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Exponential decay of serially connected elastic wave ∗

Luci Harue Fatori and Carolina Lupifierio Antonio

abstract: In this work we study a flexible structures which is formed by three
serially connected elastic waves, more specifically on structure whose material consist
of three different types of components where one is purely elastic component and
two dissipative elastic. We show that for this types of materials the dissipation
produced by the dissipative elastic part is strong enough to produce exponential
decay of the solution, no matter how small is its size. We also show that the linear
model is well posed.
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1. Introduction

Many flexible structures consist of a large number of components coupled end
to end in the form of a chain. In this paper, we consider the simplest type of such
structures which is formed by three serially connected wave propagation, more
specifically we study the transversal vibrations for composite elastic strings of the
material consisting of three different types of components. One component is a
simple elastic part while the others are dissipative where dissipation of frictional
type. In this case, the dissipation are effective only in a part of the domain. Model
mathematical result is known as a transmission problem and is characterized by
a system of partial differential equations with discontinuous coefficients. Several
authors have studied problems transmission in materials made of two components
( see, for example, References [1,3,14] ). On the other hand, work with materials
consisting of three or more components are not common in the literature. Among
them we can cite the work of A. Marzocchi, J.E.M. Rivera and M.G. Naso [9],
where authors showed stability results for a material consists of two components
with thermoelastic properties, and one component at any temperature. In this
sense, what we propose in this work is to study the wave propagation on a material
consisting of three elastic components, which initially considered two of them with
frictional dissipation. Then replaced by a dissipation of a thermal dissipation. More
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specifically, we consider a one-dimensional string defined on the interval [0, l] ⊂ R,
with the following composition:

where l1, l2 ∈ (0, l), with l1 < l2. The system we will consider here is

utt − k1uxx + aut = 0, x ∈ (0, l1), t > 0, (1)

vtt − k2vxx = 0, x ∈ (l1, l2), t > 0, (2)

wtt − k3wxx + bwt = 0, x ∈ (l2, l), t > 0, (3)

where k1, k2, k3, a and b are positive constants.
The functions u = u(x, t), v = v(x, t) and w = w(x, t) satisfying the following

boundary conditions
u(0, t) = w(l, t) = 0, t > 0, (4)

transmission condition

u(l1, t) = v(l1, t), k1ux(l1, t) = k2vx(l1, t), t > 0, (5)

v(l2, t) = w(l2, t), k2vx(l2, t) = k3wx(l2, t), t > 0, (6)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, l1), (7)

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ (l1, l2), (8)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (l2, l). (9)

Let us mention some papers related to problems we address. The asymptotic
behavior as t → ∞ of solution to the wave equation with different types of dissi-
pative mechanism has been studied by many authors. For example, the frictional
damping αut with dissipation works in the whole domain ( see Reference [2]), or
frictional boundary conditions as the work of [7,13] where the dissipation is working
in a part of the boundary where the dissipation is working in a part of the bound-
ary and also where the frictional damping is localized (see References [11,12,15]).
In this sense, we can say that our contribution was to establish the exponential
decay of the solution when time goes to infinity of a wave equation with disconti-
nuous coefficients and frictional damping is localized because the system (1)-(9) is
equivalent to the problem

ztt − k(x)zxx + c(x)zt = 0 em (0, l)× (0,∞)
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with boundary condition

z(0, t) = z(l, t) = 0, t > 0,

and initial condition

z(x, 0) = z0(x), zt(x, 0) = z1(x), x ∈ (0, l)

where

z(x, t) =





u(x, t), if x ∈ (0, l1)
v(x, t), if x ∈ (l1, l2)
w(x, t), if x ∈ (l2, l)

k(x) =





k1, if x ∈ (0, l1)
k2, if x ∈ (l1, l2)
k3, if x ∈ (l2, l)

c(x) =





a, if x ∈ (0, l1)
0, if x ∈ (l1, l2)
b, if x ∈ (l2, l).

We denote by Ω the set (0, l1) ∪ (l1, l2) ∪ (l2, l) and L2(Ω), H1(Ω), H2(Ω) and V
the spaces

L2(Ω) = L2(0, l1)× L2(l1, l2)× L2(l2, l),

H1(Ω) = H1(0, l1)×H1(l1, l2)×H1(l2, l),

H2(Ω) = H2(0, l1)×H2(l1, l2)×H2(l2, l),

V = {(u, v, w) ∈ H1(Ω) : u(0) = w(l) = 0, u(l1) = v(l1), v(l2) = w(l2)}.

Observe that V is a Hilbert space with the norm

||(u, v, w)||2V :=

∫ l1

0

|ux|
2 dx+

∫ l2

l1

(|v|2 + |vx|
2) dx+

∫ l

l2

|wx|
2 dx.

The weak solutions of (1)− (9) are defined as follows

Definition 1.1 The triple (u, v, w) is a weak solution of the system (1)− (9) when

(u, v, w) ∈ L∞(0, T ;V),

(ut, vt, wt) ∈ L∞(0, T ;L2(Ω)),

and satisfies

d

dt

∫ l1

0

utφ dx+ k1

∫ l1

0

uxφx dx+ a

∫ l1

0

utφ dx+
d

dt

∫ l2

l1

vtψ dx

+k2

∫ l2

l1

vxψx dx+
d

dt

∫ l

l2

wtϕdx+ k3

∫ l

l2

wxϕx dx+ b

∫ l

l2

wtϕdx = 0,

in D′(0, T ) for all (φ, ψ, ϕ) ∈ V.



12 L. H. Fatori and C.L.Antonio

For the existence result is

Theorem 1.1 Suppose that the initial data (u0, v0, w0) ∈ V , (u1, v1, w1) ∈ L2(Ω)
and satisfy (5)− (6). Then problem (1)− (9) has a unique weak solution (u, v, w).
Moreover, if (u0, v0, w0) ∈ H2(Ω)∩V e (u1, v1, w1) ∈ V, then the solution satisfies

(u, v, w) ∈ L∞(0, T ;H2(Ω) ∩ V), (ut, vt, wt) ∈ L∞(0, T ;V),

(utt, vtt, wtt) ∈ L∞(0, T ;L2(Ω)).

In this case, we say that (u, v, w) is a strong solution to the problem (1)− (9).

In the following we define the energy of the system (1)− (9)

E(t;u, v, w) = E1(t;u) + E2(t; v) + E3(t;w) (10)

where E1, E2 and E3 we denote the first order energy associated to each equation,

E1(t;u) =
1

2

∫ l1

0

|ut|
2 + k1|ux|

2dx,

E2(t; v) =
1

2

∫ l2

l1

|vt|
2 + k2|vx|

2dx,

E3(t;w) =
1

2

∫ l

l2

|wt|
2 + k3|wx|

2dx.

Using the same procedure as in [4] we have our main result.

Theorem 1.2 Let (u, v, w) be a strong solution of (1)− (9) given by Theorem 1.1.
Then there exist positive constants C0 and γ such that

E(t;u, v, w) ≤ C0E(0)e
−2γt,

where E(0) will be defined later.

2. Existence and Regularity

In this section we give the proof Theorem 1.1. We only show the main arguments
of the proof which was based on the Faedo-Galerkin method.

Proof of Theorem 1.1: Let us denote by {(φi, ψi, ϕi), i ∈ N} an orthonormal
basis of V, Vm = span{(φ1, ψ1, ϕ1), ..., (φm, ψm, ϕm)} and

(um(t), vm(t), wm(t)) =

m∑

j=1

hj,m(t)(φj , ψj , ϕj)

where the functions (um(t), vm(t), wm(t)) are given by the solution of the approxi-
mate system
∫ l1

0

umttφ
j dx+ k1

∫ l1

0

umx φ
j
x dx+ a

∫ l1

0

umt φ
j dx+

∫ l2

l1

vmttψ
j dx+ k2

∫ l2

l1

vmx ψ
j
x dx

+

∫ l

l2

wm
ttϕ

j dx+ k3

∫ l

l2

wm
x ϕ

j
x dx+ b

∫ l

l2

wm
t ϕ

j dx = 0, (11)
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j = 1, ...,m, with initial data

(um(0), vm(0), wm(0)) = (u0m, v
0
m, w

0
m) → (u0, v0, w0) in V, (12)

(umt (0), vmt (0), wm
t (0)) = (u1m, v

1
m, w

1
m) → (u1, v1, w1) in L2(Ω). (13)

Then from standard arguments on ODEs the system (11)−(13) has a local solution
in t. To extend this solution to the whole interval [0,∞) it is enough to show that
approximate solutions are bounded independently of m e t.

Let us define

Em(t) := E(t, um, vm, wm).

Multiplying equation (11) by h′j,m(t), summing up on j and integrating from 0 to
t, we get

Em(t) = Em(0)− a

∫ t

0

∫ l1

0

|umt |2 dxdt− b

∫ t

0

∫ l

l2

|wm
t |2 dxdt.

Therefore, there exists M1 > 0 such that

Em(t) ≤M1, ∀m ∈ N, ∀ t ∈ [0, T ]. (14)

Our next step is to estimate the second order energy. Differentiating relation (11)
with respect to t and multiplying h′′j,m(t), summing up on j we get

1

2

d

dt

{∫ l1

0

|umtt |
2 + k1|u

m
xt|

2 dx+

∫ l2

l1

|vmtt |
2 + k2|v

m
xt|

2 dx+

∫ l

l2

|wm
tt |

2 + k3|w
m
xt|

2 dx

}

= −a

∫ l1

0

|umtt |
2 dx− b

∫ l

l2

|wm
tt |

2 dx.

Let us denote by Em(t) := E(t, umt , v
m
t , w

m
t ), we obtain

d

dt
Em(t) = −a

∫ l1

0

|umtt |
2 dx− b

∫ l

l2

|wm
tt |

2 dx

and integrating from 0 to t following that

Em(t) ≤ Em(0). (15)

Now we must show that Em(0) is bounded. In order to, multiplying (11) by h′′j,m(t),
summing up on j and letting t→ 0+ we get

∫ l1

0

|umtt (0)|
2 dx+

∫ l2

l1

|vmtt (0)|
2 dx+

∫ l

l2

|wm
tt (0)|

2 dx = −

∫ l2

l1

k2v
m
x (0)vmxtt(0) dx

−

∫ l1

0

(k1u
m
x (0)umxtt(0) + aumt (0)umtt (0)) dx−

∫ l

l2

(k3w
m
x (0)wm

xtt(0) + bwm
t (0)wm

tt (0)) dx.
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After integrating, using the transmission condition and Youngťs Inequality we get
there exist a positive constant C > 0 such that

∫ l1

0

|umtt (0)|
2 dx+

∫ l2

l1

|vmtt (0)|
2 dx+

∫ l

l2

|wm
tt (0)|

2 dx ≤

C
(∫ l1

0

|umxx(0)|
2 + |umt (0)|2 dx+

∫ l2

l1

|vmxx(0)|
2 dx+

∫ l

l2

|wm
xx(0)|

2 + |wm
t (0)|2 dx

)
.

This implies that the initial data satisfies

(umtt (0), v
m
tt (0), w

m
tt (0)) is bounded in L2(Ω),

and so is Em(0). Whence that there exist M2 > 0 such that

Em(t) ≤M2, ∀m ∈ N, ∀ t ∈ [0, T ]. (16)

From (14) and (16) we see that there exists a subsequence of (um, vm, wm), still
denoted by (um, vm, wm) such that

(um, vm, wm)
∗
⇀ (u, v, w) ∈ L∞(0, T ;V),

(umt , v
m
t , w

m
t )

∗
⇀ (ut, vt, wt) ∈ L∞(0, T ;V).

(umtt , v
m
tt , w

m
tt )

∗
⇀ (utt, vtt, wtt) ∈ L∞(0, T ;L2(Ω)).

From this, letting m→ ∞ in (11) we conclude that

∫ T

0

∫ l1

0

uttϑ1 dxdt+ k1

∫ T

0

∫ l1

0

uxϑ1,x dxdt+ a

∫ T

0

∫ l1

0

utϑ1 dxdt

+

∫ T

0

∫ l2

l1

vttϑ2 dxdt+ k2

∫ T

0

∫ l2

l1

vxϑ2,x dxdt

+

∫ T

0

∫ l

l2

wttϑ3 dxdt+ k3

∫ T

0

∫ l

l2

wxϑ3,x dxdt+ b

∫ T

0

∫ l

l2

wtϑ3 dxdt = 0,

for all (ϑ1, ϑ2, ϑ3) ∈ D(0, T ;D(Ω)). Therefore we have that

(u, v, w) ∈ L∞(0, T ;H2(Ω) ∩ V),

(ut, vt, wt) ∈ L∞(0, T ;V),

(utt, vtt, wtt) ∈ L∞(0, T ;L2(Ω)).

Verification of the initial and transmission conditions are a matter of routine.
The uniqueness to weak solution we follows by Visik-Ladyzhenskaya methods and to
strong solution follows by standard methods for hyperbolic equations. This ends the
proof of Theorem 1.1. 2
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3. Exponential decay

In this section we prove by using multipliers techniques the solution (1) − (9)
decays exponentially to zero as time goes to infinity. To do this, let us denote by
U(x, t) = u(x, t)eγt, V (x, t) = v(x, t)eγt and W (x, t) = w(x, t)eγt. Then (U, V,W )
satisfies

Utt − k1Uxx + aUt = Q, x ∈ (0, l1), t > 0, (17)

Vtt − k2Vxx = R, x ∈ (l1, l2), t > 0, (18)

Wtt − k3Wxx + bWt = S, x ∈ (l2, l), t > 0, (19)

where

Q := 2γUt + (a− γ)γU, (20)

R := 2γVt − γ2V, (21)

S := 2γWt + (b− γ)γW. (22)

The functions U, V and W satisfying the following boundary condition

U(0, t) =W (l, t) = 0, t > 0 (23)

transmission condition

U(l1, t) = V (l1, t), k1Ux(l1, t) = k2Vx(l1, t), t > 0, (24)

V (l2, t) =W (l2, t), k2Vx(l2, t) = k3Wx(l2, t), t > 0, (25)

and initial condition

U(x, 0) = u0(x), Ut(x, 0) = u1(x) + γu0(x), x ∈ (0, l1), (26)

V (x, 0) = v0(x), Vt(x, 0) = v1(x) + γv0(x) x ∈ (l1, l2), (27)

W (x, 0) = w0(x), Wt(x, 0) = w1(x) + γw0(x), x ∈ (l2, l). (28)

Let us consider

E(t) := E(t;U, V,W ) = E1(t;U) + E2(t;V ) + E3(t;W )

where E(t;U, V,W ) is given by (10). In order to show the exponential decay of
(u, v, w) is enough to show that E(t) is limited. To this end, prove a series of results.
Now we consider (u, v, w) strong solution of (1) - (9). In our arguments (Lemma
3.11) we make use of a convergence result due to Kim [5] and result related to the
wave equation (vide [10]), which is recalled below.

Lemma 3.1 Let us denote by {wk} a sequence of functions satisfying

wk ∗
⇀ w in L∞(0, T ;Hβ(Ω)),

wk
t ⇀ wt in L2(0, T ;Hθ(Ω)),

as k → ∞, where θ < β. Then we have that

wk → w in C([0, T ];Hr(Ω)),

for any r < β.
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Lemma 3.2 Suppose that the initial data z0 ∈ H1
0 (0, l), z1 ∈ L2(0, l) and

z : (0, l)× (0, T ) → R is the solution of the problem




ztt − kzxx = 0,
z(0, t) = z(l, t) = 0,
zx(0, t) = zx(l, t) = 0,
z(x, 0) = z0(x), zt(x, 0) = z1(x).

(29)

Then, z = 0 a. e. in (0, l)× (0, T ).

Lemma 3.3 Let (U, V,W ) be a solution of (17)-(28) then there is exist positive
constant C such that

d

dt
E(t) ≤ −a

∫ l1

0

|Ut|
2dx− b

∫ l

l2

|Wt|
2dx+ CγE(t).

Proof: Multiplying equation (17), (18) and (19) by Ut, Vt and Wt, respectively,
and integrating by parts from 0 to l1 , from l1 to l2 and l2 to l, we conclude using
the boundary and transmission conditions that

d

dt
E(t) = −a

∫ l1

0

|Ut|
2 dx− b

∫ l

l2

|Wt|
2 dx

+

∫ l1

0

QUt dx

∫ l2

l1

RVt dx+

∫ l

l2

SWt dx. (30)

From (20), (21), (22) and using Hölder’s, Young’s and Poincare’s inequalities, we
find

∫ l1

0

QUt dx+

∫ l2

l1

RVt dx+

∫ l

l2

SWt dx ≤ CγE(t), (31)

where C is a positive constant. Therefore combining (30) and (31) is follows that

d

dt
E(t) ≤ −a

∫ l1

0

|Ut|
2dx− b

∫ l

l2

|Wt|
2dx+ CγE(t).

2

Lemma 3.4 Let (U, V,W ) be a solution of (17)-(28) and consider the functionals

F1(t) =

∫ l1

0

UUt dx F3(t) =

∫ l

l2

WWt dx.

Then there exists a positive constant C1 and C2 such that

d

dt
F1(t) ≤ C1γE(t) + C1

∫ l1

0

|Ut|
2 dx−

7k1
8

∫ l1

0

|Ux|
2 dx+ k1Ux(l1, t)U(l1, t),

d

dt
F3(t) ≤ C2γE(t) + C2

∫ l

l2

|Wt|
2 dx−

7k3
8

∫ l

l2

|Wx|
2 dx− k3Wx(l2, t)W (l2, t).
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Proof: From (17) we get

d

dt
F1(t) =

∫ l1

0

|Ut|
2 dx+ k1

∫ l1

0

UxxU dx− a

∫ l1

0

UtU dx+

∫ l1

0

QU dx.

After integrating by parts, using boundary condition and Young’s inequality we
get

d

dt
F1(t) ≤

(
1 +

a

2ǫ1

)∫ l1

0

|Ut|
2 dx+ k1Ux(l1, t)U(l1, t)− k1

∫ l1

0

|Ux|
2 dx

+
aǫ1cp
2

∫ l1

0

|Ux|
2 dx+

∫ l1

0

QU dx. (32)

where ǫ1 is a positive constant satisfying ǫ1 <
k1
4acp

and cp is Poincareťs constant.

On the other side, from (20) is easy to see that

∫ l1

0

QU dx ≤ CγE1(t;U), (33)

where C is a positive constant. Combining (32) and (33) our first conclusion follows.
Similarly, from (19) we get

d

dt
F3(t) =

∫ l

l2

|Wt|
2 dx+ k3

∫ l

l2

WxxW dx− b

∫ l

l2

WtW dx+

∫ l

l2

SW dx.

After integrating by parts, using boundary condition and Young’s inequality we
get

d

dt
F3(t) ≤

(
1 +

b

2ǫ3

)∫ l

l2

|Wt|
2 dx− k3Wx(l2, t)W (l2, t)− k3

∫ l

l2

|Wx|
2 dx

+
bǫ3cp
2

∫ l

l2

|Wx|
2 dx+

∫ l

l2

SW dx, (34)

where ǫ3 is a positive constant satisfying ǫ3 <
k3
4bcp

. On the other side, from (22)

we have ∫ l

l2

SW dx ≤ CγE3(t;W ).

Replacing this inequality in (34) our second conclusion follows. 2

Lemma 3.5 Let (U, V,W ) be a solution of (17)-(28) and let functional J1(t) given
by

J1(t) = −

∫ l1

0

xUxUt dx.
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Then there exist a positive constant C3 > 0 such that

d

dt
J1(t) ≤ C3γE(t) + C3

∫ l1

0

|Ut|
2 dx+

5k1
8

∫ l1

0

|Ux|
2 dx

−
l1
2
|Ut(l1, t)|

2 −
k1l1
2

|Ux(l1, t)|
2.

Proof: Multiplying the equation (17) by σ1(x)Ux, σ1 ∈ C1(0, l1), and integrating
from 0 to l1, we have

d

dt

{∫ l1

0

σ1(x)UxUt dx

}
=

1

2

∫ l1

0

σ1(x)
d

dx
|Ut|

2 dx+
k1
2

∫ l1

0

σ1(x)
d

dx
|Ux|

2 dx

−a

∫ l1

0

σ1(x)UxUt dx+

∫ l1

0

σ1(x)UxQdx

=
1

2

[
σ1(x)|Ut|

2

∣∣∣∣∣

l1

0

−

∫ l1

0

σ′
1(x)|Ut|

2 dx

]
+
k1
2
σ1(x)|Ux|

2

∣∣∣∣∣

l1

0

−
k1
2

∫ l1

0

σ′
1(x)|Ux|

2 dx− a

∫ l1

0

σ1(x)UxUt dx+

∫ l1

0

σ1(x)UxQdx.

Taking σ1(x) = −x and using Young’s inequality we obtain

d

dt
J1(t) ≤

(
1

2
+
al1
2η

)∫ l1

0

|Ut|
2 dx+

(
k1
2

+
al1η

2

)∫ l1

0

|Ux|
2 dx−

l1
2
|Ut(l1, t)|

2

−
k1l1
2

|Ux(l1, t)|
2 + l1

∫ l1

0

|UxQ| dx, (35)

where η is a positive constant satisfying η <
k1
4al1

. On the other side, from (20) we

have that there exist a positive constant C such that
∫ l1

0

|QUx| dx ≤ CγE1(t;U).

Therefore, using the last estimate in (35) our conclusion follows. 2

Lemma 3.6 Let (U, V,W ) be a solution of (17)-(28) and consider the functional
J2(t)

J2(t) =

∫ l2

l1

(l2 + l1)x− 2l1l2
(l2 − l1)

VxVt dx.

Then there exist a positive constant C4 > 0 such that

d

dt
J2(t) ≤ −

(l2 + l1)

l2 − l1
E2(t;V ) + C4γE(t) +

l2
2
|Vt(l2, t)|

2 +
l1
2
|Vt(l1, t)|

2

+
k2l2
2

|Vx(l2, t)|
2 +

k2l1
2

|Vx(l1, t)|
2.



Exponential decay of serially connected elastic wave 19

Proof: Multiplying the equation (18) by σ2(x)Vx, σ2 ∈ C1(l1, l2), and integrating
from l1 to l2, we have

d

dt

{∫ l2

l1

σ2(x)VxVt dx

}
=

1

2

[
σ2(x)|Vt|

2

∣∣∣∣∣

l2

l1

−

∫ l2

l1

σ′
2(x)|Vt|

2 dx

]
+
k2
2
σ2(x)|Vx|

2

∣∣∣∣∣

l2

l1

−
k2
2

∫ l2

l1

σ′
2(x)|Vx|

2 dx+

∫ l2

l1

σ2(x)VxRdx.

Taking σ2(x) =
(l2 + l1)x− 2l1l2

(l2 − l1)
we get

d

dt
J2(t) ≤

1

2

[
l2|Vt(l2, t)|

2 + l1|Vt(l1, t)|
2 −

(l2 + l1)

(l2 − l1)

∫ l2

l1

|Vt|
2 dx

]
+
k2l2
2

|Vx(l2, t)|
2

+
k2l1
2

|Vx(l1, t)|
2 −

k2
2

(l2 + l1)

(l2 − l1)

∫ l2

l1

|Vx|
2 dx+ l2

∫ l2

l1

|VxR| dx. (36)

On the other side, we see that there exist positive constant C such that

∫ l2

l1

|VxR| dx ≤ CγE(t).

Therefore, using the above inequality in (36) our conclusion follows. 2

Lemma 3.7 Consider the functional J3(t)

J3(t) =

∫ l

l2

l2(l − x)

l − l2
WxWt dx

where (U, V,W ) be a solution of (17)-(28). Then there exist a positive constant
C5 > 0 such that

d

dt
J3(t) ≤ C5

∫ l

l2

|Wt|
2 dx+

5k3l2
8(l − l2)

∫ l

l2

|Wx|
2 dx

−
l2
2
|Wt(l2, t)|

2 −
k3l2
2

|Wx(l2, t)|
2 + C5γE(t).

Proof: Multiplying the equation (19) by σ3(x)Wx, σ3 ∈ C1(l2, l), and integrating
from l2 to l, we have

d

dt

{∫ l

l2

σ3(x)WxWt dx

}
=

1

2

[
σ3(x)|Wt|

2

∣∣∣∣∣

l

l2

−

∫ l

l2

σ′
3(x)|Wt|

2 dx

]
+
k3
2
σ3(x)|Wx|

2

∣∣∣∣∣

l

l2

−
k3
2

∫ l

l2

σ′
3(x)|Wx|

2 dx− b

∫ l

l2

σ3(x)WxWt dx+

∫ l

l2

σ3(x)WxS dx.
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Taking σ3(x) =
l2(l − x)

l − l2
and using Young’s inequality we get that there exist a

positive constant C5 such that

d

dt
J3(t) ≤ −

l2
2
|Wt(l2, t)|

2 + C5

∫ l

l2

|Wt|
2 dx−

k3l2
2

|Wx(l2, t)|
2

+
k3l2

2(l − l2)

∫ l

l2

|Wx|
2 dx+

bl2η

2

∫ l

l2

|Wx|
2 dx+ l2

∫ l

l2

|WxS| dx,(37)

where η is a positive constant satisfying η <
k3

4b(l − l2)
. On the other side, we get

there exist a positive constant C such that

∫ l

l2

|WxS| dx ≤ CγE3(t;W ),

Therefore, using the last estimate in (37) our conclusion follows. 2

Lemma 3.8 Consider the functional H1(t) given by

H1(t) = F1(t) + J1(t)

where F1 and J1 are defined in Lemma 3.4 and 3.5. Then there exist a positive
constant C6 such that

d

dt
H1(t) ≤ C6γE(t) + C6

∫ l1

0

|Ut|
2 dx−

k1
4

∫ l1

0

|Ux|
2 dx+ C6|U(l1, t)|

2,

Proof: Combining the first estimate of the lemma 3.4 and from lemma 3.5. 2

Lemma 3.9 Let H2(t) the functional

H2(t) = J2(t) + C0J1(t) +K0J3(t)

where J1, J2 and J3 are functionals defined in Lemmas 3.5, 3.6 and 3.7 and the

constants satisfies C0 = max
{
1,
k1
k2

}
and K0 = max

{
1,
k3
k2

}
. Then, there exist

positive constant C7 > 0 such that

d

dt
H2(t) ≤ C7γE(t) + C7

∫ l1

0

|Ut|
2 + |Ux|

2 dx

+ C7

∫ l

l2

|Wt|
2 + |Wx|

2 dx−
l2 + l1
l2 − l1

E2(t;V ).
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Proof: From lemmas 3.5, 3.6, 3.7 and using the transmission conditions we have
that there exist a positive constant C such that

d

dt
H2(t) ≤ CγE(t) + C0C3

∫ l1

0

|Ut|
2 dx+

5k1C0

8

∫ l1

0

|Ux|
2 dx

+ K0C5

∫ l

l2

|Wt|
2 dx+

5k3l2K0

8(l − l2)

∫ l

l2

|Wx|
2 dx−

(l2 + l1)

l2 − l1
E2(t;V )

+
l2
2

(
1−K0

)
|Vt(l2, t)|

2 +
l1
2

(
1− C0

)
|Vt(l1, t)|

2

+
k2l2
2

(
1−

K0k2
k3

)
|Vx(l2, t)|

2 +
k2l1
2

(
1−

C0k2
k1

)
|Vx(l1, t)|

2.

Therefore, the choice of the constants C0 and K0 our conclusion follows. 2

Lemma 3.10 Let the functional H3(t)

H3(t) =
l2

l − l2
F3(t) + J3(t).

Then there exist a positive constant C8 such that

d

dt
H3(t) ≤ C8

∫ l

l2

|Wt|
2 dx−

k3l2
4(l − l2)

∫ l

l2

|Wx|
2 dx+ C8|W (l2, t)|

2 + C8γE(t).

Proof: Using the lemmas 3.4 and 3.7 we have that there exist a positive constant
C such that

d

dt
H3(t) ≤

(
l2

l − l2
C2 + C5

)∫ l

l2

|Wt|
2 dx−

l2k3
4(l − l2)

∫ l

l2

|Wx|
2 dx

−
k3l2
l − l2

Wx(l2, t)W (l2, t)−
k3l2
2

|Wx(l2, t)|
2

−
l2
2
|Wt(l2, t)|

2 + CγE(t).

Therefore, applying the Young’s inequality in the last term we get to ǫ > 0

d

dt
H3(t) ≤

(
l2

l − l2
C2 + C5

)∫ l

l2

|Wt|
2 dx−

k3l2
4(l − l2)

∫ l

l2

|Wx|
2 dx

+
k3
2ǫ

|W (l2, t)|
2 + CγE(t)

and hence our conclusion follows. 2



22 L. H. Fatori and C.L.Antonio

Lemma 3.11 For any δ > 0 there exist Cδ, independently of the initial data, such
that

∫ T

0

|U(l1, t)|
2 dt+

∫ T

0

|W (l2, t)|
2 dt ≤ δ

∫ T

0

E(t) dt +

+Cδ

{∫ T

0

∫ l1

0

|Ut|
2 dxdt+

∫ T

0

∫ l

l2

|Wt|
2 dxdt

}
,

for any solution (U, V,W ) of system (17)− (28), provided that T is large enough.

Proof: We argue by contradiction. Let us suppose that there exists a sequence
of initial data (U0,ν , V 0,ν ,W 0,ν) ∈ H2(Ω) ∩ V and (U1,ν , V 1,ν ,W 1,ν) ∈ V, and a
positive constant δ0 such that the corresponding solutions (Uν , V ν ,W ν) of system

Uν
tt − k1U

ν
xx + aUν

t = 2γUν
t + (a− γ)γUν , x ∈ (0, l1), t > 0, (38)

V ν
tt − k2V

ν
xx = 2γV ν

t − γ2V ν , x ∈ (l1, l2), t > 0, (39)

W ν
tt − k3W

ν
xx + bW ν

t = 2γW ν
t + (b− γ)γW ν , x ∈ (l2, l), t > 0, (40)

Uν(0, t) = Uν(l, t) = 0,

Uν(l1, t) = V ν(l1, t); k1U
ν
x (l1, t) = k2V

ν
x (l1, t), t > 0,

V ν(l2, t) =W ν(l2, t); k2V
ν
x (l2, t) = k3W

ν
x (l2, t), t > 0,

Uν(x, 0) = U0,ν(x), Uν
t (x, 0) = U1,ν(x), x ∈ (0, l1),

V ν(x, 0) = V 0,ν(x), V ν
t (x, 0) = V 1,ν(x), x ∈ (l1, l2),

W ν(x, 0) =W 0,ν(x), W ν
t (x, 0) =W 1,ν(x), x ∈ (l2, l),

satisfying ∫ T

0

|Uν(l1, t)|
2 dt+

∫ T

0

|W ν(l2, t)|
2 dt = 1 (41)

and verifying the inequality

1 > δ0

∫ T

0

Eν(t) dt+ ν

{∫ T

0

∫ l1

0

|Uν
t |

2 dxdt+

∫ T

0

∫ l

l2

|W ν
t |

2 dxdt

}

for any ν, where Eν(t) = E(t;Uν , V ν ,W ν). This implies that

∫ T

0

Eν(t) dt is bounded for any ν,

and also that

∫ T

0

∫ l1

0

|Uν
t |

2 dxdt→ 0 and

∫ T

0

∫ l

l2

|W ν
t |

2 dxdt→ 0 when ν → ∞. (42)
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Then

(Uν , V ν , W ν) is bounded in L∞(0, T ;H1(Ω)),

(Uν
t , V

ν
t , W

ν
t ) is bounded in L∞(0, T ;L2(Ω)).

Hence there exists a subsequence of (Uν , V ν ,W ν), which we denote in the same
way, such that

(Uν , V ν ,W ν)
∗
⇀ (U, V,W ) in L∞(0, T ;H1(Ω)),

(Uν
t , V

ν
t ,W

ν
t )⇀(Ut, Vt,Wt) in L2(0, T ;L2(Ω)).

Then applying the Lemma 3.1 of Kim, with a = 0 and b = 1, we get

(Uν , V ν ,W ν) → (U, V,W ) in C(0, T ;Hr(Ω)),

for r < 1. Using (41) we have

∫ T

0

|U(l1, t)|
2 dt+

∫ T

0

|W (l2, t)|
2 dt = 1. (43)

On the other hand, from the converge (42) we conclude that

Ut = 0 q.s. in (0, l1)× (0, T ), (44)

Wt = 0 q.s. in (l2, l)× (0, T ). (45)

Hence (U, V,W ) satisfy

−k1Uxx = (a− γ)γU, (46)

Vtt − k2Vxx = 2γVt − γ2V, (47)

−k3Wxx = (b− γ)γW. (48)

Multiplying (46) by U and integrating by parts from 0 to l1 we obtain

− k1Ux(l1, t)U(l1, t) + k1

∫ l1

0

|Ux|
2 dx ≤ (a− γ)γcp

∫ l1

0

|Ux|
2dx. (49)

Multiplying (48) by W and integrating by parts from l2 to l we get

k3Wx(l2, t)W (l2, t) + k3

∫ l

l2

|Wx|
2 dx ≤ (b− γ)γcp

∫ l

l2

|Wx|
2dx. (50)

On the other hand, differentiating equation (47) with respect to t and taking ϕ = Vt
we get





ϕtt − k2ϕxx = 2γϕt − γ2ϕ,
ϕ(l1, t) = ϕ(l2, t) = 0,
ϕx(l1, t) = ϕx(l2, t) = 0,
ϕ(x, 0) = ϕ0,
ϕt(x, 0) = ϕ1,
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with ϕ0 ∈ V and ϕ1 ∈ L2(l1, l2). Let us denote ṽ = e−γtϕ. Then ṽ satisfy





ṽtt − k2ṽxx = 0,
ṽ(l1, t) = ṽ(l2, t) = 0,
ṽx(l1, t) = ṽx(l2, t) = 0,
ṽ(x, 0) = ṽ0,
ṽt(x, 0) = ṽ1,

with ṽ0 ∈ V e ṽ1 ∈ L2(l1, l2). Then using Lemma 3.2 we get ṽ ≡ 0 and consequently
ϕ ≡ 0. Hence Vt ≡ 0 and from (47) we conclude that

−k2Vxx = −γ2V in (l1, l2)× (0, T ).

From this and integrating by parts we get

−γ2
∫ l2

l1

|V |2dx = −k2

∫ l2

l1

VxxV dx

= −k2

[
VxV

∣∣∣∣∣

l2

l1

−

∫ l2

l1

|Vx|
2 dx

]

= −k2Vx(l2, t)V (l2, t) + k2Vx(l1, t)V (l1, t) + k2

∫ l2

l1

|Vx|
2 dx.

Using the transmission conditions we get

− k3Wx(l2, t)W (l2, t) + k1Ux(l1, t)U(l1, t) + k2

∫ l2

l1

|Vx|
2 dx = −γ2

∫ l2

l1

|V |2dx. (51)

Summing (49), (50) and (51) we obtain

c1

∫ l1

0

|Ux|
2 dx+ k2

∫ l2

l1

|Vx|
2 dx+ c3

∫ l

l2

|Wx|
2 dx ≤ −γ2

∫ l2

l1

|V |2dx ≤ 0,

where c1 and c3 are positive constants. Therefore

∫ l1

0

|Ux|
2 dx+

∫ l

l2

|Wx|
2 dx ≤ 0. (52)

On the other side, using Gagliardo-Nirenberg’s inequality and Young’s we get

|U(l1, t)| ≤ ||U(t)||L∞(0,l1) ≤ ||U(t)||
1

2

L2(0,l1)
||U(t)||

1

2

H1(0,l1)

≤
1

2
||U(t)||L2(0,l1) +

1

2
||U(t)||H1(0,l1)

≤ C||Ux(t)||L2(0,l1),
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C is a positive constant. Using the last estimate in (52) we get

|U(l1, t)|
2 ≤ C

∫ l1

0

|Ux|
2 dx,

and same way

|W (l2, t)|
2 ≤ C

∫ l

l2

|Wx|
2 dx,

Hence, we arrive at

∫ T

0

|U(l1, t)|
2 dt+

∫ T

0

|W (l2, t)|
2 dt ≤ C

∫ T

0

∫ l1

0

|Ux|
2 dxdt+ C

∫ T

0

∫ l

l2

|Wx|
2 dxdt ≤ 0,

but this contradicts (43) and therefore our conclusion follows. 2

Now we use the above auxiliary lemmas to conclude the proof of Theorem 1.2.

Proof of Theorem 1.2 Let us introduce the following

L(t) = NE(t) +M0(H1(t) +H3(t)) +H2(t).

Then we see that for N1 and N2 large we have

N1E(t) ≤ L(t) ≤ N2E(t). (53)

Now, combining the conclusions of Lemmas 3.3, 3.8, 3.9 and 3.10 we have that
there exist a positive constant C > 0 such that

d

dt
L(t) ≤ −

(
aN − C6M0 − C7

)∫ l1

0

|Ut|
2 dx+M0C6|U(l1, t)|

2

−

(
bN − C8M0 − C7

)∫ l

l2

|Wt|
2 dx+M0C8|W (l2, t)|

2

−

(
k1
4
M0 − C7

)∫ l1

0

|Ux|
2 dx−

l2 + l1
l2 − l1

E2(t;V ) + CγE(t)

−

(
k3l2

4(l − l2)
M0 − C7

)∫ l

l2

|Wx|
2 dx.

Integrating the above identities from 0 to t, t≫ T > 0 and using the Lemma 3.11
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we obtain

L(t)− L(0) ≤ −

(
aN − C6M0 − C7

)∫ t

0

∫ l1

0

|Ut|
2 dxds

−

(
k1
4
M0 − C7

)∫ t

0

∫ l1

0

|Ux|
2 dxds

−

(
bN − C8M0 − C7

)∫ t

0

∫ l

l2

|Wt|
2 dxds

−

(
k3l2

4(l − l2)
M0 − C7

)∫ t

0

∫ l

l2

|Wx|
2 dxds

+kδ

∫ t

0

E(s) ds+ kCδ

∫ t

0

∫ l1

0

|Ut|
2 dxds+ kCδ

∫ t

0

∫ l

l2

|Wt|
2 dxds

−
l2 + l1
l2 − l1

∫ t

0

E2(s;V ) ds+ Cγ

∫ t

0

E(s) ds

where k = max

{
M0C6,M0C8

}
. Fixing δ and γ small, we can take N and M0

sufficiently large, with N >> M0 so there is a positive constant N0 such that

L(t) < L(0).

Therefore, from (53) we arrive at

E(t) ≤ K0E(0), (54)

where K0 = N2/N1. Now we see that there exist a positive constant K1 > 0
satisfying

E(t;u, v, w)e2γt ≤ K1E(t).

Using the above inequality and (54) we conclude that

E(t;u, v, w)e2γt ≤ C0E(0),

where C0 = K1K0. Therefore

E(t;u, v, w) ≤ C0E(0)e
−2γt.

This ends the proof of Theorem 1.2. 2

Remark. We can extend the previous theorem to the weak solutions by using
simple density argument and the laws of semi-continuity for the energy functional.
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