hohlfeld, N., Kobos, J., Torunska-Sitarz, A., Devi, P., Montalvão, S., D’souza, L., Tammela, P., Mikosik, A., Bloch, S., Nejman-Falenczyk, B., & Węgrzyn, G. (2015). Baltic cyanobacteria–a source of biologically active compounds. European Journal of Phycology, 50(3), 343–360. https://doi.org/10.1080/09670262.2015.1062563

Mendiola, J., Jaime, L., Santoyo, S., Reglero, G., Cifuentes, A., Ibañez, E., & Señoráns, F. J. (2007). Screening of functional compounds in supercritical fluid extracts from Spirulina platensis. Food Chemistry, 102(4), 1357–1367. https://doi.org/10.1016/j.foodchem.2006.06.068

Özogul, İ., Kuley, E., Ucar, Y., Yazgan, H., & Özogul, Y. (2021). Inhibitory impacts of Spirulina platensis and Chlorella vulgaris extracts on biogenic amine accumulation in sardine fillets. Food Bioscience, 4. https://doi.org/10.1016/j.fbio.2021.101087

Parisi, A. S., Younes, S., Reinehr, C. O., & Colla, L. M. (2009). Avaliação da atividade antibacteriana da microalga Spirulina platensis. Revista de Ciências Farmacêuticas Básica e Aplicada, 30(3), 295–301.

Ramalho, R., Souza, N. A. A., Moreira, T. F. M., Oliveira, A., Perini, H. F., Furlaneto, M. C., Leimann, F. V., & Furlaneto-Maia, L. (2023). Antibacterial efficacy of Enterococcus microencapsulated bacteriocin on Listeria monocytogenes, Listeria innocua, and Listeria ivanovi. Journal of Food Science and Technology, 60(1), 262–271. https://doi.org/10.1007/s13197-022-05611-0

Roshanak, S., Shahidi, F., Yazdi, F. T., Javadmanesh, A., & Movaffagh, J. (2020). Evaluation of antimicrobial activity of buforin I and nisin and the synergistic effect of their combination as a novel antimicrobial preservative. Journal of Food Protection, 83(11), 2018–2025. https://doi.org/10.4315/JFP-20-127

Sani, A. A., Pereira, A. F. M., Furlanetto, A., Sousa, D. S. M., Zapata, T. B., Rall, V. L. M., & Fernandes, A. (2022). Inhibitory activities of propolis, nisin, melittin and essential oil compounds on Paenibacillus alvei and Bacillus subtilis. Journal of Venomous Animals and Toxins including Tropical Diseases, 12(28). https://doi.org/10.1590/1678-9199-JVATITD-2022-0025

Santos, A. R. P., Lima, B. C. S., Couto, G. J., Carvalho, L. D., Magna, L. R., Nogueira, M. H., Braga, M., Carreteiro, M. M., Furlaneto, M. C., & Furlaneto Maia, L. (2025). Antibiofilm effect of caffeine against Listeria monocytogenes and Escherichia coli in grape and apple fruit juices. Biofouling, 1–13. https://doi.org/10.1080/08927014.2025.2515923

Scaglioni, P. T., & Badiale-Furlong, E. (2023). Microalgae as a source of preservatives in food/feed chain. In E. Jacob-Lopes, M. I. Queiroz, M. M. Maroneze, & L. Q. Zepka (Eds.), Handbook of food and feed from microalgae (pp. 267–277). Academic Press. https://doi.org/10.1016/B978-0-323-99196-4.00028-0

Shi, C., Zhang, X., Zhao, X., Meng, R., Liu, Z., Chen, X., & Guo, N. (2017). Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control, 71, 10–16. https://doi.org/10.1016/j.foodcont.2016.06.020

Soltani, S., Biron, E., Said, L. B., Subirade, M., & Fliss, I. (2022). Bacteriocin-based synergetic consortia: a promising strategy to enhance antimicrobial activity and broaden the spectrum of inhibition. Microbiology Spectrum, 23(1), e0040621. https://doi.org/10.1128/spectrum.00406-21

Souza, N. A. A., Carvalho, L., Nogueira, M. H., Furlaneto, M. C., & Maia, L. F. (2024). Potential of enterocin from Enterococcus durans MF5 in controlling Listeria species. Journal of Dairy Research, 91(4), 516–524. https://doi.org/10.1017/S0022029925000160

Suganthi, V., Selvarajan, E., Subthradevi, C., & Mohanasrinivasan, V. (2012). Lantibiotic nisin: natural preservative from Lactococcus lactis. International Research Journal of Pharmacy, 3(1), 13–19.

Szabo, M. R., Radu, D., Gavrilas, S., Chambre, D., & Iditoiu, C. (2010). Antioxidant and antimicrobial properties of selected spice extracts. International Journal of Food Properties, 13(3), 535–545. https://doi.org/10.1080/10942910802713149

Wang, J., Ma, X., Li, J., Shi, L., Liu, L., Hou, X., Jiang, S., Li, P., Lv, J., Han, L., Cheng, Y., & Han, B. (2023). The synergistic antimicrobial effect and mechanism of nisin and oxacillin against methicillin-resistant Staphylococcus aureus. International Journal of Molecular Sciences, 24(7), 6697. https://doi.org/10.3390/ijms24076697

Zhou, H., Fang, J., Tian, Y., & Lu, X. Y. (2014). Mechanisms of nisin resistance in Gram-positive bacteria. Annals of Microbiology, 64(2), 413–420. https://doi.org/10.1007/s13213-013-0679-9

Publicado
2025-11-25
Como Citar
Carvalho, L. de, Souza, N. A. A. de, Furlaneto, M. C., Maia, L. F., & Colla, E. (2025). Synergistic interactions of nisin and Spirulina platensis extracts for foodborne pathogen control. Acta Scientiarum. Biological Sciences, 47(1), e76437. https://doi.org/10.4025/actascibiolsci.v47i1.76437
Seção
Microbiologia

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus

 

 

0.6
2019CiteScore
 
 
31st percentile
Powered by  Scopus