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Rapid pointwise stabilization of vibrating strings and beams

Alia BARHOUMI

abstract: Applying a general construction and using former results on the ob-
servability we prove, under rather general assumptions, a rapid pointwise stabiliza-
tion of vibrating strings and beams.
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1. Introduction

This paper is devoted to the study of pointwise observability, controllability and
uniform stabilization of vibrating systems. It was pointed out earlier by Haraux
and Jaffard [6], [7], [8] that the observability and controllability properties depend
heavily on the location of the observation or control point. For the stabilization
another difficulty appears because the suitable function spaces, as we will show,
are not Sobolev spaces. In order to establish satisfactory stabilization theorems
we will introduce functions spaces depending on the arithmetical properties of the
stabilization point. Working in this framework, we will be able to adapt a method
developed by Komornik [11] to vibrating strings, beams and also to a coupled
string-beam system; as a result we will construct pointwise feedbacks leading to
arbitrarily large prescribed decay rates.

Many works were devoted to the construction of explicit feedback laws and to
the proof of exponential decay by different methods; see, e.g., [1], [2], [3], [4], [10],
[15], [14], [18]. It is known that this type of feedback does not yield arbitrarily
large decay rates.
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First we study a vibrating string with pointwise control, modeled by the fol-
lowing system:











ytt − yxx = v(t)δξ in R× (0, π),

y(t, 0) = y(t, π) = 0 for t ∈ R,

y(0, x) = y0(x) and yt(0, x) = y1(x) for x ∈ (0, π)

(1.1)

where δξ denotes the Dirac mass at some given point ξ ∈ (0, π) and v(t) is a control
function in L2

loc(R).
In order to formulate our result, we assume that ξ/π is irrational, so that sin kξ,

doesn’t vanish for any k = 1, 2, . . . , we denote by Z the linear hull of the functions
wk(x) :=

√

2/π sin kx, k = 1, 2, . . . , and we denote by Dα
ξ and (Dα

ξ )
′ for every

α ∈ R the Hilbert spaces obtained by completing Z with respect to norms given
by the following formulae:

∥

∥

∥

∑

akwk

∥

∥

∥

2

Dα
ξ

:=
∑

k2α sin2(kξ)|ak|
2,

∥

∥

∥

∑

akwk

∥

∥

∥

2

(Dα
ξ
)′
:=
∑

k−2α sin−2(kξ)|ak|
2.

If we identify L2(0, π) with its dual and take into account that

‖
∑

akwk‖
2
L2(0,π) :=

∑

|ak|
2,

then (Dα
ξ )

′ is the dual space of Dα
ξ .

Now we may state our first result:

Theorem 1.1 Fix ξ ∈ (0, π) such that ξ/π is irrational and introduce the Hilbert
space Hξ := (D−1

ξ )′ × (D0
ξ)

′. Given an arbitrarily large positive number ω, there
exist two linear operators

(P,Q) : Hξ → D−1
ξ

and a positive constant M such that setting

v(t) := (Pyt +Qy)(t, ξ)

the problem (1.1) is well posed in Hξ and its solutions satisfy the inequality

‖(y, yt)‖Hξ
≤Me−ωt‖(y0, y1)‖Hξ

(1.2)

for all (y0, y1) ∈ Hξ and t ≥ 0.

Next we consider a beam model:










ytt + yxxxx = v(t)δη in R× (0, π),

y(t, 0) = y(t, π) = yxx(t, 0) = yxx(t, π) = 0 for t ∈ R,

y(0, x) = y0(x) and yt(0, x) = y1(x) for x ∈ (0, π).

(1.3)

Using the same notation as above, we will prove the following stabilization theorem:
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Theorem 1.2 Fix η ∈ (0, π) such that η/π is irrational and introduce the Hilbert
space Hη := (D−2

η )′ × (D0
η)

′. Given an arbitrarily large positive number ω, there
exist two linear operators

(P,Q) : Hη → D−2
η

and a positive constant M such that setting

v(t) := (Pyt +Qy)(t, η)

the problem (1.3) is well posed in Hη and its solutions satisfy the inequality

‖(y, yt)‖Hη
≤Me−ωt‖(y0, y1)‖Hη

(1.4)

for all (y0, y1) ∈ Hη and t ≥ 0.

Finally we consider the coupled string-beam system















































y1,tt − y1,xx +Ay1 + Cy2 = v1(t)δξ in R× (0, π),

y2,tt + y2,xxxx +By1 +Dy2 = v2(t)δη in R× (0, π),

y1(t, 0) = y1(t, π) = 0 for t ∈ R,

y2(t, 0) = y2(t, π) = 0 for t ∈ R,

y2,xx(t, 0) = y2,xx(t, π) = 0 for t ∈ R,

y1(0, x) = y10(x) and y1,t(0, x) = y11(x) for x ∈ (0, π),

y2(0, x) = y20(x) and y2,t(0, x) = y21(x) for x ∈ (0, π)

(1.5)

where A, B, C, D are given real numbers, ξ, η ∈ (0, π) are given points and
v1(t), v2(t) are the control functions. The following theorem holds:

Theorem 1.3 Fix ξ, η ∈ (0, π) such that ξ/π and η/π are irrational and introduce
the Hilbert space

Hξ,η := (D0
ξ ×D−1

ξ )′ × (D0
η ×D−2

η )′.

For almost all choices of (A,B,C,D) ∈ R
4 and for every positive number ω there

exist two linear operators

(P1, Q1, P2, Q2) : Hξ,η → D−1
ξ ×D−2

η ,

and a positive constant M such that setting

(v1, v2)(t) := ((P1y1t +Q1y1)(t, ξ), (P2y2t +Q2y2)(t, η)),

the problem (1.5) is well posed in Hξ,η and its solutions satisfy the inequality

‖(y1, y1t, y2, y2t)‖Hξ,η
≤Me−ωt‖(y10, y11, y20, y21)‖Hξ,η

(1.6)

for all (y10, y11, y20, y21) ∈ Hξ,η and t ≥ 0.
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Remark 1.4 It follows from some results of Komornik and Loreti that the system
(1.5) can not be exactly controllable for some exceptional choices of the parame-
ters A, B, C, D: see [12] and [13] for explicit counter examples concerning an
equivalent observability problem.

Since the Hilbert spaces in the above three theorems were defined in an abstract
way, let us mention the following inclusions between these spaces and usual Sobolev
spaces:

Proposition 1.5
(a) If ξ/π is irrational, then

(D0
ξ)

′ ⊂ L2(0, π),

(D−1
ξ )′ ⊂ H1

0 (0, π),

(D−2
ξ )′ ⊂ H2(0, π) ∩H1

0 (0, π).

(b) Furthermore, for almost every irrational ξ/π, we have for every ε > 0 the
following inclusions:

H1+ε
0 (0, π) ⊂ (D0

ξ)
′,

H2+ε(0, π) ∩H1
0 (0, π) ⊂ (D−1

ξ )′,

{z ∈ H3+ε(0, π) ∩H1
0 (0, π) : zxx ∈ H1

0 (0, π)} ⊂ (D−2
ξ )′.

(c) Moreover, if ξ/π is a quadratic irrational number, then

H1
0 (0, π) ⊂ (D0

ξ)
′,

H2(0, π) ∩H1
0 (0, π) ⊂ (D−1

ξ )′,

{z ∈ H3(0, π) ∩H1
0 (0, π) : zxx ∈ H1

0 (0, π)} ⊂ (D−2
ξ )′.

The plan of the paper is the following. In the next section we recall some results
concerning a method analogous to HUM developed in [11] which useful for the proof
of our results. The following three sections contain the proofs of Theorems 1.1, 1.2
and 1.3, respectively. In Section 6 we also state and prove two new observability
and controllability theorems. Proposition 1.5 is proved in the last section 7.

2. Review of some abstract results

We consider the abstract observability problem

U ′ = AU, U(0) = U0, ψ = BU (2.1)

in a complex Hilbert space H, where A is a (bounded or unbounded) linear operator
defined on some linear subspace D(A) of H, with values in H and B is a linear
operator, defined on some linear subspace D(B) of H with values in another Hilbert
space G. We make the following four assumptions:
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(H1) The operator A generates a strongly continuous group of automorphisms etA

in H.

(H2) D(A) ⊂ D(B), and there exists a constant c such that ‖BU0‖G ≤ c‖AU0‖H
for all U0 ∈ D(A).

(H3) There exist a non degenerate bounded interval I and a constant cI such that
the solutions of (2.1) satisfy the inequality

‖BU‖L2(I;G) ≤ cI‖U0‖H

for all U0 ∈ D(A).

(H4) There exists a bounded interval I ′ and a positive number c′ such that the
solutions of (2.1) satisfy the inequality

‖U0‖H ≤ c′‖BU‖L2(I′;G)

for all U0 ∈ D(A).

Fix two numbers T > |I ′|, ω > 0, set Tω = T + (2ω)−1, define

eω(s) =

{

e−2ωs if 0 ≤ s ≤ T ,

2ωe−2ωT (Tω − s) if T ≤ s ≤ Tω,

and set

〈ΛωU0, Ũ0〉H′,H :=

∫ Tω

0

eω(s)(Be
sAU0,Be

sAŨ0)G ds.

Then Λω is a self-adjoint, positive definite isomorphism Λω ∈ L(H,H)′). Let us
denote by J : G → G′ the canonical Riesz anti-isomorphism.

The following result is a special case of a theorem obtained in [11].

Theorem 2.1 Assume (H1)-(H4) and fix ω > 0 arbitrarily. Then the problem

v′ = (−A∗ − B∗JBΛ−1
ω )v, v(0) = v0, (2.2)

is well-posed in H′. Furthermore, there exists a constant M such that the solutions
of (2.2) satisfy the estimates

‖v(t)‖H′ ≤M‖v0‖H′e−ωt (2.3)

for all v0 ∈ H′ and for all t ≥ 0.

In other words, this theorem asserts that the feedback law

W = −JBΛ−1
ω v

uniformly stabilizes the control problem

v′ = −A∗v + B∗W, v(0) = v0

with a decay rate at least equal to ω.
The well-posedness means here that (2.2) has a unique solution v ∈ C(R;H′)

for every v0 ∈ H′.
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3. Proof of Theorem 1.1

We consider the following system:



















utt − uxx = 0 in R× (0, π),

u(t, 0) = u(t, π) = 0 for t ∈ R,

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ (0, π),

ψ(t) = u(t, ξ) for t ∈ R.

(3.1)

If the initial data are given by the formulae

u0(x) =

∞
∑

k=1

ak sin kx and u1(x) =

∞
∑

k=1

bk sin kx

with only finitely many nonvanishing coefficients ak and bk, then a simple compu-
tation shows that the solution is given by the formula

u(t, x) =

∞
∑

k=1

(ak cos kt+
bk
k

sin kt) sin kx.

In the sequel we write A ≍ B if there exist two positive constants c1, c2 satisfy-
ing c1A ≤ B ≤ c2A. The constants are assumed to be independent of the particular
choice of the initial data or of the parameter k.

If T ≥ 2π, then using Parseval’s equality it follows that

∫ T

0

|u(t, ξ)|2dt ≍
∞
∑

k=1

(

|ak|
2 + k−2|bk|

2
)

sin2 kξ.

It can be rewritten in the form

∫ T

0

|u(t, ξ)|2dt ≍ ‖u0‖
2
D0

ξ
+ ‖u1‖

2
D

−1

ξ

. (3.2)

We rewrite (3.1) as a first-order system

U ′ = AU, U(0) = U0, ψ = BU

in the usual way, by setting

U := (u, u′), U0 := (u0, u1), A(u, v) := (v,∆u) and B(u, v) := u(ξ).

We are going to verify the hypotheses (H1)-(H4) of Theorem 2.1 for the Hilbert
spaces H := D0

ξ ×D−1
ξ , G := R if we define the domain of definition of the linear

operators A and B by

D(A) = D(B) := D1
ξ ×D0

ξ .
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Proof.In order to obtain hypothesis (H1), we show that if (u0, u1) ∈ H then
(u(s), ut(s)) ∈ H for all s ∈ R. This follows from Parseval’s equality:

‖(u(s), ut(s))‖
2
H =

∫ s+T

s

|u(t, ξ)|2 ≍
∑

k∈Z∗

(|ak|
2 + |

bk
k
|2) sin2 kξ

and from the observation that the last expression does not depend on s ∈ R.
It follow by a straightforward computation that for all (u, v) ∈ D1

ξ × D0
ξ we

have the estimate
|u(ξ)| ≤ c

(

‖v‖D0

ξ
+ ‖uxx‖D−1

ξ

)

then the hypothesis (H2) is satisfied.
In deed, using the norms of D0

ξ and D−1
ξ and writing

u(x) =
∞
∑

k=1

ak sin kx

we have

uxx(x) =

∞
∑

k=1

−k2ak sin kx

and therefore, using the Cauchy-Schwarz inequality at the first step,

|u(ξ)|2 ≤

(

∞
∑

k=1

1

k2

)

·

∞
∑

k=1

k2|ak|
2 sin2(kξ)

=
π2

6

∞
∑

k=1

k2|ak|
2 sin2(kξ)

=
π2

6
‖uxx‖

2
D

−1

ξ

.

It follow from the equality (3.2) that we have (H3)-(H4).
We may now apply Theorem 2.1 and we have (1.2). In order to write down

explicitly the stabilization result, we multiply the equation (1.1) by u and we
integrate by parts as follows (we use all conditions in (1.1) and (3.1)):

0 =

∫ T

0

∫ π

0

(ytt − yxx − v(t)δξ)u dx dt

=

[∫ π

0

ytu− yut dx

]T

0

+

∫ T

0

∫ π

0

y(utt − uxx) dx dt

−

∫ T

0

v(t)u(t, ξ) dt

=

[∫ π

0

ytu− yut dx

]T

0

−

∫ T

0

v(t)u(t, ξ) dt.



50 Alia BARHOUMI

This shows that if we write (3.1) in the form (2.1), then its dual (2.2) corresponds
to (1.1). Furthermore, writing the operator

Λ−1
ω : (D0

ξ)
′ × (D−1

ξ )′ → D−1
ξ ×D0

ξ

in the matrix form

Λ−1
ω =

(

−P Q
R −S

)

,

we have
v(t) = −(Pyt +Qy)(t, ξ). (3.3)

4. Proof of Theorem 1.2

We consider the following system:



















utt + uxxxx = 0 in R× (0, π),

u(t, 0) = u(t, π) = ∆u(t, 0) = ∆u(t, π) = 0 for t ∈ R,

u(0, x) = u0(x) and ut(0, x) = u1(x) for x ∈ (0, π),

ψ(t) = u(t, η) for t ∈ R

(4.1)

where ∆u = uxx. If the initial data are given by the formulae

u0(x) =
∞
∑

k=1

ak sin kx and u1(x) =
∞
∑

k=1

bk sin kx

with only finitely many nonvanishing coefficients ak and bk, then a simple compu-
tation shows that the solution is given by the formula

u(t, x) =

∞
∑

k=1

(ak cos k
2t+

bk
k2

sin k2t) sin kx.

If T > 0, then using a result of Haraux in [7] it follows that

∫ T

0

|u(t, η)|2dt ≍

∞
∑

k=1

(

|ak|
2 + k−4|bk|

2
)

sin2 kη.

It can be rewritten in the form

∫ T

0

|u(t, η)|2dt ≍ ‖u0‖
2
D0

η
+ ‖u1‖

2
D

−2

η
. (4.2)

We rewrite (4.1) as a first-order system

U ′ = AU, U(0) = U0, ψ = BU

in the usual way, by setting

U := (u, u′), U0 := (u0, u1), A(u, v) := (v,−∆2u) and B(u, v) := u(η)
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where ∆2u = uxxxx.
Furthermore, we introduce the Hilbert spaces H := D0

η ×D−2
η , G := R and we

define the domain of definition of the linear operators A and B by

D(A) = D(B) := D2
η ×D0

η.

Let us show that hypotheses (H1)-(H4) of Theorem 2.1 are satisfied.
Proof.We show that if (u0, u1) ∈ H then (u(s), ut(s)) ∈ H for all s ∈ R. This

follows by applying a result of Haraux in [7] as follows:

‖(u(s), ut(s))‖
2
H =

∫ s+T

s

|u(t, η)|2 ≍
∑

k∈Z∗

(|ak|
2 + |

bk
k2

|2) sin2 kη

and by observing that the last expression does not depend on s ∈ R. Then hypoth-
esis (H1) is verified.

In order to obtain (H2) it suffices to establish for all (u, v) ∈ D0
η × D−2

η the
estimate

|u(η)| ≤ c
(

‖v‖D0
η
+ ‖uxx‖D−2

η

)

.

This follows by a straightforward computation, using the norms of D0
η and D−2

η :
writing

u(x) =

∞
∑

k=1

ak sin kx

we have

uxxxx(x) =

∞
∑

k=1

k4ak sin kx

and therefore, using the Cauchy-Schwarz inequality at the first step,

|u(ξ)|2 ≤

(

∞
∑

k=1

1

k4

)

·
∞
∑

k=1

k4|ak|
2 sin2(kη)

=
π4

90

∞
∑

k=1

k4|ak|
2 sin2(kη)

=
π4

90
‖uxxxx‖

2
D

−2

η
.

It follow from the equality (4.2) that hypotheses (H3)-(H4) are verified .
We may now apply Theorem 2.1 and we obtain (1.4). In order to write down

explicitly the stabilization result, we multiply the equation (1.3) by u and we
integrate by parts as follows (we use all conditions in (1.3) and (4.1)). This shows
that if we write (4.1) in the form (2.1), then its dual (2.2) corresponds to (1.3).
Furthermore, writing the operator

Λ−1
ω : (D0

η)
′ × (D−2

η )′ → D−2
η ×D0

η
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in the matrix form

Λ−1
ω =

(

−P Q
R −S

)

,

we have
v(t) = −(Pyt +Qy)(t, η).

5. Proof of Theorem 1.3

We consider the following system:



























































u1tt − u1xx +Au1 + Cu2 = 0 in R× (0, π),

u2tt + u2xxxx +Bu1 +Du2 = 0 in R× (0, π),

u1(t, 0) = u1(t, π) = 0 for t ∈ R,

u2(t, 0) = u2(t, π) = 0 for t ∈ R,

u2xx(t, 0) = u2xx(t, π) = 0 for t ∈ R,

u1(0, x) = u10(x) and u1t(0, x) = u11(x) for x ∈ (0, π),

u2(0, x) = u20(x) and u2t(0, x) = u21(x) for x ∈ (0, π),

ψ(t) = u1(t, ξ) + u2(t, ξ) for t ∈ R.

(5.1)

If the initial data are given by the formula

u10(x) =
∞
∑

k=1

ak sin kx, u11(x) =
∞
∑

k=1

bk sin kx,

and

u20(x) =

∞
∑

k=1

αk sin kx, u21(x) =

∞
∑

k=1

βk sin kx

with only finitely many non vanishing coefficients ak bk, αk βk, then a simple
computation shows that

u1(t, x) =

∞
∑

k=1

(cke
ikt + c−ke

−ikt) sin kx

and

u2(t, x) =
∞
∑

k=1

(dke
ik2t + d−ke

−ik2t) sin kx

with

ck =
1

2
(ak − i

bk
k
), c−k =

1

2
(ak + i

bk
k
),
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and

dk =
1

2
(αk − i

βk
k2

), d−k =
1

2
(αk + i

βk
k2

).

If T > 2π, then using Parseval’s equality and a result of Haraux [7] it follows
that

∫ T

0

(|u1(t, ξ)|
2 + |u2(t, η)|

2)dt ≍

∞
∑

k=1

(

|ak|
2 + k−2|bk|

2
)

sin2 kξ +
(

|αk|
2 + k−4|βk|

2
)

sin2 kη.

It can be rewritten in the form

∫ T

0

|u1(t, ξ)|
2 + |u2(t, η)|

2dt

≍ ‖u10‖
2
D0

ξ
+ ‖u20‖

2
D0

η
+ ‖u11‖(D−1

ξ
) + ‖u21‖

2
D

−2

η
. (5.2)

We rewrite (5.1) as a first-order system

U ′ = AU, U(0) = U0, ψ = BU

by setting

U := (u1, u2, u1t, u2t),

U0 := (u10, u20, u11, u21),

A(u1, u2, v1, v2) := (v1, v2,∆u1 −Au1 − Cu2,−∆2u2 −Bu1 −Du2)

and

B(u1, u2, v1, v2) := (u1(ξ), u2(η)).

We introduce the Hilbert spaces H := D0
ξ × D0

η × D−1
ξ × D−2

η , G := R
2 and we

define the domain of definition of the linear operators A and B by

D(A) = D(B) = D1
ξ ×D2

η ×D0
ξ ×D0

η.

We are going to check the validity of hypotheses (H1)-(H4) of Theorem 2.1.
Proof.We have to show that if

(u10, u20, u11, u21) ∈ H,

then

(u1(s), u2(s), u1t(s), u2t(s)) ∈ H
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for all s ∈ R. This follows by applying Parseval’s inequality and Haraux’s result as
in the preceding cases:

‖(u1, u2, u1t, u2t)(s)‖
2
H =

∫ s+T

s

|u1(t, ξ)|
2 + |u2(t, η)|

2dt

≍
∑

k∈Z∗

|ck|
2 sin2 kξ + |dk|

2 sin2 kη

and by observing that the last expression does not depend on s ∈ R. Then we have
(H1).

In order to verify hypothesis (H2) it suffices to establish the estimate

|u1(ξ)|
2 + |u2(η)|

2 ≤ c‖A(u1, u2, v1, v2)‖
2
H

for all (u1, u2, v1, v2) ∈ H. Writing

u1(x) =

∞
∑

k=1

Ak sin kx and u2(x) =

∞
∑

k=1

Bk sin kx

we have

|u1(ξ)|
2 + |u2(η)|

2 =

∣

∣

∣

∣

∣

∞
∑

k=1

Ak sin kξ

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∞
∑

k=1

Bk sin(kη)

∣

∣

∣

∣

∣

2

≤

(

∞
∑

k

1

k2

)

∞
∑

k=1

k2|Ak|
2 sin2 kξ

+

(

∞
∑

k

1

k4

)

∞
∑

k=1

k4|Bk|
2 sin2 kη

≍
∞
∑

k

k2|Ak|
2 sin2 kξ + k4|Bk|

2 sin2 kη,

‖∆u1 −Au1 − Cu2‖
2
D

−1

ξ
=

∞
∑

k=1

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ

and

∥

∥−∆2u2 −Bu1 −Du2
∥

∥

2

D
−2

η
=

∞
∑

k=1

|(k4 +D)Bk +BAk|
2k−4 sin2 kη.

so that the desired estimate is equivalent to the inequalities

k2|Ak|
2 sin2 kξ + k4|Bk|

2 sin2 kη

≤ c
(

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ

+ |(k4 +D)Bk +BAk|
2k−4 sin2 kη

)

(5.3)
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uniformly in k.
Fix a real number 1 < p < 3 and choose two numbers ξ, η ∈ (0, π) such that

ξ/π, η/π are irrational, and

sin−2 kξ = O
(

k−2p
)

, sin−2 kη = O
(

k−2p
)

for k → ∞. It is well-known from the theory of Diophantine approximation (see,
e.g., [5]) that almost all numbers ξ, η ∈ (0, π) have this property. It follows from
this choice that

sin2 kξ

sin2 kη
= o
(

k6
)

and
sin2 kη

sin2 kξ
= o
(

k6
)

. (5.4)

We are going to prove that there exists a positive integer k0 such that

k2|Ak|
2 sin2 kξ + k4|Bk|

2 sin2 kη

≤ 4
(

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ

+ |(k4 +D)Bk +BAk|
2k−4 sin2 kη

)

(5.5)

for all k > k0.
Using the elementary inequality |x+ y+ z|2 ≤ 3

(

|x|2 + |y|2 + |z|2
)

and (5.4) we
have

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ

= |kAk + k−1AAk + k−1CBk|
2 sin2 kξ

≥
(1

3
|kAk|

2 − |k−1AAk|
2 − |k−1CBk|

2
)

sin2 kξ

=
(1

3
− |k−2A|2

)

k2|Ak|
2 sin2 kξ −

(

k−6|C|2
sin2 kξ

sin2 kη

)

k4|Bk|
2 sin2 kη

=
(1

3
− o(1)

)

k2|Ak|
2 sin2 kξ − o(1)k4|Bk|

2 sin2 kη

and

|(k4 +D)Bk +BAk|
2k−4 sin2 kη

= |k2Bk + k−2DBk + k−2BAk|
2 sin2 kη

≥
(1

3
|k2Bk|

2 − |k−2DBk|
2 − |k−2BAk|

2
)

sin2 kη

=
(1

3
− |k−4D|2

)

k4|Bk|
2 sin2 kη −

(

k−6|B|2
sin2 kη

sin2 kξ

)

k2|Ak|
2 sin2 kξ

=
(1

3
− o(1)

)

k4|Bk|
2 sin2 kη − o(1)k2|Ak|

2 sin2 kξ,

so that

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ + |(k4 +D)Bk +BAk|

2k−4 sin2 kη

≥
(1

3
− o(1)

)

k2|Ak|
2 sin2 kξ +

(1

3
− o(1)

)

k4|Bk|
2 sin2 kη
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Choosing a sufficiently large k0 hence (5.5) follows.

It remains to ensure the validity of (5.3) for each k = 1, . . . , k0. It suffices to
choose the parameters (A,B,C,D) so that none of the determinants

∣

∣

∣

∣

−k2 −A −C
−B k4 −D

∣

∣

∣

∣

= −(k2 +A)(k4 −D)−BC

vanishes. Indeed, then we have for each k the implication

(−k2 −A)Ak − CBk = DAk − (k4 −B)Bk ⇐⇒ Ak = Bk = 0, k = 1, . . . , k0;

since all norms are equivalent on finite-dimensional vector spaces, this implies that
both

k0
∑

k=1

k2|Ak|
2 sin2 kξ + k4|Bk|

2 sin2 kη

and

k0
∑

k=1

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ + |(k4 +D)Bk +BAk|

2k−4 sin2 kη

are equivalent to
k0
∑

k=1

(|Ak|
2 + |Bk|

2)

and therefore

k2|Ak|
2 sin2 kξ + k4|Bk|

2 sin2 kη

≤ c
(

|(k2 +A)Ak + CBk|
2k−2 sin2 kξ

+ |(k4 +D)Bk +BAk|
2k−4 sin2 kη

)

(5.6)

for every k = 1, . . . , k0 with a suitable constant c.

The exceptional parameters (A,B,C,D) for which one of these determinants
vanishes form a finite number of three-dimensional manifolds in R

4, hence a set of
Lebesgue measure zero. We conclude that for almost all choices of ξ, η ∈ (0, π),
hypothesis (H2) holds for almost all choices of (A,B,C,D) ∈ R

4.

It follows from (5.2) that hypotheses (H3)-(H4) are satisfied. Theorem 1.3 now
follows by applying Theorem 2.1. In order to write down explicitly the stabilization
result, we multiply the equation (1.5) by u and we integrate by parts as follows (we
use all conditions in (1.5) and (5.1)). This shows that if we write (5.1) in the form
(2.1), then its dual (2.2) corresponds to (1.5). Furthermore, writing the operator

Λ−1
ω : (D0

ξ)
′ × (D−1

ξ )′ × (D0
η)

′ × (D−2
η )′ → D−1

ξ ×D0
ξ ×D−2

η ×D0
η
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in the matrix form

Λ−1
ω =









−P1 Q1 Λ13 Λ14

Λ21 Λ22 −P2 Q2

Λ31 Λ32 Λ33 Λ34

Λ41 Λ42 Λ43 Λ44









,

we have

(v1(t), v2(t)) = −((P1y1t +Q1y1)(t, ξ), (P2y2t +Q2y2)(t, η)). (5.7)

6. Observability and controllability results of the coupled string-beam
system

In this section we state and prove two new observability and controlability
theorems concerning the coupled string-beam system.

Theorem 6.1 Fix ξ, η ∈ (0, π) such that ξ/π and η/π are irrational and introduce
the space

(Hξ,η)
′ = D0

ξ ×D−1
ξ ×D0

η ×D−2
η .

Let (u10, u11, u20, u21) ∈ (Hξ,η)
′, for almost all choices of (A,B,C,D) ∈ R

4, if
T > 2π there exist a positive constante C1 > 0 such that the following inequality is
verified

C1‖(u10, u11, u20, u21)‖
2
(Hξ,η)′

≤

∫ T

0

(|u1(t, ξ)|
2 + |u2(t, η)|

2)dt (6.1)

for any (u10, u11, u20, u21) ∈ (Hξ,η)
′.

Proof.It follow from hypothesis (H4) of the abstract result and (5.2).

Definition 6.2 Fix ξ, η ∈ (0, π) such that ξ/π and η/π are irrational. the system
(1.5) is exactly controllable if for any given initial and final data

(y10, y11, y20, y21) ∈ Hξ,η

and
(z10, z11, z20, z21) ∈ Hξ,η

there exist control functions

v1, v2 ∈ L2(0, T ;Hξ,η)

such that the corresponding solution of (1.5) satisfies the final condition

(y1, y1t, y2, y2t)(T ) = (z10, z11, z20, z21).

Remark 6.3 Inequality (6.1) is called observability inequality, which plays a fun-
damental role in control theory, it is not only sufficient but also necessary condition
of exact controllability.
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Theorem 6.4 Assume (H1) − (H4). If T > 2π, then the system (1.5) is exactly
controllable for almost all choices of (A,B,C,D) ∈ R

4.

Proof.Theorem 6.4 is an abstract form of the Hilbert Uniqueness Method of Lions
[16], [17], see also [18] for a general duality principle between observability and
controllability.

7. Proof of Proposition 1.5

By the definition of the norms the three inclusions in part (a) are equivalent to
the inequalities

∑

|ak|
2 ≤

∑

sin−2(kξ)|ak|
2,

∑

k2|ak|
2 ≤

∑

k2 sin−2(kξ)|ak|
2,

∑

k4|ak|
2 ≤

∑

k4 sin−2(kξ)|ak|
2.

Turning to (b), as we have already mentioned in the preceding section, by a
theorem on Diophantine approximation almost every ξ ∈ (0, π) satisfies for all ε > 0
the estimates

| sin(kξ)| ≥
cε
k1+ε

with suitable positive constants cε, independent of k = 1, 2, . . . .. It follows that

∑

sin−2(kξ)|ak|
2 ≤ c−2

ε

∑

k2+2ε|ak|
2,

∑

k2 sin−2(kξ)|ak|
2 ≤ c−2

ε

∑

k4+2ε|ak|
2,

∑

k4 sin−2(kξ)|ak|
2 ≤ c−2

ε

∑

k6+2ε|ak|
2,

and they are equivalent to the stated inclusions.
Finally, the inclusions of part (c) are obtained by establish the same proof of

(b) which ε = 0.
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