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Schwarz rearrangement does not decrease the energy for the pseudo
p-Laplacian operator

Mohammed MOUSSA

ABSTRACT: It is well known that the Schwarz symmetrization decrease the energy
for the p-Laplacian operator, i.e

/ |[VulP dx 2/ |[Vu*|P da.
Q o

where u* is the Schwarz rearranged function of u, for appropriate v and €. In this
note, we shall proof that the Schwarz rearrangement does not decrease the energy
for the pseudo p-Laplacian operator, that is, there exist a bounded domain @ C RN
and a function u € W, P (Q) such that
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1. Introduction

The rearrangement method is defined by replacing a given function u by a
related function u* wich has some properties like monotonicity or symmetry. The
function u* can be reconstructed from its level sets

Qe ={zeQ|ulx)>c}

1.1. A CATALOGUE OF REARRANGEMENT. In the litterature we find many type of
rearrangement,

1. circular and spherical symmetrization,
2. monotone decreasing rearrangement in direction y,
3. radial symmetrization,

4. Schwarz symmetrization,
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5. Steiner symmetrization in direction y.

more details of rearrangement can be found in [3,4,5,7]. In this note we are intersted
only by Schwarz symmetrization (the most frequently used kind symmetrization).
Hence, for a Lebesgue measurable set D C R™ we define the Schwarz symmetriza-
tion D* of D by

pr_{ BO.R) if D#0
0 if D=9

where B(0, R) is a ball of R™ with center in the origin with same n — dim. Lebesgue
measure and for a Lipschitz continuous function u, the rearranged function w* is
defined as follows

uw(z) =sup{c€R| z€Q;} forxzeQ*

1.2. SOME RESULTS FOR SCHWARZ SYMMETRIZATION. One of the first powerful
applications of Schwarz symmetrization was the proof of the Krahn-Faber inequal-
ity [6] : Among all fixed membranes of given area, the circular one has the lowest
principal eigenvalue. This was shown by looking at

\V4 2
A(Q) = min 7f9 | 2u| .
wewl2@\foy  |ul
one can easily conclude, with the two following propositions, that A;(€2) > A (2*)

Proposition 1.1 ([1,5,7]) For every continuous mapping F : Rt — R and every
nonnegative function u : 8 — Rt then,

/ﬁ P(u) dz = /? P(u*) d.

Proposition 1.2 ([1,5,7]) For u# 0 € Wy*(Q) and p > 1, we have

1 1
Byw) =+ [ [Vul?do > 5/5* VP da = B, (u*)

Then, Schwarz symmetrization decrease the potentiel energy E,(u) of p-Laplacian
operator Apu defined by

Apu = div (|Vul[P V) .

The same question is posed for the so called pseudo p-Laplacian operator defined

by
P=2 Hu
8332‘ ’

We show, in this paper, that the answer is negative by exhibiting an explicit
function with Schwarz’s symmetrization does not decrease the energy for pseudo
p-Laplacian operator.
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2. Main result

Theorem 2.1 The Schwarz rearrangement does not decrease the energy for the
pseudo p-Laplacian operator, that is, there exist a bounded domain Q@ C R™ and a
function u € Wy (Q) such that

n a*
AL

ox;
where 0* and u* are the Schwarz rearrangement of  and u respectively.
Proof. Let
Q= {(z1,22) €R?| 0 < |a|+ |2o] <V} and u(zr, 22) = V7 — (|a1] + |22]),

u is a Lipschitz continuous function that u € Wy?(2). Then the Schwarz rear-
rangement of  is Q* = B(0,/2).
Level sets of u are given by

Qe = {(z1,22) €R?| 21| + |aa| < VT — ¢}
Then, |Q.| = meas(.) = 2(v/7 — ¢)?, so

u*(z1,22) = V7 — \/7.%‘1 + 22) %

P

(1)

o | 0z;

Now we have

Oul_q_|9u
8.1'1 o 8.’172 ’
then,
2 ou |P
Z/ dx = 2meas(Q) = 4 (2)
1=1
in the other hand,
ou* T |1 ou* T |2]
=4/=————— and =/ -——————
oo | V2t )t Z R e

by passing to polar coordinates we obtain

* P ) 27 V2 27 V2
Z/ Ou - (f) / \cos9|pd9/ rerr/ |sm9|pd9/ rdr
« | O 2 0 0 0 0
2m 2m 1 V2
(/ |cos¢9|pd9+/ |sin0|pd0) {rz}
0, 0, 2 o
(/ |cos€|pd9—|—/ |sin9|pd9>
0 0
3 3
/ |cos€\pd9+/ | sin 0[P df
0 0
o5 Bl Bl
sin cos = sin
/ |sin [P0 / | cos 0| df / |sin 0[P df
0 0 0
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we have used the following equality

27 27
/ |cosOP df = / | sin 0P df
0 071' 27
/ |sin9|”d9+/ |sin 6P df
0 - iy

= 2/ |sin@” df (put in the second integral §’ = 6 — )

2 /2 |sin9|”d9+/ |sin9|pd9>
0 3

El El
2 / | sin 0|7 dO + / | sin 0P d0> (put in the second integral 6’ = 7w — 0)
0 0

™

4/2 |sin 0] do,
0

S [ [5e] ars(5)° [ inora @

the integral in the right member of equation (3) is given by the well known Wallis
formula [2] (page : 15)

S0,
ou*
ox;

Finally,

(4)

=1

the function I'() is increasing for a > 2 and I'(a + 1) = aI'(a) for all & > —1 so,

applying equation (4) to get

2

* |P y4
> [, lon| @23 G) v
i—1 * €T p 2
then the inequality
2 ou* p
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which is equivalent to

(M)

5) - pso g

An elementary study of the function (z = §)
e x
f@)=(5) —avm
shows that f is strictly increasing in [15,+0o[. Equation (5) is then established

if f(£) >0, that is p > p. where p, is defined by f(£) = 0. Mean value theorem
shows that p. € [9,10]. Consequently, for all p > 10

2 » 2
z/ deZ/
i=17 i=17%

Conclusion : the Schwarz rearrangement does not decrease the energy for the
pseudo p-Laplacian operator like it does for p-Laplacian operator.
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dr.
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