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Polynomial and Analytic Boundary Feedback Stabilization of Square
Plate

Salsabil Nouira

abstract: We consider a boundary feedback stabilization problem of the plate
equation in a square, in the case where the geometric condition of Ammari-Tucsnak
[6] is not satisfied. We prove a polynomial decay for regular initial data. Moreover,
we prove an exponential stability result for some subspace of the energy space.
Finally, we give a precise estimate on the analyticity of reachable functions where
we have an exponential stability.
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1. Introduction

Let Ω = (0, π) × (0, π) ⊂ R
2. We denote by ∂Ω the boundary of Ω and we

assume that ∂Ω = Γ0 ∪ Γ1, where Γ0 = {(0, y)/y ∈ (0, π)} and Γ1 = ∂Ω \ Γ0.
We consider the plate equation as follows :














∂2
t u+∆2u = 0 Ω× (0,+∞),

∆u = − ∂
∂ν

[G(∂tu)]1|Γ0
∂Ω× (0,+∞),

u = 0 ∂Ω× (0,+∞)
u(x, 0) = u0(x), ∂tu(x, 0) = u1(x) Ω,

(1)

where the operator G is defined as (−∆)−1 : H−1(Ω) −→ H1
0 (Ω), ν is the unit

normal vector of ∂Ω pointing towards the exterior of Ω and ∆2 : D(∆2) −→
H−1(Ω) be a self-adjoint, positive and boundedly invertible operator where

D(∆2) = {u ∈ H−1(Ω)/∆2u ∈ H−1(Ω)}.
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The controllability of the dynamical system modelling the vibrations of the plate
with boundary control acting on the moment has been investigated in several works
such as Ammari and Khenissi [4]- [10], Ammari and Vodev [9], Krabs, Leugering
and Seidman [15], Leugering [20], Lebeau [17], [14] and in [23]. In [16] the
exact controllability of the same system has been established under the assumption
that Ω is a square and under much weaker assumption on the controlled part of
the boundary (Γ1 is only supposed to contain non-empty vertical and horizontal
subsects). The geometric optics condition introduced by Bardos, Lebeau and Rauch
in [12] for the wave equation is thus not necessary in this case. In fact, recently,
Ammari and Tucsnak (see [6]) have proved that the system is exponentially stable
if and only if the controlled part of the boundary contains a vertical and horizontal
part of non-zero length.

In this work, we study the polynomial stability for regular initial data and we
study the exponential stability for some analytic initial data of a square Euler-
Bernoulli plate with feedback. We use the methodology introduced in [5] (see
also [13] for the bounded case), where the exponential stability for this problem is
reduced to an observability inequality proved by [23] :

∫ T

0

∥

∥

∥

∥

∂[G(∂tφ)]

∂ν

∥

∥

∥

∥

2

L2(Γ0)

dt ≥ C‖u‖2H1
0 (Ω)×H−1(Ω), ∀ (u0, u1) ∈ H1

0 (Ω)×H−1(Ω),

(2)
where φ is the solution of the following undamped system associated to (1) :







∂2
t φ+∆2φ = 0 Ω× (0,+∞),

φ = 0 ∂Ω× (0,+∞)
φ(x, 0) = u0(x), ∂tφ(x, 0) = u1(x) Ω.

(3)

The paper is organized as follows. The statements of the main results are given in
the following section. Section 3 is devoted to the observability inequality of high
and low frequency. In Section 4, we give some background on a class of dynamical
systems. Finally, Section 5 contains the proof of main results.

2. Main results

The system (1) is well-posed for initial condition satisfying (u0, u1) ∈ E =
H1

0 (Ω)×H−1(Ω), i.e there exists a unique solution (see [6])

u ∈ C
(

(0,+∞), H1
0 (Ω)

)

∩ C1
(

(0,+∞), H−1(Ω)
)

.

The energy E(t) of system (1) is given by the following expression :

E(t) =
1

2

(

‖u(t)‖2H1
0 (Ω) + ‖∂tu(t)‖2H−1(Ω)

)

.

The solution of (1) satisfies the following energy estimate:

E(t)− E(0) = −
∫ t

0

∫

Γ0

∣

∣

∣

∣

∂[G(∂tu)]

∂ν

∣

∣

∣

∣

2

dΓ0ds, ∀ t ≥ 0. (4)
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Let n0 ∈ N
∗ fixed, we denote by En0

the following space :

En0
=







∑

(n,k)∈(N∗)2

an,kϕn,k ∈ E, (an,k) ∈ l2, an,k = 0, ∀ k 6= n0







;

E1 =







∑

(n,k)∈(N∗)2

an,kϕn,k ∈ E, (an,k) ∈ l2, an,k = 0, ∀ k > n







;

E2 =







∑

(n,k)∈(N∗)2

an,kϕn,k ∈ E, (an,k) ∈ l2, an,k = 0, ∀ k ≤ n







;

and by Ei
n = Ei ∩ En, i = 1, 2. Where

ϕn,k =
2

π

√

λn,k (sinny sin kx, iλn,k sinny sin kx) , ∀n, k ∈ N
∗

be the eigenfunctions sequence of ∆2 normalized in H1
0 (Ω)×H−1(Ω) and

λn,k = n2 + k2, ∀n, k ∈ N
∗

is the eigenvalues sequence of ∆2.
For all (u0, u1) ∈ E, there exists (an,k) ∈ l2 such that

(u0, u1) =
∑

n,k≥1

an,kϕn,k.

Which implies, E =
⊕

n∈N∗

En. For all α ∈ R
∗
+, we define the following spaces (for

more details, see [18]):

X0,α :=







∑

(n,k)∈N∗×N∗

αn,ke
−αn sin kx sinny/

√

λn,kαn,k ∈ l2







;

X1,α :=







∑

(n,k)∈N∗×N∗

αn,ke
−αn sin kx sinny/

αn,k
√

λn,k

∈ l2







;

Xα := X0,α ×X1,α.

Let T > 2π
√
2,

ST =

{

(u0, u1) ∈ E /∃C > 0,

∥

∥

∥

∥

∂[G(∂tφ)]

∂ν

∥

∥

∥

∥

L2(Γ0×]0,T [)

≥ C ‖(u0, u1)‖E
}

.

We notice that if α′ > α, then Xα′ ⊂ Xα and X0 = E.
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Let T > 2π
√
2 and u := (u0, u1) ∈ E.

For n ∈ N
∗, if we restrict to En, there exists C(n) > 0 such that for φ solution

of (3), it holds :

‖(u0, u1)‖E ≤ C(n)

∥

∥

∥

∥

∂[G(∂tφ)]

∂ν

∥

∥

∥

∥

L2(Γ0×]0,T [)

.

We take for the C(n) the smallest constant for which the previous inequality is
checked and we denote by

αS(T ) := lim sup
n→+∞

ln(C(n))

n
·

According to H.U.M method, see [21], and to [3, chapter 1] we have :






α
′

> αS(T ) =⇒ Xα
′ ⊂ ST ,

α
′

< αS(T ) =⇒ Xα
′ 6⊂ ST .

(5)

Thus for all T > 2π
√
2, αS(T ) = inf {α ∈ R+ / Xα ⊂ ST } .

We give, now the main results of this paper :

Theorem 2.1 1. For all δ > 0, there exists a constant Cδ > 0 such that

αS(T ) ≤
Cδ

T 1−δ
·

2. For α > αS(T ), there exists a constant Cα, γα > 0 such that

E(t) ≤ Cα e−γαtE(0), ∀u ∈ Xα, ∀t ≥ 0.

Remark 2.1

1. We remark that all the elements of Xα can be continued as an holomor-
phic function over the complex strip |ℑm(y)| < α·

2. The first assertion of the previous theorem implies that any analytic
initial condition belongs to some ST for T large enough, i.e., any initial
condition whose Fourier coefficients in y decrase like e−αn belongs to ST

if T is larger than T (α) = 1−δ

√

Cδ

α
·

Theorem 2.2 The system described by (1) is polynomial stable i.e., for all Γ0 6= ∅,
there exists a constant C > 0 such as for all (u0, u1) ∈ D(A) we have :

E(t) ≤ C

1 + t
||(u0, u1)||2D(A), ∀ t ≥ 0, (6)

where

D(A) =
{

(u, v) ∈ H1
0 (Ω)×H−1(Ω) ; ∆u ∈ H1

0 (Ω), ∆u = ∂ν [G(v)] 1|Γ0

}

.



Polynomial and Analytic Boundary Feedback Stabilization of Square Plate 27

3. Inequality of observability

In this section we give the observability inequality at low and high frequency
of the solution of (3) has been used for the proof of the main results. We specify
the dependence of the constant which occurs in this estimation in function of the
frequency of cut n.

Proposition 3.1 (low frequencies estimate) For all ǫ > 0, δ > 0, there exist
T1(ǫ, δ) ≤ Cδ

ǫ1+δ , Cǫ,δ, n1 ∈ N
∗ such that for all n ≥ n1 and for all u ∈ En, the

solution of problem (3) satisfies

‖u‖2E1 ≤ Cǫ,δ e
2ǫn

∫ π

0

∫ T1(ǫ,δ)

−T1(ǫ,δ)

∣

∣

∣

∣

∂G(φ′)

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy.

Proof. Since we do not have a uniform gap, we adapt the method proposed by
Allibert and Micu in [4], which is a method inspired from the WKB technique.
First we need the next technical lemma, for this proof we refer to [4], paragraph
4.3, pages 580-591.

Lemma 3.1 For all positive and odd integer q and for all ǫ > 0, there exists a

positive real number Cq and a real number T1(q, ǫ) smaller than Cǫ,qǫ
q+1
1−q such that

for all (n, k0) ∈ N
∗ × N

∗, there exists a function hk0,n
ǫ,q that satisfies :

1. supp(hk0,n
ǫ,q ) ⊂ [−T1(q, ǫ), T1(q, ǫ)].

2. For (k0, n) such that k0 ≤ n,

‖hk0,n
ǫ,q ‖L2 ≤ Cǫ,q e

2ǫn.

3. If k 6= k0, then

∫

hk0,n
ǫ,q (t)eiλn,ktdt = 0.

4. If (n, k0) ∈ {(n, k) ∈ N
∗ × N

∗/k ≤ nand n ≥ n1(q, ǫ)}, then

∣

∣

∣

∣

∫

hk0,n
ǫ,q (t)eiλn,k0

tdt

∣

∣

∣

∣

≥ c

nNq
.

The two above positive constants C, c depend only on q and ǫ. Moreover it is always
possible to choose hk0,n

ǫ,q even or odd, that we denote by hk0,n
eǫ,q

and hk0,n
oǫ,q

.

The analogue of Proposition 3.1 is proved in [4, Lemme 6]. The proof is quite
similar, but for the sake of completeness, let us give the main steps.

Proof of Proposition 3.1. Let n ∈ N
∗ be such that n ≥ n1(q, ǫ), and let

(u0, u1) =
∑

k∈N∗

an,kϕn,k ∈ En.
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Then we have
∂G(φ′)

∂x
(0, y, t) =

∑

k∈N∗

2i k an,k

π
√

λn,k

eiλn,kt sinny.

Hence for (k0, n) such that k0 ≤ n and L ∈ N
∗,

∫

hk0,n
eǫ,q

(t)K





∑

k≤L

an,kϕn,k



 dt =

∑

1≤k≤L

2i k

π
√

λn,k

(an,k + an,−k) sinny

∫

hk0,n
eǫ,q

(t)eiλn,ktdt,

where K is the operator defined by

K : En → L2(0, π)

(u0, u1) → ∂[G(∂tφ)]
∂x

(0, y, t).

If L ≥ k0, then by the point 3 of Lemma 3.1 we will have

∫

hk0,n
eǫ,q

(t)K





∑

k≤L

an,kϕn,k



 (y, t)dt =

2i k

π
√

λn,k0

(an,k0
+ an,−k0

) sinny

∫

hk0,n
eǫ,q

(t)eiλn,k0
tdt.

For point 4 of Lemma 3.1 we deduce that there exists a constant c > 0 such that

∣

∣

∣

∣

∣

∣

∫

hk0,n
eǫ,q

(t)K





∑

k≤L

an,kϕn,k



 (y, t)dt

∣

∣

∣

∣

∣

∣

≥ c

nNq+2
|an,k0

+ an,−k0
|| sinny|.

Consequently, if L tends to infinity, we obtain

∣

∣

∣

∣

∣

∫

hk0,n
eǫ,q

(t)K

(

∑

k∈N∗

an,kϕn,k

)

(y, t)dt

∣

∣

∣

∣

∣

≥ c

nNq+2
|an,k0

+ an,−k0
|| sinny|.

In the same we obtain
∣

∣

∣

∣

∣

∫

hk0,n
oǫ,q

(t)K

(

∑

k∈N∗

an,kϕn,k

)

(y, t)dt

∣

∣

∣

∣

∣

≥ c

nNq+2
|an,k0

− an,−k0
|| sinny|.

These two estimates yield

| sinny||an,k0
| ≤ nNq

c

(∣

∣

∣

∣

∣

∫

hk0,n
eǫ,q

(t)K

(

∑

k∈N∗

an,kϕn,k

)

(y, t)dt

∣

∣

∣

∣

∣

+
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nNq

c

∣

∣

∣

∣

∣

∫

hk0,n
oǫ,q

(t)K

(

∑

k∈N∗

an,kϕn,k

)

(y, t)dt

∣

∣

∣

∣

∣

)

.

Then

| sinny|2‖(u0, u1)‖2E ≤ nNq+2

c





∑

k≤n

∫

∣

∣hk0,n
eǫ,q

(t)
∣

∣

2
∫ T1(q,ǫ)

T1(q,ǫ)

∣

∣

∣

∣

∂[G(φ′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt+

∑

k≤n

∫

∣

∣hk0,n
oǫ,q

(t)
∣

∣

2
∫ T1(q,ǫ)

T1(q,ǫ)

∣

∣

∣

∣

∂[G(φ′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt



 .

Integrating this estimate in y ∈ (0, π) and using point 2 of Lemma 3.1, we obtain
a constant c1 > 0 such that

‖(u0, u1)‖2E ≤ c1 e
2ǫn

∫ T1(q,ǫ)

T1(q,ǫ)

∫ π

0

∣

∣

∣

∣

∂[G(φ′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dy dt.

As T1(q, ε) ≤ Cqε
1+q
1−q = Cδ

ε1+δ and δ → 0+ for q → +∞, this shows Proposition 3.1.
2

Lemma 3.2 (High frequencies) For all T2 > 2π
√
2, there exists a constant CT2

> 0
such that for all integer n > 0 and initial data u in E2

n the solution of problem (3)
satisfies

‖u‖2E2 ≤ CT2

∫ π

0

∫ T2

0

∣

∣

∣

∣

∂[G(∂tφ)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy.

Proof. For u ∈ E2
n, we have ∂tφ(x, y, t) =

∑

k>n

2an,k
π

√

λn,k sin kx sinny e
itλn,k .

Then if we use the Ingham inequality [11], we obtain

∫ π

0

∫ T2

0

∣

∣

∣

∣

∂[G(∂tφ)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dtdy =
∑

n∈N∗

1

π2

∫ T2

0

∣

∣

∣

∣

∣

∑

k>n

kan,k
√

λn,k

eiλn,ktdt

∣

∣

∣

∣

∣

2

≥ CT2

∑

k>n

∣

∣

∣

∣

∣

kan,k
√

λn,k

∣

∣

∣

∣

∣

2

.

Which implies

∫ π

0

∫ T2

0

∣

∣

∣

∣

∂[G(∂tφ)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dtdy ≥ CT2
‖u‖2E2 . 2
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4. Some background on a class of dynamical systems

Let H a Hilbert space with the norm ||.||H , and let A1 : D(A1) → H be a self-
adjoint, positive and boundedly invertible operator. For α ≥ 0, we introduce the
scale of Hilbert spaces Hα = D(Aα

1 ), with the norm ‖z‖α = ‖Aα
1 z‖H . The space

H−α is defined by duality with respect to the pivot space H as follows : H−α = H∗
α

for α > 0. The operator A1 can be extended (or restricted) to each Hα, such that
it becomes a bounded operator

A1 : Hα → Hα−1, ∀α ∈ R. (7)

The second ingredient needed for our construction is a bounded linear operator
B1 : U → H− 1

2
, where U is another Hilbert space which will be identified with its

dual.
The system we consider are described by

ẅ(t) +A1w(t) +B1y(t) = 0, w(0) = w0, ẇ(0) = w1, t ∈ [0,∞), (8)

y(t) = B∗
1 ẇ(t), t ∈ [0,∞). (9)

The system (8)-(9) is well-posed :
For (w0, w1) ∈ H 1

2
×H, the problem (8)-(9) allows a unique solution :

w ∈ C([0,∞);H 1
2
) ∩ C1([0,∞);H)

such that B∗
1w(·) ∈ H1(0, T ;U). Moreover, w satisfies the energy estimate, for all

t ≥ 0 :

‖(w0, w1)‖2H 1
2
×H − ‖(w(t), ẇ(t))‖2H 1

2
×H = 2

∫ t

0

∥

∥

∥

∥

d

dt
B∗

1w(s)

∥

∥

∥

∥

2

U

ds . (10)

For (10) we remark that the mapping t 7→ ‖(w(t), ẇ(t))‖2H 1
2
×H is non-increasing.

Consider the initial value problem:

ϕ̈(t) +A1ϕ(t) = 0, (11)

ϕ(0) = w0, ϕ̇(0) = w1. (12)

It is well known that (11)-(12) is well posed in H1 ×H 1
2

and in H 1
2
×H.

Now, we consider the unbounded linear operator

Ad : D(Ad) → H 1
2
×H, Ad =

(

0 I
−A1 −B1B

∗
1

)

, (13)

where
D(Ad) =

{

(u, v) ∈ H 1
2
×H, A1u+B1B

∗
1v ∈ H, v ∈ H 1

2

}

.

The result below, proved in [5], shows that, under a certain regularity assumption,
the exponential stability of (8)-(9) is equivalent to a strong observability inequal-
ity for (11)-(12) and the polynomial stability of (8)-(9) is a consequence of weak
observability inequality. More precisely, we have :
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Theorem 4.1 (Ammari-Tucsnak [5]) Assume that for any γ > 0 we have

sup
Reλ=γ

∥

∥λB∗
1(λ

2I +A1)
−1B1

∥

∥

L(U)
< ∞. (14)

Then

1. there exists C, δ > 0 such that for all t > 0 and for all (w0, w1) ∈ H 1
2
×H,

we have
‖(w(t), ẇ(t))‖H 1

2
×H ≤ C e−δt ||(w0, w1)||H 1

2
×H ,

if and only if there exists T,C > 0 such that : ∀ (w0, w1) ∈ H1×H 1
2
, we have

||B∗
1ϕ

′(t)||L2(0,T ;U) ≥ C ||(w0, w1)||H 1
2
×H , (15)

where ϕ(t) is the solution of system (11)-(12).

2. If there exists T,C > 0 and α > − 1
2 such that : ∀ (w0, w1) ∈ H1 × H 1

2
, we

have
||B∗

1ϕ
′(t)||L2(0,T ;U) ≥ C ||(w0, w1)||H−α×H

−α−
1
2

, (16)

where ϕ(t) is the solution of (11)-(12).

Then there exists a constant C1 > 0 such that for all t > 0 and for all
(w0, w1) ∈ D(Ad), we have

‖(w(t), ẇ(t))‖H 1
2
×H ≤ C1

(1 + t)
1

4α+2

||(w0, w1)||D(Ad). (17)

5. Proof of the main results

5.1. Proof of the first assertion of the Theorem 2.1. For this proof, we
need a result of the following lemma inspired by [19] (see also [7]).

Lemma 5.1 Let v ∈ E then v ∈ ST if and only if there exists a constant Cv > 0
such that for any initial data u ∈ E, the solution u of problem (3) satisfies

|〈u, v〉E | ≥ Cv

∥

∥

∥

∥

∂[G(∂tu)]

∂ν
(., t)

∥

∥

∥

∥

L2(Γ0×(0,T ))

.

Then, let δ, ǫ > 0 and v ∈ Xǫ. We can put v(x, y) =
∑

n∈N∗

e−ǫnvn(x) sinny, with

(‖vn‖E)n ∈ l2(N∗). Take T (ǫ, δ) = sup
(

T1(ǫ, δ), 2π
√
2
)

. As T1(ǫ, δ) ≤ C
ǫ1+δ , for

small ǫ, then T (ǫ, δ) ≤ C
ǫ1+δ . For any u ∈ E and v = (0, v), we have

|〈u, v〉E | =
∣

∣

∣

∣

∣

∑

n∈N∗

〈e−ǫnun, vn sinny〉E
∣

∣

∣

∣

∣

.
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We deduce
|〈u, v〉E | ≤

∑

n∈N∗

e−ǫn‖un‖E‖vn sinny‖E . (18)

As ∀ n ∈ N
∗, and ∀ un ∈ En, we have

‖u‖2E = ‖u‖2E1 + ‖u‖2E2 .

According to Proposition 3.1 and Lemma 3.2

‖u‖2E ≤ Cǫ,δ e
2ǫn

∫ π

0

∫ T1(ǫ,δ)

−T1(ǫ,δ)

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy+

CT

∫ π

0

∫ T (ε,δ)

0

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy.

Then

‖u‖2E ≤ C ′
ǫ,δ e

2ǫn

∫ π

0

∫ T (ǫ,δ)

−T (ǫ,δ)

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dy dt+

CT

∫ π

0

∫ T (ǫ,δ)

0

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy + CT

∫ π

0

∫ T (ǫ,δ)

0

∣

∣

∣

∣

∂[G(u′1)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy.

Which implies

‖u‖2E ≤ C ′
ǫ,δe

2ǫn

∫ π

0

∫ T (ǫ,δ)

−T (ǫ,δ)

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy+

CT

∫ π

0

∫ T (ǫ,δ)

0

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy + C ′‖u‖2E1 .

This inequality according to Proposition 3.1 implies

‖u‖2E ≤ C ′′
ǫ,δe

2ǫn

∫ π

0

∫ T (ǫ,δ)

−T (ǫ,δ)

∣

∣

∣

∣

∂[G(u′)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy.

If we replace this estimate in (18), we obtain

|〈u, v〉E | ≤ C ′′
ǫ,δ

∑

n∈N∗

‖vn(x) sinny‖E

√

∫ π

0

∫ 2T (ǫ,δ)

0

∣

∣

∣

∣

∂[G(∂un/∂t)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy

≤ C ′′
ǫ,δ

√

√

√

√

∑

n∈N∗

∫ π

0

∫ 2T (ǫ,δ)

0

∣

∣

∣

∣

∂[G(∂un/∂t)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dt dy

√

∑

n∈N∗

‖vn(x) sinny‖2E

≤ C ′′
ǫ,δCv

∥

∥

∥

∥

∂[G(u′n)]

∂ν

∥

∥

∥

∥

L2(Γ0×(0,2T (ǫ,δ))

.

This implies that v ∈ ST , i.e Xǫ ⊂ ST , as well as αS(T ) ≤ Cδ

T (1−δ)
.

2
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5.2. Proof of the second assertion of Theorem 2.1. For α > αS(T ) we
have Xα ⊂ ST . Then, there exists a constant C > 0 such that the solution φ of
problem (3) satisfies

∫ T

0

∫ π

0

∣

∣

∣

∣

∂[G(∂φ/∂t)]

∂ x

∣

∣

∣

∣

d y d t ≥ C(T )E(0), ∀(u0, u1) ∈ Xα.

This inequality according to [5, Theorem 2.2] (see also Theorem 4.1) implies the
existence of Cα, δα > 0 such that

E(t) ≤ Cαe
−γαtE(0), ∀ (u0, u1) ∈ Xα, ∀ t ≥ 0.

5.3. Proof of Theorem 2.2. Let u ∈ E, we have

u =
∑

n,k≥1

an,kϕn,k,

where (an,k) ∈ l2. Then

∂tφ(x, y, t) =
∑

n,k∈Z∗

2an,k
π

√

λn,k sin kx sinny e
itλn,k .

Due to the orthogonality of the family (sinny) in L2(0, π), we get for T > 2π
√
2

∫ π

0

∫ T

0

∣

∣

∣

∣

∂[G(∂tφ)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dtdy =
∑

n∈Z∗

1

π2

∫ T

0

∣

∣

∣

∣

∣

∑

k∈Z∗

kan,k
√

λn,k

eiλn,ktdt

∣

∣

∣

∣

∣

2

.

According to [22, Theorem 2.1], we obtain the existence of constant C2 > 0 satisfies

∫ T

0

∫ π

0

∣

∣

∣

∣

∂[G(∂tφ)]

∂x
(0, y, t)

∣

∣

∣

∣

2

dy dt ≥ C2

∑

n,k∈Z∗

∣

∣

∣

∣

∣

an,k
√

λn,k

∣

∣

∣

∣

∣

2

∼ C2 ‖u‖2H−1(Ω)×[H1
0 (Ω)]′ ,

where [H1
0 (Ω)]

′ is the dual space of H1
0 (Ω). The duality is respected to the pivot

space H−1(Ω).
Which shows Theorem 2.2 thanks to Theorem 4.1 for α = 0.
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