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On (4, p)-continuous functions and (4, p)-closed graphs

M. Caldas, E. Ekici, S. Jafari and S. P. Moshokoa

ABSTRACT: It is the object of this paper to introduce the notions of (4,p) -
continuity and (6, p)-closed graphs by utilizing the notion of (4, p)-open sets and
investigate the fundamental properties of (4, p)-continuous functions and also present
some properties of functions with (4, p)-closed graphs.
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1. Introduction

In this paper X and Y denote the topological spaces. Let A be a subset of X.
We denote the interior and the closure of a set A by Int(A) and Cl(A) respectively.
Jafari [2] introduced the notion of pre-regular p-open sets and further investigated
its fundamental properties in [3]. A subset A of a topological space (X, 7) is called
a pre-regular p-open [2| if A = pInt(pCl(A)). Now we recall the following notions
from [1] which will be used in the sequel: A point x € X is called the (4, p)-cluster
point of A if ANU # () for every pre-regular p-open set U of X containing z.
The set of all (6, p)-cluster points of A is called the (4, p)-closure of A, denoted
by 0C1,(A). If §Cl,(A) = A, then A is called (8, p)-closed. The complement of a
(6, p)-closed set is called (9, p)-open. We say that a set U in a topological space
(X, 7) is a (8, p)-neighborhood of a point x if U contains a (J, p)-open set to which
belongs. We denote the collection of all (4, p)-open (respectively (4, p)-closed) sets
by 0PO(X,T) (respectively 6PC(X,T)).

In this paper we offer a new class of functions called (, p)-continuous functions
and a new notion of the graph of a function called a (4, p)-closed graph. We also
investigate some of their fundamental properties.

2. Some properties

Definition 2.1 A function f: X =Y is said to be (J, p)-continuous if for every
open set V of Y, f~H(V) is (6,p)-open in X.
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Theorem 2.1 The following are equivalent for a function f: X —Y:
(1) f is (6, p)-continuous,
(2) The inverse image of every closed set in'Y is (d,p)-closed in X,
(3) For each subset A of X, f(6Cl,(A)) C Cl(f(A)),
(4) For each subset B of Y, 6Cl,(f~1(B)) C f~1(CIl(B)).

Proof. (1) < (2) : Obvious.

(3) & (4) : Let B is any subset of Y. Then by (3), we have f(5CL,(f~1(B))) C
CI(f(f}(B))) C CI(B). This mplies 5C1,(f~ (B)) C /- (F(6CL(f(B)))
7 (CI(B)).

Conversely, let B = f(A) where A is a subset of X. Then, by (4), we have,
5CL(A) € 6CL(f (F(A)) C £~ (CI(f(A))). Thus, F(5CL,(A)) C CI(F(A)).

(2) = (4) : Let B C Y. Since f~Y(CI(B)) is (6,p)-closed and f~1(B) C
§H(CUB)), then 6CT, (' (B)) © 1 (CI(B)).

(4) = (2) : Let K C Y be a closed set. By (4), §Cl,(f~1(K)) C f~Y(CI(K)) =
fYK). Thus, f~1(K) is (6, p)-closed.

Recall that for a function f : X — Y, the subset {(z, f(z)) | z € X} of the
product space X x Y is called the graph of f and is denoted by G(f).

Definition 2.2 For a function f : X =Y, the graph G(f) = {(z, f(z)) | z € X}
is said to be (8, p)-closed if for each (z,y) € X XY\G(f), there exist U € §PO(X, x)
and an open set V of Y containing y such that (U x V)N G(f) = 0.

Lemma 2.1 Let f : X = Y be a function. Then the graph G(f) is (6, p)-closed in
X xY if and only if for each point (x,y) € X x Y \ G(f), there exist a (4, p)-open
set U and an open set V containing x and y, respectively, such that f(U)NV = 0.

Proof. 1t follows readily from the above definition.

Definition 2.3 A space X is said to be (6,p)-T1 [1] if for each pair of distinct
points © and y of X, there exist a (§,p)-open set U containing x but not y and a
(6,p)-open set V' containing y but not x.

Theorem 2.2 If f : X — Y is an injective function with the (J, p)-closed graph,
then X is (6,p)-T1.

Proof. Let x and y be two distinct points of X. Then f(z) # f(y). Thus there
exist a (J,p)-open set U and an open set V containing = and f(y), respectively,
such that f(U) NV = 0. Therefore y ¢ U and it follows that X is (6, p)-T}.

Recall that a space X is said to be T if for each pair of distinct points  and y
of X, there exist an open set U containing = but not y and an open set V' containing
y but not x.

Theorem 2.3 If f : X = Y is a surjective function with the (0,p)-closed graph,
then'Y is T7.
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Proof. Let y; and ys be two distinct points of Y. Since f is surjective, there
exists a point x in X such that f(z) = yo. Therefore (x,y1) ¢ G(f). By Lemma 2.1,
there exist a (d, p)-open set U and an open set V' containing x and y;, respectively,
such that f(U)NV = 0. It follows that y2 ¢ V. Hence Y is T7.

Definition 2.4 A function f : X — Y is said to be (6, p)-W -continuous if for each
x € X and each open set V of Y containing f(x), there exists a (0, p)-open set U
in X containing x such that f(U) C Cl(V).

Theorem 2.4 If f: X = Y is (6, p)-W-continuous and Y is Hausdor(f, then G(f)
is (0,p)-closed.

Proof. Suppose that (z,y) ¢ G(f), then f(x) # y. By the fact that Y is
Hausdorff, there exist open sets W and V such that f(z) e W,y € Vand VNW =
0. It follows that CI(W)NV = (. Since f is (4, p)-W-continuous, there exists
U € §PO(X,x) such that f(U) c CI(W). Hence, we have f(U) NV = ). This
means that G(f) is (d, p)-closed.

Corollary 2.4A If f: X — Y is (0, p)-continuous and Y is Hausdorff, then G(f)
is (0, p)-closed in X x Y.

Definition 2.5 A subset A of a space X is said to be (8, p)-compact relative to X
if every cover of A by (8, p)-open sets of X has a finite subcover.

Theorem 2.5 Let f : X — Y have a (6,p)-closed graph. If K is (0, p)-compact
relative to X, then f(K) is closed in'Y.

Proof. Suppose y ¢ f(K). For each x € K, f(z) # y. By Lemma 2.1, there
exist U, € §PO(X,x) and an open neighbourhood V,, of y such that f(U,)NV, = 0.
The family {U, | x € K} is a cover of K by (4, p)-open sets of X and there exists
a finite subset K¢ of K such that K C |J{U, |z € Ko}. Put V = [{V, | € Ko}.
Then V is an open neighbourhood of y and f(K) NV = . This means that f(K)
is closed in Y.

Definition 2.6 A function f : X =Y is called perfectly continuous [4] if for each
open set ACY, f~Y(A) is open and closed in X.

Lemma 2.2 (/3]) If A and B are pre-reqular p-open sets of the spaces X and 'Y,
respectively, then A X B is a pre-reqular p-open set of X x Y.

Theorem 2.6 If f : X — Z has a (6,p)-closed graph G(f) and g : Y — Z is a
perfectly continuous function, then the set {(x,y) : f(x) = g(y)} is (4, p)-closed in
X xY.

Proof. Let A= {(z,y) : f(x) =g(y)} and (z,y) € X\A. We have f(z) # g(y)
and then (z,¢(y)) € (X x Z)\G(f). Since f has a (4, p)-closed graph G(f), there
exist a (J,p)-open set U and an open set V containing x and ¢(y), respectively
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such that f(U) NV = @. This implies that there exists a pre-regular p-open set
N containing z such that N C U and f(N)NV = @. Since g is a perfectly
continuous function, then there exist an open and closed set G containing y such
that g(G) C V. We have f(U)Ng(G) = @. This implies that (N x G)N A = &.
Since N x G is pre-regular p-open, then (z,y) ¢ 6CI,(A). Thus, E is (J, p)-closed
inX xY.

Corollary 2.6B If f : X — Z is a (4, p)-continuous function and g : Y — Z is a

perfectly continuous function and Z is Hausdorff, then the set {(z,y) : f(z) = g(y)}
is (9, p)-closed in X x Y.

Proof. Tt follows from Corollary 2.6A and Theorem 2.6.

Theorem 2.7 If f : X — Y is a (§,p)-continuous function and Y is Hausdorff,
then the set {(z,y) € X x X : f(x) = f(y)} is (0,p)-closed in X x X.

Proof. Let A = {(z,y) : f(z) = f(y)} and let (x,y) € (X x X)\A. It follows
that f(z) # f(y). Since Y is Hausdorff, there exist open sets U and V' containing
f(z) and f(y), respectively, such that UNV = (. Since f is (d, p)-continuous, there
exist pre-regular p-open sets H and G in X containing = and y, respectively, such
that f(H) C U and f(G) C V. This implies (H x G)N A = . We have H x G
is a pre-regular p-open set in X x X containing (z,y). Hence, A is (4, p)-closed in
X x X.

Definition 2.7 A function f : X — Y is called contra (J,p)-open if the image of
every (0,p)-open set in X is closed in'Y.

Theorem 2.8 If f : X — Y is a contra (6,p)-open function such that inverse
image of each point of Y is (8, p)-closed, then f has a (9,p)-closed graph G(f).

Proof. Let (z,y) € X\G(f). We have = ¢ f~1(y). Since f~(y) is (8, p)-closed,
there exists a pre-regular p-open set A containing x such that AN f~!(y) = @.
Since f is contra (4, p)-open, then f(A) is closed. This implies that there exist an
open set B in Y containing y such that f(A) N B = &. Hence, f has a (4, p)-closed

graph G(f).

Theorem 2.9 If f : (X,7) = (Y,0) has a (0, p)-closed graph G(f), then for each
veX, {f(x)}= N Cl(f(A)).

TEAESPO(X,T)

Proof. that d I(f(A)). Th
roof. Suppose that y # f(x) and y € weAE(SQO(XJ)C (f(4)) en y €

CIl(f(A)) for each x € A € §PO(X,7). This implies that for each open set B
containing y, BN f(A) # @. Since (z,y) ¢ G(f) and G(f) is a (, p)-closed graph,
this is a contradiction.

Definition 2.8 A space X is said to be (0,p)-Ts if for each pair of distinct points
x and y in X, there exist disjoint (0,p)-open sets A and B in X such that x € A
and y € B.
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Definition 2.9 A function f : X — Y is called (8, p)-open if the image of every
(6,p)-open set in X is open in'Y .

Theorem 2.10 If f : X — Y is a surjective (J,p)-open function with a (J,p)-
closed graph G(f), thenY is Ty .

Proof. Let y; and ys be any distinct points of Y. Since f is surjective f(x) = y1
for some z € X and (z,y2) € (X x Y)\G(f). This implies that there exist a
(6,p)-open set A of X and an open set B of Y such that (x,y3) € A x B and
(Ax B)NG(f) = 0. We have f(A) N B = 0. Since f is (4, p)-open, then f(A) is
open such that f(z) =y € f(A). Thus, YV is Ts.

Theorem 2.11 If f : X — Y is a (0, p)-continuous injection and 'Y is Ty, then X
is (6,p)-Ts.

Proof. Let z and y in X be any pair of distinct points. Then there exist
disjoint open sets A and B in Y such that f(z) € A and f(y) € B. Since f
is (4, p)-continuous, f~!(A) and f~1(B) is (d,p)-open in X containing x and y
respectively. We have f~1(A) N f~1(B) = 0. Thus, X is (6, p)-Ts.

Lemma 2.3 ([3]) If a space X is submaximal, then any finite intersection of pre-
reqular p-open sets is pre-reqular p-open.

Theorem 2.12 If f, g: X = Y are (4, p)-continuous functions, X is submazimal
and 'Y is Hausdorff, then the set {x € X : f(x) = g(x)} is (4, p)-closed in X.

Proof. Let A ={x € X : f(z) = g(x)}. Take z € X\ A. We have f(z) # g(x).
Since Y is Hausdorff, then there exist open sets U and V' in Y containing f(z)
and g(x), respectively, such that U NV = . Since f and g are (4, p)-continuous,
then f~Y(U) and g~(V) are (4, p)-open in X with z € f~%(U) and = € g~ (V).
Then there exist pre-regular p-open sets G’ and H such that x € G C f~}(U) and
r € HC g} (V). Take K = GN H. By Lemma 2.3, K is pre-regular p-open.
Thus, f(K)Ng(K) =0 and hence x ¢ §C1,(A). This shows that A is (d, p)-closed
in X.
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