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ABSTRACT. Clotrimazole is an antifungal agent, widely used in vulvovaginal and oropharyngeal 

candidiasis. Currently available clotrimazole (especially vaginal) dosage forms, have some limitations, 

including: leakage, messiness and low residence time, which leads to poor patient compliance. Therefore, 

in this study, a clotrimazole mucoadhesive gel has been developed as a suitable strategy due to their high 

water content, increased local retention time, lubrication and patient compliance. Xanthan gum and 

tragacanth with different portions were utilized as natural mucoadhesive gel forming polymers. Gel 

formulations were subjected to physico-chemical evaluations including gel viscosity, FTIR spectroscopy, 

spreadability, scanning electron microscopy (SEM) images of hydrogel chains, and release kinetic. Results 

demonstrated that among 8 developed formulas, formulation F1 showed the appropriate properties 

including controlled drug release (63.13% in 6h) with higuchi release kinetic, higher mucoadhesion (77.71 

dyne cm-1) and drug content (94.47%) and relatively low spreadability (3.5 cm) which is suitable for local 

drug delivery. FTIR spectroscopy revealed there is not incompatibility between clotrimazole and other 

excipients in formulations. Combination of natural polysaccharides can form a proper mucoadhesive gel 

matrix for delivery of synthetic or natural drugs. 
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Introduction 

Candida is usually an opportunistic fungal pathogen and can cause local and systemic mycoses in 

predisposed people, commonly affecting immunocompromised patients and those undergoing prolonged 

antibiotic treatment. About 150 species of Candida have been recognized, out of them C. albicans is one of 

the most pathogenic species and it cause candidiasis (Kumar, Karthik, & Rao 2010).   

Most Candida infections can be treated with topical administration of antifungal drugs such as 

clotrimazole, miconazole, nystatin, tioconazole, etc. Clotrimazole (1-[(2-chlorophenyl)diphenylmethyl]-1H-

imidazole), an imidazole derivative, is a widely used drug with a wide spectrum of antifungal activity, 

particularly against candidiasis (Manca et al. 2019; Soriano-Ruiz et al. 2019). It acts by inhibiting cytochrome 

14α-demethylase enzyme of the fungal cells responsible for cell wall synthesis (Santos et al. 2013). It has very 

well-tolerated topical products with few side effects and is widely used as a topical treatment for tinea pedis, 

vulvovaginal and oropharyngeal candidiasis. Currently, clotrimazole is available as conventional topical 

formulations such as cream, lotion and troches (Gupta, Sharma, & Chauhan, 2017). 

The impediment of the conventional formulations eg. mouthwash, gel, etc. in oral candidiasis is the easy 

removal of drug by the tongue motions and saliva secretion (Paderni, Compilato, Giannola, & Campisi, 2012). 

Also in vaginal candidiasis, currently available vaginal dosage forms (such as solutions, creams, foams, tablets 

and rings) have some limitations, including: leakage, messiness and low residence time, which leads to poor 

patient compliance. Hence, mucoadhesion has been proposed as a suitable strategy for mucosal disease 

treatment to improve in vivo performance of antifungal formulations ensuring a long permanence of the 

loaded therapeutic agent at the site of infection (Peppas & Buri, 1985). Among them, gels have received great 

attentions due to their high water content (Khan et al., 2020) and rheological behavior causing increased 

vaginal retention time, lubrication and patient compliance (Bonferoni et al., 2006; Ramadan, Elbakry, 

Esmaeil, & Khaleel, 2018). Gels are also easy to manufacture and scale up and are preferred vaginal drug 

delivery system among ladies (Braunstein & Wijgert, 2005; Vandebosch et al., 2004). 

https://orcid.org/0000-0002-0077-1222
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Natural biodegradable polysaccharide-based gels displaying excellent properties have already been 

reported by several researchers. They are biocompatible or non-toxic in nature, produced by living organisms 

with no adverse impact on environmental health. They are low in cost & easily available (Heydary, Karamian, 

Poorazizi, Khandan, & Heydaripour, 2015; Salamanca, Yarce, Moreno, Prieto, & Recalde, 2018; Gandhi, 

Verma, Imam, & Vyas, 2019; Tanan, Panichpakdee, & Saengsuwan, 2019).  

Tragacanth Gum (TG) is a dried exudation obtained from the stems and branches of Asiatic species of 

Astragalus, (Mohammadifar, Musavi, Kiumarsi, & Williams, 2006). TG has been accepted since 1961 

as ‘generally recognized as safe’ (GRAS) at the level of 0.2-1.3% and in Europe has E-number E413 on the list 

of additives approved by the Scientific Committee for Food of the European Community (Saffari, Farzi, Emam‐

Djomeh, Moini, & Mohammadifar, 2013). It‘s safety has been approved among mutagenic, carcinogenic, 

allergenic, teratogenic and toxicological effects on the human body and cell growth (Ghayempour, Montazer, 

& Rad, 2015). 

TG is widely used in various fields such as food, pharmaceuticals, biomedicals and cosmetics acting as the 

stabilizer, emulsifier, thickener, cell matrix, fat replacer and cross-linking agent (Firooz, Mohammadifar, & 

Haratian, 2012). Several researches have determined the physical, chemical and biological characteristics of 

TG including structure, thermal behavior, emulsifying,, viscosity, acidity, stability, and also rheological, 

antibacterial, biocompatibility and biodegradability (Debon & Tester, 2001; Zohuriaan & Shokrolahi, 2004; 

Chenlo, Moreira, & Silva, 2010; Farzi, Yarmand, Safari, Emam-Djomeh, & Mohammadifar, 2015). In recent 

years, several works are reported on the application of TG in the wound and burn dressing (Nayeb Morad, 

Rashidi, Khajavi, Rahimi, & Bahador, 2018), synthesis of various nanoparticles (Kora & Arunachalam 2012; 

Hajizadeh, Farhadi, Molaei, & Forough, 2020; Tavakoli, Shadizadeh, Hayati, & Fattahi, 2020), biosensor 

(Qasemi & Ghaemy, 2020a), superabsorbent hydrogel(Qasemi & Ghaemy, 2020b), cell matrix (Ranjbar 

Mohammadi, Kargozar, Bahrami, & Rabbani, 2020) and drug delivery systems (Niknia, Kadkhodaee, & 

Eshtiaghi, 2020; Verma, Negi, Pathania, Anjum, & Gupta, 2020). Since the TG is one of the most acid-resistant 

polysaccharides, it seems to be an efficient natural polymer for vaginal drug delivery due to its physiological 

acidic environment. 

Xanthan gum (XG) is an anionic branched biopolymer resulting from the aerobic fermentation of either 

sugar cane or corn in the presence of the Xanthomonas campestris bacteria (Pawlicka et al., 2019). The 

molecular structure of XG is similar to the cellulose, with the exception of the trisaccharide side chains on the 

alternate sugar units. These parts of the chains are composed of d-glucuronic acid ring in between d-mannose 

acetate, attached to the main chain, and d-mannose pyruvate as a terminal ring. The d-glucuronic acid and d-

mannose pyruvate are responsible for XG anionic character (Kumar, Rao, & Han, 2018). Xanthan solutions is 

known as a thickening agent with pseudoplastic behavior and high stability over a wide range of temperature 

and pH and in the presence of various types and amounts of salts (Andreopoulos & Tarantili 2001). Xanthan 

gum has been used widely in many important applications such as cosmetic and pharmaceutical industry as 

suspending agent, emulsifying agent. Xanthan gum is extensively used for enhanced oil recovery in the 

petroleum industry because it is drag reducing agent with good shear stability (Pandey & Mishra 2011).  

To the best of our knowledge, although there are various dosage forms of clotrimazole, there is no 

mucoadhesive clotrimazole gel available in market. Therefore, this study was designed for formulation and 

physico-chemical evaluations of clotrimazole mucoadhesive gel for both oral and vaginal indications. Gel 

forming polymers are chosen only from natural gums (tragacanth and xanthan gum) due to all their 

advantages specially ecosystem friendliness and high biocompatibility. 

Material and methods 

Materials 

Tragacanth and xanthan gum were purchased from Gol Darou Co, Tehran, Iran. Clotrimazole was obtained 

from Behvazan pharmaceutical Co, Rasht, Iran. Propylene glycol (PG), myrj52 and sodium benzoate were 

procured from Sigma-aldrich, Germany. Dialyzes bags with a molecular weight cutoff of 14kDa were 

purchased form Sigma (Steinheim, Germany). All gel formulations were prepared in deionized water.  

Ethical approval 

The study protocol was approved by research committee of Guilan University of Medical Sciences by the 

ethics code of IR.GUMS.REC.1396.282. 
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Preparation and characterization of the mucoadhesive gel 

According to the study design (Table 1) proper amount of each polymer was mixed with deionized water 

in a 250 mL beaker. The colloidal solution was stirred with magnetic stirrer at 500 rpm. Clotrimazole and myrj 

52 and other excipients were dissolved in determined volume of deionized water, separately. Finally, 

clotrimazole and polymeric colloidal solutions were mixed and adjusted to 100 mL. 

Table 1. Natural polymers and other excipient composition in formulations F1-F8. 

Formulations Clotrimazole Xanthan gum Tragacanth Na benzoate PG Myrj 52 

F1 1 3.5 0.5 0.25 5 1 

F2 1 3 0.5 0.25 5 1 

F3 1 2.5 0.5 0.25 5 1 

F4 1 2 0.5 0.25 5 1 

F5 1 1.5 0.5 0.25 5 1 

F6 1 1 0.5 0.25 5 1 

F7 1 5 - 0.25 5 1 

F8 1 - 5 0.25 5 1 

 

- Visual examinations: formulations F1-F8 were visually evaluated among color, clarity, homogeneity, 

presence of particles or polymer clamps. 

- Viscosity studies: viscosity of samples was measured using a DV-3 con viscometer (Brookfield, USA). 50 

ml of samples were applied to viscometer container in 37°C (n=3) (Pandey et al. 2020). 

- Gel spreadability: 0.5 g of each gel formulations was placed on a circle glass plate with 1cm diameter and 

another glass plate was placed on the gel. A 50 g weight was placed on upper glass for 5 minutes. The spreading 

area was calculated using the measurement of increase in gel diameter (n=3) (Deuschle, Deuschle, Bortoluzzi, 

& Athayde,  2015; Dantas et al., 2016). 

- FTIR Spectroscopy: A FTIR spectrophotometer (Thermo Nicolet, model: Nexus670, USA) was used to 

examine the probable incompatibilities between clotrimazole and excipients. Clotrimazole, TG, XG and 

Formulations F1 (as the combination of API and excipients) where evaluated. FTIR Spectra were collected at 

a resolution of 4 cm−1and given as the ratio of 21 single beam scans to the same number of background scans 

in pure KBr (Fidalgo & Ilharco, 2001). 

- Drug content: 1 g of gel was vigorously stirred with 100 ml citrate buffer, using sonicator and vortex 

resulting in a transparent solution after filtration. Then the filtrate was subjected to UV spectrometry in 230 

nm (n=3) (Kumar & Verma, 2010). 

- Scanning electron microscopy analysis:  Polymer chain morphology was investigated by FESEM Sigma 

VP (Zeiss, Germany) with an accelerating voltage of 10 kV under vacuum conditions. For sample preparation, 

gels were air dried at 25°C in a desiccator and dried gels were gold sputter coated before FESEM (Schemehorn, 

González-Cabezas, & Joiner, 2004). 

Mucoadhesive properties 

Mucoadhesion study was performed according to Tasdighi’s method (Tasdighi, Azar, & Mortazavi, 2012) 

with some modifications. 0.5 g of each gel formulations (A) was placed between two circle glasses (B) covered 

with sheep intestinal mucus (C). Bottom glass was fixed in a crystallizer and top glass was linked to a balance 

measuring the required force for detachment of the gel from mucosal membrane. The test was performed in 

phosphate buffer medium pH=4.5 and 37°C (n=3).  

Pharmacokinetic study 

- In vitro release profile: The in vitro release was performed using 14 kDa Dialysis tubing Cellulose 

Membrane. Membrane was soaked in distilled water for 24hrs, before experiment. 5 g of each formulation was 

packed in dialysis tube and placed in 200 mL citrate buffer (pH=5) and ethanol (70:30) as receptor medium, in 

37°C. Medium was stirred at 100 rpm during the release test and samples were withdrawn at certain time 

intervals of 0.5, 1, 2, 4, and 6hrs. Content of clotrimazole in each sample was analyzed with UV 

spectrophotometry (PerkinElmer, USA) in 230 nm (Kumar & Verma, 2010).  

- Drug release kinetic: The in vitro release data was incorporated to investigate the release kinetics of 

formulations F1, F6, F7 and F8 using various mathematical kinetic models. Release kinetic was evaluated in 



Page 4 of 11  Hesari and Emmamzadehhashemi 

Acta Scientiarum. Health Sciences, v. 45, e55651, 2023 

formulations F1, F6, F7 and F8 due to higher variation in their polymeric proportion (referring to table 1), supposing 

probable difference in release mechanisms. Evaluated models included Zero order, First order, Higuchi and 

Korsmeyer-Peppas which are previously explained in (Ngwuluka, Kyari, Taplong, & Uwaezuoke, 2012) 

Statistical analysis 

For comparison between 8 formulations, data obtained from physico-chemical evaluations (gel 

spreadability, drug content and mucoadhesion) was subjected to one way ANOVA. In cases in which 

significant differences existed in the ANOVA test, Tukey post-hoc test was used to specify those samples 

having significant differences with each other. In all tests, p-value ≤0.05 was considered as significant. 

Result and discussion 

According the Table 1, gelling agents (polymers) were slowly dispersed in water with range of 0-5% for 

xanthan gum and tragacanth with a fixed amount of 0.5%. Both polymers have been incorporated with 5% w 

v-1 in F7 and F8, to be comparable in evaluations. 

Preparation and characterization of the mucoadhesive gel 

- Visual examination: revealed that all formulations where homogenous in texture, with a creamy color 

which was due to presence of dispersed active pharmaceutical ingredient (API) particles.  

- Viscosity: also influences the gel spreadability, drug release rate and mucoadhesion. Viscosity of all 

formulations are listed in Table 2. Results showed that from F1 to F6 viscosity gradually decreases due to 

decrease in total polymer concentration (from 4 to 1.5%) in which the TG percent is fixed (0.5%) and XG 

percent reduces. F7 and F8 showed higher viscosity as a result of higher polymer concentration (5%) and as 

other studies investigated, F7 with the highest viscosity confirmed that XG forms more viscous gel in 

comparison with TG in equal polymer percent (Mohammadian & Alavi 2016).  

- Spreadability results: showing an exact reverse behavior with viscosity are presented in Table 2. Statistics 

showed the significant difference between formulations, except F1 and F2 in which F1 showed lower 

spreadability (Tukey Post Hoc) but the difference was not significant.   

Table 2. Physical properties of formulations F1-F8. 

Formulation 
Viscosity 

(cp) ±SD 

Spreadability  

(cm)±SD 

Mucoadhesion  

(dyne cm-2)±SD 

Drug content  

(%) ±SD 

CDR** 

 in 6 h (%) 

F1 17800 3.5±0.2 77.71±1.96 94.47±0.45 63.13 

F2 15900 3.8±0.26 75.59±2.32 91.73±0.92 67.6 

F3 12700 4.1±0.2 74.84±2.70 91.65±0.57 72.22 

F4 12500 4.5±0.15 69.25±2.37 89.78±0.52 81.45 

F5 11400 4.5±0.2 66.47±3.58 89.34±1.46 86.73 

F6 8100 4.6±0.1 54.49±2.85 87.42±0.35 95.29 

F7 * 2.2±0.17 83.67±2.18 96.49±1.05 98.36 

F8 16800 2.6±0.17 87.38±1.77 99.65±1.13 79.35 

*Due to very high viscosity, it was not measurable by the apparatus. **Cumulative drug release 

- FTIR spectra: for pure clotrimazole, formulations F1 and F6 are presented in Figure 1 (a, b, c respectively) 

and positions of peaks are compared. Aromatic C-H bending (758 cm-1), C=N stretch (1488 cm-1), and aromatic 

C=C stretch (1534 cm-1) and aromatic C-H stretch (3167 cm–1) which are index peaks corresponding to 

clotrimazole are present in F1 and F6 final formulations spectrum. The FTIR spectra of pure API and final 

formulations showed that the position of characteristic peaks where not altered after incorporation in 

formulations confirming the absence of probable interactions between drug and excipients. Similarly, in other 

studies no significant interaction was found between clotrimazole and chitosan (Grimling,Karolewicz, 

Nawrot, Włodarczyk, & Górniak, 2020), hydroxypropylmethylcellulose, sodium carboxymethylcellulose and 

Carbopol (Gupta, Natasha, Getyala, & Bhat, 2013). 

- Drug content: in an acceptable range of API, ensures the producer and consumer about receiving the 

adjusted or necessary dose. Since there is no defined monograph for vaginal clotrimazole gel in 

pharmacopeias, the prevalent range of 90-105% was considered as acceptable in this study. Drug content of 

each formulation is presented in Table 2. Statistical analysis for F1 to F8 revealed that there is significant 

difference between all formulations. 
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Figure 1. FTIR spectroscopy of a) pure clotrimazole, b) Formulation F1, c) formulation F6 with common peaks of 758, 1488, 1534 cm-1. 

- Scanning Electron Microscopy (SEM): characterized the polymeric chain micro-morphology of hydrogel. 

Samples F7 and F8 which were simply made of XG and TG, respectively and F1 with highest amount of XG 

(3.5%) and 0.5% TG and F6 with lowest amount of XG (1%) and 0.5% TG, were subjected to SEM. Figure 2 

shows a homogenous linear morphology of chains surrounding API for F7 (Figure 2a) and a relatively smoother 

morphology for F8 (Figure 2b) while in F1 and F6 a kind of polymeric chain integration is observed (Figure 2 c 

and d). It seems that formulations containing both polymers show special polymeric interactions due to 

probable hydrogen or van der Waals bonds. SEM images of prior investigations also showed higher polymeric 

entanglements while using two or more polymers in one formulations for example cationic tapioca starch–

xanthan gum mixture in comparison with cationic tapioca starch (Chaisawang & Suphantharika, 2005) or 

incorporation of anionic tapioca starch-xanthan gum mixture compared to anionic tapioca starch which 

presents higher polymeric interactions in SEM images (Chaisawang & Suphantharika, 2006). As clotrimazole 

is a highly lipophile API with log P above 5, it’s dispersed in hydrogel and crystals are observed in all 

formulation’s SEM results.  

Mucoadhesive properties 

Mucoadhesion studies showed that similar to viscosity, increase in total polymer concentration, increases 

the mucoadhesion and there was a statistically significant difference between all formulation’s viscosity. This 

finding was confirmed by previous studies such as addition of XG to TG/chitosan polyelectrolyte complexes-

based hydrogels which resulted in formation of a more viscous hydrogel with improved mucoadhesiveness 

and mechanical strength for buccal application (Potaś, Szymańska, Basa, Hafner, & Winnicka, 2021). In 
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another study, XG was incorporated in formulation of mucoadhesive buccal patches of zolmitriptan. Results 

revealed that with an increase in concentration of XG, bioadhesion force increased (Shiledar, Tagalpallewar, 

& Kokare, 2014). Therefore, mucoadhesion decreased from F1 to F6 (77.71-54.49 dynecm-2). F7 and F8 with 

highest polymer concentration (5%) showed higher mucoadhesion, noting that TG revealed higher adhesion 

in comparison with XG in equal polymer concentration as was observed previously in (Parvinroo, Eslami, 

Ebrahimi-Najafabadi, & Hesari, 2020) (Table 2).  

 

Figure 2. SEM image of hydrogel polymeric chain morphology in a) F7: XG (5%). b) F8: TG (5%). c) F1: XG (3.5%) and TG (0.5%). d) F6: XG (1%) and TG 

(0.5%). 

Pharmacokinetic study 

- In vitro release profile: of clotrimazole was evaluated for all formulations in citrate buffer (pH=5) and 

ethanol (70:30) in 37°C. F1 to F8 release profiles are presented in Figure 3. Based on cumulative release percent, 

F6 showed the highest (95.29%), while F1 showed the lowest (63.13%) release rate in 6 hours. Since, F1 to F6 

gels are composed of two polymers, decrease in total amount of polymers leads in increasing the release rate 

from F1 to F6. On the other hand, comparing the release rate of F7 and F8 reveals that TG has a more retardant 

effect on drug release than XG as reported by Salamanca CH (Salamanca et al., 2018). However, total polymer 

concentration in F7 and F8 is higher than F1 to F6, their drug release rate is higher than F1, F2 and F3. It maybe 

hypothesized that these two polymers show some synergistic effect in drug release rate control, when 

combined. Some synergistic effects were observed in XG in previous investigations including gelation with 

Locust Bean Gum or Konjac Glucomannan (Goycoolea,Richardson, Morris, & Gidley, 1995), viscosity with 

guar gum (Casas, Mohedano, & García‐Ochoa 2000), mechanical and barrier property with gellan gum (Zhang 

et al., 2020), viscosity with konjac-Mannan and TG (Mirzaei, Alimi, Shokoohi, & Golchoobi, 2018). 

- Drug release kinetic: in formulations F1, F6, F7 and F8 showed the highest regression coefficient in with 

higuchi model (Table 3). Higuchi model describes the diffusion of API from the matrix and drug delivery 

system's (DDS) matrix erosion that has been observed repeatedly in XG based DDS (Kar, Mohapatra, Bhanja, 

Das, & Barik, 2010; Mughal, Iqbal, & Neau 2011; Zambrano-Zaragoza, Quintanar-Guerrero, Del Real, Piñon-

Segundo, & Zambrano-Zaragoza, 2017). In this regard, main polymeric component of formulations F1, F6& F7 
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is XG which strongly navigates the release behavior toward higuchi model. However, F8 which is totally 

composed of TG, also was best fitted with higuchi model and describes the release of drug based on Fickian 

diffusion from insoluble matrix as a square root of time-dependent process which was also discovered in 

conjugated TG (Dehghan-Niri, Tavakol, Vasheghani-Farahani, & Ganji,  2015; Shafiee, Ahangar, & Saffar, 

2019) or combination of TG and XG (Akhtar Rasul et al., 2010). 

 

Figure 3. Cumulative drug release of formulations F1-F8 vs time. 

Table 3. Release kinetic parameters for F1, F6, F7 and F8 formulations based on mentioned mathematical models. 

Formulation 
Zero order First order Higuchi Korsemeyer-peppas 

K0 R2 K1 R2 KH R2 KK R2 

F1 10.015 0.8935 -0.0702 0.9471 33.028 0.9554 0.2423 0.6588 

F6 14.595 0.9032 -0.2034 0.9103 48.029 0.9617 0.2488 0.5901 

F7 11.098 0.8878 -0.2487 0.8729 36.62 0.9504 0.2325 0.4911 

F8 12.205 0.946 -0.1088 0.9755 39.621 0.9802 0.253 0.6591 

Conclusion 

Combination of natural polysaccharides provides a tunable platform for development of mucoadhesive 

DDSs with desirable API release behavior, viscosity, spreadability, mucoadhesion, etc. In this study F1 showed 

the appropriate physicochemical properties including controlled drug release (63.13% in 6h) with higuchi 

release model, higher mucoadhesion (77.71 dyne cm-1) and drug content (94.47%) and relatively low 

spreadability (3.5 cm) which is suitable for local drug delivery. FTIR spectroscopy revealed there is no 

incompatibility between clotrimazole and natural polymers in formulations. 
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