Investigation of soil pollution with Heavy Metals in Mosul forests, Mosul City, Iraq
Resumo
A total of eight heavy metals (lead (Pb), cadmium (Cd), nickel (Ni), arsenic (As), zinc (Zn), cobalt (Co), chromium (Cr), and copper (Cu), were investigated and analyzed to assess their concentrations and potential environmental implications. Compared with the global average index, The results revealed that the concentrations of cadmium (Cd: up to 0.12 ppm), nickel (Ni: up to 231.93 ppm), zinc (Zn: up to 99.61 ppm), and copper (Cu: up to 55.98 ppm) exceeded global average thresholds, indicating significant contamination. Statistical analysis using independent samples t-tests showed significant seasonal and depth-based variations (p < 0.005) for most metals. The elevated concentrations are likely linked to the 2014–2017 conflict in Mosul, which contributed to heavy metal accumulation through destruction, fire, and munitions. These findings underscore the urgent need for remediation efforts to restore soil health and protect the ecological and recreational value of Mosul’s urban forests.
Downloads
Referências
Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals (2nd ed.). Springer.
Alfani, A., Baldantoni, D., Maisto, G., Bartoli, G., & Virzo De Santo, A. (2000). Temporal and spatial variation in C, N, and trace element concentrations in the leaves of Quercus ilex L. Environmental Pollution, 109(1), 119–129.
Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability (Vol. 22). Springer Science & Business Media.
Blanco, J. A., & Lo, Y. H. (2012). Forest ecosystems: More than just trees. BoD–Books on Demand.
Brown, V. J. (2004). Reconstructing the environment in Iraq. Environmental Health Perspectives, 112(8), A464–A464. https://doi.org/10.1289/ehp.112-a464
Delpla, I., Baures, E., Jung, A.-V., & Thomas, O. (2011). Impacts of rainfall events on runoff water quality in an agricultural environment in temperate areas. Science of the Total Environment, 409, 1683–1688. https://doi.org/10.1016/j.scitotenv.2011.01.033
Fadhel, M., Mohammed, A., & Znad, S. (2022). Assessing heavy metals emission and workers' health risks at the Eastern Industrial Region, Mosul, Iraq. Revis Bionatura, 7(2), 14. https://doi.org/10.21931/RB/2022.07.02.14
Fitzgerald, E. J., Lamb, D. T., & Staunton, S. (2003). Metal fate and speciation in soil: The influence of mineralogy and pH on trace element mobility. Environmental Pollution, 123(2), 197–204.
Habib, H. R., Awadh, S. M., & Muslim, M. Z. (2012). Toxic heavy metals in soil and some plants in Baghdad, Iraq. Al-Nahrain Journal of Science, 15(2), 1–16.
Jean-Philippe, S. R., Labbé, N., Franklin, J. A., & Johnson, A. (2012). Detection of mercury and other metals in mercury contaminated soils using mid-infrared spectroscopy. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 139.
Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). CRC Press.
Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Springer-Verlag.
Mei, J., Li, Z., Sun, L., Gui, H., & Wang, X. (2011). Assessment of heavy metals in the urban river sediments in Suzhou City, northern Anhui Province, China. Procedia Environmental Sciences, 10, 2547–2553.
Mmolawa, K. B., Likuku, A. S., & Gaboutloeloe, G. K. (2011). Assessment of heavy metal pollution in soils along major roadside areas in Botswana. African Journal of Environmental Science and Technology, 5(3), 186–196.
Mohammed, M. K., Al-Tameemi, N. H., & Naji, M. S. (2010). Risk assessment related to contamination of terrestrial food chains by atmospherically deposited lead particles. Al-Mustansiriyah Journal of Science, 21(3), 103–116.
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8
Noli, F., & Tsamos, P. (2016). Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563, 377–385. https://doi.org/10.1016/j.scitotenv.2016.04.098
Parizanganeh, A., Hajisoltani, P., & Zamani, A. (2010). Assessment of heavy metal pollution in surficial soils surrounding Zinc Industrial Complex in Zanjan-Iran. Procedia Environmental Sciences, 2, 162–166.
Sayadi, M. H. (2014). Impact of land use on the distribution of toxic metals in surface soils in Birjand city, Iran. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(1), 18-29.
Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal‐induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365. https://doi.org/10.1093/jexbot/53.372.1351
Serbula, S. M., Kalinovic, T. S., Ilic, A. A., Kalinovic, J. V., & Steharnik, M. M. (2013). Assessment of airborne heavy metal pollution using Pinus spp. and Tilia spp. Aerosol and Air Quality Research, 13(2), 563–573. https://doi.org/10.4209/aaqr.2012.06.0153
Sommers, L. E., & Lindsay, W. L. (1979). Effect of pH and redox on predicted heavy metal‐chelate equilibria in soils. Soil Science Society of America Journal, 43(1), 39–47.
Van Straalen, N. M., & Krivolutsky, D. A. (1996). Bioindicator systems for soil pollution (Vol. 16). Springer Science & Business Media.
Zhang, C., Selim, H. M., & Sparks, D. L. (2012). Kinetics and mechanisms of heavy metal sorption in soils. In P. M. Huang (Ed.), Soil mineral–organic matter–microorganism interactions (pp. 187–226). CRC Press.
Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2016). Biomonitoring: An appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606(2), 135–150. https://doi.org/10.1016/j.aca.2007.11.018
Znad, S. R., & Al-Sinjary, M. N. (2020). Assessment of heavy metal pollution of industrial zones in mosul city. Plant Archives, 20(2), 256-263.
Copyright (c) 2025 Salim Rabeea Znad, Ibrahim Mahmoud Ibrahim , Mohammed Zuhier Ibrahim, Omar Mohamed Saied Faysal (Autor)

This work is licensed under a Creative Commons Attribution 4.0 International License.
DECLARAÇÃO DE ORIGINALIDADE E DIREITOS AUTORAIS
Declaro que o presente artigo é original, não tendo sido submetido à publicação em qualquer outro periódico nacional ou internacional, quer seja em parte ou em sua totalidade.
Os direitos autorais pertencem exclusivamente aos autores. Os direitos de licenciamento utilizados pelo periódico é a licença Creative Commons Attribution 4.0 (CC BY 4.0): são permitidos o compartilhamento (cópia e distribuição do material em qualqer meio ou formato) e adaptação (remix, transformação e criação de material a partir do conteúdo assim licenciado para quaisquer fins, inclusive comerciais.
Recomenda-se a leitura desse link para maiores informações sobre o tema: fornecimento de créditos e referências de forma correta, entre outros detalhes cruciais para uso adequado do material licenciado.