
Bol. Soc. Paran. Mat. (3s.) v. 28 1 (2010): 41–49.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/spm doi:10.5269/bspm.v28i1.10813

The difference Orlicz space of χ

N.Subramanian, S.Krishnamoorthy and S. Balasubramanian

abstract: This paper is devoted to a study of the general properties of χM in

respect of the difference sequence space χM (∆).
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1. Introduction

A Complex sequence, whose kth term is xk is denoted by {xk} or simply x. Let
φ be the set of all finite sequences. A sequence x = {xk} is said to be analytic if

supk |xk|
1/k

< ∞. The vector space of all analytic sequences will be denoted by Λ.

A sequence x = {xk} is said to be entire if limk→∞ |xk|
1/k

= 0. The vector space
of all entire sequences will be denoted by Γ. A sequence x is called gai sequence if

limk→∞ (k! |xk|)
1/k

= 0. The vector space of all gai sequences will be denoted by
χ. Kizmaz [19] defined the following difference sequence spaces

Z (∆) = {x = (xk) : ∆x ∈ Z}

for Z = ℓ∞, c, c0, where ∆x = (∆x)
∞
k=1 = (xk − xk+1)

∞
k=1 and showed that these

are Banach spaces with norm ‖x‖ = |x1| + ‖∆x‖∞ . Later on Et and Colak [20]
generalized the notion as follows:
Let m ∈ N, Z (∆m) = {x = (xk) : ∆

mx ∈ Z} for Z = ℓ∞, c, c0 where m ∈
N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆

mx = (∆mxk)
∞
k=1 =

(

∆m−1xk −∆m−1xk+1

)∞

k=1
.

The generalized difference has the following binomial representation:

∆mxk =
∑m

γ=0 (−1)
γ

(

m
γ

)

xk+γ ,

They proved that these are Banach spaces with the norm

‖x‖∆ =
∑m

i=1 |xi|+ ‖∆mx‖∞.
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Orlicz [1] used the idea of Orlicz function to construct the space (LM ). Lin-
denstrauss and Tzafriri [2] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space ℓM contains a subspace isomorphic
to ℓp(1 ≤ p < ∞). Subsequently different classes of sequence spaces were defined
by Parashar and Choudhary[3], Mursaleen et al.[4], Bektas and Altin[5], Tripathy
et al.[6], Rao and subramanian[7],and many others. The Orlicz sequence spaces
are the special cases of Orlicz spaces studied in [8].

An Orlicz function is a function M : [0,∞) → [o,∞) which is continuous, non-
decreasing and convex with M(0) = 0,M(x) > 0, for x > 0 and M(x) → ∞ as
x → ∞. If convexity of Orlicz function M is replaced by M(x+y) ≤ M(x)+M(y),
then this function is called modulus function, introduced by Nakano[18] and further
discussed by Ruckle[9] and Maddox[10], and many others.

An Orlicz function M is said to satisfy ∆2− condition for all values of u, if there
exists a constant K > 0, such that M(2u) ≤ KM(u)(u ≥ 0). The ∆2− condition
is equivalent to M(ℓu) ≤ KℓM(u), for all values of u and for ℓ > 1. Lindenstrauss
and Tzafriri[2] used the idea of Orlicz function to construct Orlicz sequence space

ℓM =

{

x ∈ w :

∞
∑

k=1

M

(

|xk|

ρ

)

< ∞, for some ρ > 0

}

. (1)

where w = {all complex sequences} . The space ℓM with the norm

‖x‖ = inf

{

ρ > 0 :

∞
∑

k=1

M

(

|xk|

ρ

)

≤ 1

}

(2)

becomes a Banach space which is called an Orlicz sequence space.For M(t) =
tp, 1 ≤ p < ∞, the space ℓM coincide with the classical sequence space ℓp.

For 0 ≤ r ≤ 1, a non-void subset U of a linear space is said to be absolutely r−
convex if x, y ∈ U and |λ|

r
+ |µ|

r
≤ 1 together imply λx+µy ∈ U, for λ, µ ∈ C. It is

clear that if U is absolutely r−convex, then it is absolutely t− convex for t < r. A
linear topological space X is said to be r−convex if every neighbourhood of 0 ∈ X
contains an absolutely r− convex neighbourhood of 0 ∈ X. The r− convexity for
r > 1 is of little interest, since X is r− convex for r > 1 if and only if X is the only
neighbourhood of 0 ∈ X (See Maddox and Roles [21]).
Given a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0, ...} .
s(k) = (0, 0, ..., 1/k!, 0, 0, ...) , (1/k!) in the kth place and zero’s else where.

If X is a sequence space, we define:
(i)X

′

= the continuous dual of X.
(ii)Xα = {a = (ak) :

∑∞
k=1 |akxk| < ∞, foreachx ∈ X} ;

(iii)Xβ = {a = (ak) :
∑∞

k=1 akxk is convergent, foreachx ∈ X} ;
(iv)Xγ = {a = (ak) : supn |

∑n
k=1 akxk| < ∞, foreachx ∈ X} ;

(v)Let X be an FK-space⊃ φ. Then Xf =
{

f(δ(n)) : f ∈ X
′
}

.

Xα, Xβ , Xγ are called the α−(or Kö the-T öeplitz)dual of X, β− (or generalized
Kö the-T öeplitz)dual of X, γ−dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y
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then Y µ ⊂ Xµ, for µ = α, β, or γ.
An FK-space(Frechet coordinate space) is a Frechet space which is made up of
numerical sequences and has the property that the coordinate functionals pk(x) =
xk (k = 1, 2, ...) are continuous. We recall the following definitions[see [14]]. An
FK-space is a locally convex Frechet space which is made up of sequences and
has the property that coodinate projections are continuous. A metric space (X, d)
is said to have AK (or sectional convergence) if and only if d

(

x(n), x
)

→ 0 as
n → ∞[see 14]. The space is said to have AD or be an AD space if φ is dense in
X. We note that AK implies AD by [11].

2. Definitions and Preliminaries

Throughout the paper w,χM , ΓM and ΛM denote the spaces of all, Orlicz space
of gai sequences, Orlicz space of entire sequences and Orlicz space of bounded
sequences respectively. In this paper we define and study the Orlicz difference
sequence spaces of gai sequences, entire sequences and analytic sequences. The idea
of difference sequences was first introduced by Kizmaz[19]. Write ∆xk = xk−xk+1,
for k = 1, 2, 3, · · · .
Let w denote the set of all complex sequences x = (xk)

∞
k=1 ,∆ : w → w be the

difference operator defined by ∆x = (xk − xk+1)
∞
k=1 , and M : [0,∞) → [0,∞) be

an Orlicz function. Define the sets

χM =

{

x ∈ w :

(

M

(

(k!|xk|)
1
k

ρ

))

→ 0ask → ∞for someρ > 0

}

;

ΓM =

{

x ∈ w :

(

M

(

|xk|
1
k

ρ

))

→ 0ask → ∞for someρ > 0

}

;

ΛM =

{

x ∈ w : supk

(

M

(

|xk|
1
k

ρ

))

< ∞for someρ > 0

}

Define the sets χM (∆) = {x ∈ w : ∆x ∈ χM} ; ΓM (∆) = {x ∈ w : ∆x ∈ ΓM} ; ΛM (∆) =
{x ∈ w : ∆x ∈ ΛM} The space χM (∆) is a metric space with the metric

d (x, y) = inf
{

ρ > 0 : supk

(

M
(

(k!|∆xk−∆yk|)
1/k

ρ

))

≤ 1
}

for all x = {xk} and y = {yk} in χM (∆) . The space ΛM (∆) , ΓM (∆) is a metric
space with the metric

d (x, y) = inf
{

ρ > 0 : supk

(

M
(

|∆xk−∆yk|
1/k

ρ

))

≤ 1
}

for all x = {xk} and y = {yk} in ΓM (∆) , ΛM (∆) .

Definition 2.1 A sequence space E is said to be solid or normal if (αkxk) ∈ E
whenever (xk) ∈ E and for all sequences of scalars (αk) with |αk| ≤ 1 for all k ∈ N.

Lemma 2.1 (See [14, Theorem 7.2.7]). Let X be an FK-space⊃ φ. Then (i)Xγ ⊂
Xf (ii)if X has AK, Xβ = Xf ; (iii)if X has AD, Xβ = Xγ .
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3. Main Results

Proposition 3.1 χM (∆) ⊂ ΓM (∆) .

Proof: Proof is easy, so omitted.

Proposition 3.2 χM (∆) has AK.

Proof: Let x ∈ χM (∆) so that {∆xk} ∈ χM . Then limk→∞

(

M
(

(k!|∆xk|)
1/k

ρ

))

=

0 and so that

sup
k≥n+1

(

M

(

(k! |∆xk|)
1/k

ρ

))

→ 0 as n → ∞ (3)

d
(

x, x[n]
)

= inf
{

ρ > 0 : supk≥n+1

(

M
(

(k!|∆xk|)
1/k

ρ

))

≤ 1
}

→ 0 as n → ∞, by

using (3).
⇒ x[n] → xasn → ∞, implying that χM (∆) has AK. This completes the proof.

Proposition 3.3 χM (∆) is not solid.

Example: Consider (xk) = (1) ∈ χM (∆) . Let αk = (−1)
k
, then (αkxk) /∈

χM (∆). Hence χM (∆) is not solid.

Proposition 3.4 Let M be an Orlicz function which satisfies ∆2− condition.
Then χ (∆) ⊂ χM (∆).

Proof: Let
x ∈ χ (∆) (4)

Then (k! |∆xk|)
1/k

≤ ǫ for sufficiently large k and every ǫ > 0. But then, by taking
ρ ≥1/2.
{

M
(

(k!|∆xk|)
1/k

ρ

)}

≤
(

M
(

ǫ
ρ

))

≤ (M (2ǫ)) (because M is non-decreasing)

⇒
{

M
(

(k!|∆xk|)
1/k

ρ

)}

≤ K (M (ǫ)) by ∆2− condition, for some K > 0.

≤ ǫ

⇒
{

M
(

(k!|∆xk|)
1/k

ρ

)}

→ 0ask → ∞, by defining M (ǫ) < ǫ
K . Hence

x ∈ χM (∆) . (5)

Hence (4) and (5) we get χ (∆) ⊂ χM (∆) . This completes the proof.

Proposition 3.5 If M is a Orlicz function, then χM (∆) is a linear space over
the set of complex numbers C.

Proof: Let x, y ∈ χM (∆) and α, β ∈ C. Let x, y ∈ χM (∆) . Then there exist
positive real numbers ρ1 and ρ2 such that

(

M

(

(k! |∆xk|)
1/k

ρ1

))

→ 0ask → ∞ (6)
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(

M

(

(k! |∆yk|)
1/k

ρ2

))

→ 0 as k → ∞ (7)

Let ρ3 = max {2Aρ1, 2Bρ2} , where A = supk |α|
1/k

and B = supk |β|
1/k

. Since M
is a non decreasing modulus function, we have
(

M
(

(k!|α∆xk+β∆yk|)
1/k

ρ3

))

≤ 1
2

(

M
(

(k!|∆xk|)
1/k

ρ1

))

+ 1
2

(

M
(

(k!|∆yk|)
1/k

ρ2

))

→ 0, as k → ∞ by (6)and (7).
So (αx+ βy) ∈ χM (∆) . Therefore χM (∆) is linear. This completes the proof.

Definition 3.1 Let p = (pk) be any sequence of positive real numbers. Then we
define

χM (∆, p) =
{

x = {xk} :
(

M
(

(k!|∆xk|)
1/k

ρ

))pk

→ 0ask → ∞
}

when pk = p, a constant for all k ∈ N, then χM (∆, p) = χM (∆) .

The following result can be proved by using standard techniques, so we state
the result with out proof.

Theorem 3.1 (a) Let 0 < infpk ≤ pk ≤ 1. Then χM (∆, p) ⊂ χM (∆)
(b) Let 1 ≤ pk ≤ suppk < ∞. Then χM (∆) ⊂ χM (∆, p)

(c) Let 0 < pk ≤ qk and let
{

qk
pk

}

be bounded. Then χM (∆, q) ⊂ χM (∆, p).

Theorem 3.2 χM (∆) is a r convex for all r > 0, where 0 ≤ r ≤ infpk. Moreover
if pk = p ≤ 1 for all k ∈ N, then χM (∆, p) is p− convex.

Proof: Let x ∈ χM (∆, p) . But if r ∈ (0, infkpk) then clearly r < pk for all k. Let
g∗ (x) define under the metric

g∗ (x) = inf
{

ρ > 0 : supk

(

M
(

(k!|∆xk|)
1/k

ρ

)pk
)

≤ 1
}

Since r ≤ pk ≤ 1, for all k > k0.
g∗ (x) is subadditive: Further, for 0 ≤ |λ| ≤ 1. |λ|

pk ≤ |λ|
r
, for all k > k0. There-

fore, for each λ we have g∗ (λx) ≤ |λ|
r
.g∗ (x) . Now, for 0 < δ < 1,

U = {x : g∗ (x) ≤ δ} , which is an absolutely r− convex set, for |λ|
r
+ |µ|

r
≤ 1 and

x, y ∈ U, Now
g∗ (λx+ µy) ≤ g∗ (λx) + g∗ (µy)

≤ |λ|
r
g∗ (x) + |µ|

r
g∗ (y)

≤ |λ|
r
δ + |µ|

r
δ

≤ (|λ|
r
+ |µ|

r
) δ

≤ δ.
If pk = p ≤ 1 for all k ∈ N, then U = {x : g∗ (x) ≤ δ} , is an absolutely p− convex
set. This can be obtained by a similar analysis and therefore we omit the details.
This completes the proof.

Theorem 3.3 (χM (∆))
β
= Λ.
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Proof: Step 1: χM (∆) ⊂ ΓM (∆) by Proposition 4.1; then (ΓM (∆))
β
⊂ (χM (∆))

β
.

But we have (ΓM (∆))
β
= Λ.

Λ ⊂ (χM (∆))
β

(8)

Step 2: Let y ∈ (χM (∆))
β
; f (x) =

∑∞
k=1 xkyk with x ∈ χM (∆) . We recall that

s(k) has 1
k! in the kth place and zero’s elsewhere, with

x = s(k),
{

M
(

(k!|∆xk|)
1/k

ρ

)}

=
{

0, 0, · · · ,M
(

(1)1/k

ρ

)

, 0, · · ·
}

which converges to

zero. Hence s(k) ∈ χM (∆) . Hence d
(

s(k), 0
)

= 1. But |yk| ≤ ‖f‖ d
(

s(k), 0
)

< ∞
for all k. Thus (yk) is a bounded sequence and hence an analytic sequence. In other
words y ∈ Λ.

(χM (∆))
β
⊂ Λ (9)

From (8) and (9) we obtain (χM (∆))
β
= Λ. This completes the proof.

Proposition 3.6 (χM (∆))
µ
= Λ for µ = α, β, γ, f

Step 1: (χM (∆)) has AK by Proposition 4.2. Hence by Lemma 3 (i) we get

(χM (∆))
β
= (χM (∆))

f
. But (χM (∆))

β
= Λ Hence

(χM (∆))
f
= Λ. (10)

Step 2: Since AK implies AD. Hence by Lemma 3(iii) we get (χM (∆))
β

=
(χM (∆))

γ
. Therefore

(χM (∆))
γ
= Λ. (11)

Step 3:(χM (∆)) is not normal by Proposition 4.3. Hence by Proposition 2.7 [13].
We get

(χM (∆))
α
6= (χM (∆))

β
= Λ (12)

From (10),(11) and (12) we have (χM (∆))
α
6= (χM (∆))

β
= (χM (∆))

γ
= (χM (∆))

f
=

Λ

Proposition 3.7 The continuous dual space of χM (∆)is Λ. In other words [χM (∆)]
∗
=

Λ.

Proof: We recall that sk has (1/k!) in the kth place and zero’s elsewhere with
x = sk,

{

M

(

(k! |∆xk|)
1/k

ρ

)}

=

{

M (1!0)
1/1

ρ
,
M (2!0)

1/2

ρ
, · · ·

M ((k − 1)!0)
1/k−1

ρ
,
M (k!(1− 0))

1/k

ρ
,
M ((k + 1)0)

1/k+1

ρ
, · · ·

}

=

{

0, 0, · · · ,
M (1)

1/k

ρ
, 0, · · ·

}
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Hence sk ∈ χM (∆) .f (x) =
∑∞

k=1 ∆xkyk with ∆x ∈ χM (∆) and f ∈ [χM (∆)]
∗
,

where [χM (∆)]
∗

is the continuous dual space of χM (∆) . Take x = s(k) ∈ χM (∆) .
Then

|yk| ≤ ‖f‖ d
(

sk, 0
)

< ∞ for all k.

Thus (yk) is a bounded sequence and hence an analytic sequence. In other words,
y ∈ Λ. Therefore [χM (∆)]

∗
= Λ. This completes the proof.

Proposition 3.8 χM (∆) is a complete metric space under the metric

d (x, y) = inf
{

ρ > 0 : supk

(

M
(

(k!|∆xk−∆yk|)
1/k

ρ

))

≤ 1
}

where x = (xk) ∈ χM (∆) and y = (yk) ∈ χM (∆) .

Proof:Let
{

x(n)
}

be a cauchy sequence in χM (∆) . Then given any ǫ > 0 there

exists a positive integer N depending on ǫ such that d
(

x(n), x(m)
)

< ǫ, for all n ≥ N
and for all m ≥ N. Hence

d (x, y) = inf
{

ρ > 0 : supk

(

M
(

(k!|∆xk−∆yk|)
1/k

ρ

))

≤ 1
}

< ǫ for all n ≥ N and

for all m ≥ N. Consequently

{

M

(

(

k!
∣

∣

∣
∆x

(n)
k

∣

∣

∣

)

ρ

)}

is a Cauchy sequence in the

metric C of complex numbers. But C is complete. So,
{

M

(

(

k!
∣

∣

∣
∆x

(n)
k

∣

∣

∣

)

ρ

)}

→
{

M
(

(k!|∆xk|)
ρ

)}

, as n → ∞. Hence there exists a positive

integer n0 such that inf
{

ρ > 0 : supk

(

M
(

(k!|∆xk−∆yk|)
1/k

ρ

))

≤ 1
}

< ǫ for all

n ≥ n0. In particular, we have

{

M

(

(

k!
∣

∣

∣
∆x

(n)
k −∆xk

∣

∣

∣

)1/k

ρ

)}

< ǫ. Now

{

M
(

(k!|∆xk|)
1/k

ρ

)}

≤

{

M

(

(

k!
∣

∣

∣∆xk−∆x
(n0)

k

∣

∣

∣

)1/k

ρ

)}

+

{

M

(

(

k!
∣

∣

∣∆x
(n0)

k

∣

∣

∣

)1/k

ρ

)}

<

ǫ+ 0 as k → ∞. Thus
{

M
(

(k!|∆xk|)
1/k

ρ

)}

< ǫ as k → ∞. That is (xk) ∈ χM (∆) .

Therefore, χM (∆) is a complete metric space. This completes the proof.

Lemma 3.1 (14, Theorem 8.6.1) Y ⊃ X ⇔ Y f ⊂ Xf where X is an AD-
space and Y be an FK-space.

Proposition 3.9 Let Y be any FK-space ⊃ φ. Then Y ⊃ χM (∆) if and only if
the sequence s(k) is weakly analytic.

Proof: The following implications establish the result.
Y ⊃ χM (∆) ⇔ Y f ⊂ (χM (∆))

f
, since χM (∆) has AD and by Lemma 4.13.

⇔ Y f ⊂ Λ, since (χM (∆))
f
= Λ.

⇔ for each f ∈ Y
′

, the topological dual of Y.f
(

s(k)
)

∈ Λ.

⇔ f
(

s(k)
)

is analytic.

⇔ s(k) is weakly analytic.
This completes the proof.
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