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Eigenvalues of an Operator Homogeneous at the Infinity
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ABSTRACT: In this paper, we show the existence of a sequences of eigenvalues for
an operator homogenous at the infinity, we give his variational formulation and we
establish the simplicity of all eigenvalues in the case N = 1. Finally we study the
solvability of the problem

A(u) = —div(A(z,Vu)) = f(z,u)+h in Q,
u = 0 on 0f,
as well as the spectrum of
Gh(w) = ImfulP~2u in Q,
u = 0 on 09,
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1. Introduction

Consider the quasilinear problem

A(u) = —div(A(z,Vu)) = f(z,u)+h inQ,
v = 0 on 012,
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where Q is a bounded domain in RY, N > 1, f : Q x R =R is a Carathéodory
function, h € W17 (Q) an arbitrary function, p’ is the Holder conjugate exponent
of p, (1 < p < oo) and A(z,€) = (Ai(w,€))1<i<n such that A;(z, &) : @ x RY - R
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are functions satisfying the usual growth conditions. We require some conditions
on the functional A; such that the operator A(u) will be homogenous at the infinity
and derive from a potential G(u) (i.e.,G’' = A). For example, for € > 0, A(u) =
—Aju = —div((e + |Vu|2)¥Vu) is an homogenous operator at the infinity and
Gh(u) = —Apu = —div(|VulP~2Vu) is an associated homogenous operator. The
Problem (1) has been studied by Anane in [2], he showed the existence of the
weak solutions of the problem (1) with conditions of nonresonance under (the first
eigenvalue of the operator .A). This paper is organized as follows. In section 2, we
recall some results about our operators. In section 3, we show (see Theorem 3.1)
the existence of sequences of eigenvalues A, (m, Q) for the following problem

Gy(u) = ImlulP™?u  in Q, @)
u = 0 on 01},

where G{, (not necessarily equal to —A,) is an associated homogenous operator
of A, Gy is a potential associated to G, p > 1 and m € MT(Q) = {m €
L>(Q); meas{x € Q;m(z) > 0} # 0} is the weight. In section 4, we give (see
Proposition 4.1) the variational formulation of A, (m, ) and some properties. In
section 5 we show a Theorem of nonresonance (see Theorem (5.1)). In section
6 we study (see Theorem 6.3) the Fredholm Alternative for the operators A and
G (ie., if A does not belong to the spectrum of G{), then the problem (1) ( with
f(x,u) = Am|u|P~2u), and the following problem

Gi(u) = ImlulP~2u+h in Q, ()
u = 0 on 02,

admit a solution for all h € W’l’p/(Q). Finally in section 7, in the case N = 1,
we establish the simplicity of all eigenvalues (the simplicity of the first eigenvalue

remains open in the general case) and we study the problem (1), when |£ ‘(ZD,"Z)S
and % are situated between two consecutively eigenvalues, where F'(z,s) =

Js fz,t)dt ( see Theorem 7.3 ).
2. Preliminaries

Consider the problem (1) with A(z,&) = ((Ai(z,§))1<i<n, satisfies the hy-
potheses:
(Hy) A; : QxRN — Ris a Carathéodory function and there exist ¢ > 0, k € L?' (Q)
such that
|A; (2, 8)| < cléP™ + k(x), V¢ € RY Jaex € Q. (4)
(Hy) There exists a function a : Q x RV — R satisfies:
i) a(z,.) : RN — R is continuously differentiable a.e. = € Q and %‘ZQ =

ii) a(x,.) : RN — R is convex and there exists § > 0 such that

a(x, &) > 0lEP, VEERY, ae z Q. (5)
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(H3) There exists a Carathéodory function ag : Q x RN — R, where ag(z,.) is even
and strictly convex such that

la(z, t€) — tPag(z, £)| <PC(E)(|EP + ki (x)), VE€RN £ >0, ae z€Q,
for a certain function C' of t such that t_lgp C(t) =0 and k; € L*(Q).
(Hy) ao(z,.) : RN — R is continuously differentiable and

1. There exist ¢ > 0, ¥’ € L” () such that |%§5)| < gt 4+ K (2), V€ €
RN, a.e.x € Q.

2. YN 2l > Colelp — Ko(x), for all @ € ©, € € RV with Cp > 0 some
constant and Ky € LY(Q).

Remarks 2.1 1. From (H1) the opemtor A WP (Q) — W l(Q) A(u) =
—div(A(z,Vu)), with ( = [o A(z,Vu)Vv = S fQ (z,Vu) 61 ,

is well defined, contmuous on WO1 Q).
2. Let the functional G : WP (Q) — R defined by G(u = [qa(z, Vu)dz. Under

the hypotheses (Hy), (Hz) and (Hs), G is well deﬁned weakly lower semi-
continuous, continuously differentiable and G'(u) = A(u).

3. we consider the functional Gy : Wy () — R: Go(u = [, ao(z, Vu)dz. By
the hypotheses (Hy), (Hz2) and (Hs), the operator Go is well defined contin-
uwous and weakly lower semicontinuous.

Proposition 2.1 Assume that (Hy), (H2) and (Hs) hold. Then aq is unique and
verifies the following conditions

1. ag(z, 7€) = |r|Pag(x,§), for all ¢ € RN and r € R.

2. We have  lim €00 — o 4nd Gy(ru) = |r[PGo(u), for all r € R.

lull oo Iy

8. Go(u) > ol|ullf ,, for all u € WP (), where |Jul], = (Jo IVu(z |pd:1c)% the
norm of Wy (Q) and § is defined in (5).

4. If (Hy) holds, then Gy is contmuously differentiable and Gy satisfies the (ST)
property, i.e., if u, — u weakly in WP (Q) and lim sup(GO(un) Up —uy <0,

n—-+oo
then w, — u strongly in W, *()).
Denoted Daan (. €)
ao(z,
—og — Al@8), Ao, = (A Oizicn. (6)

such that Gl - Wy* — Wo_l’pl(Q) 1 Gy(u) = —div(Ao(z, Vu), is the unique ho-
mogenous operator associated to the operator A= G'.
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Proof:
1. By (Hs), it is clear that ag(z,£) = lim % e.a.x € Qand for all £ € RV,

t——+oo
this proves that ag is unique. For r > 0, ap(x,rf) = r? lim ale.rte)
totoo (TDP
ag(z, &) = rPag(x,§). For r < 0, we have ag(x, —1&) = (—r)Pap(x, &), since

ao(z,.) is even, thus ag(z, 7€) = |r|Pao(x, §).

SO

2. Results by 1.

3. From (Hj3), we obtain a(x, tVu) —tPC(t)(|VulP + k1 (z)) < tPao(x, Vu) and by
(5), we conclude that (§ — C(t))|Vul|P < ap(z, Vu), thus 6|Vul? < ag(z, Vu),
consequently Go(u) > d|[u|[} , for all u € W, P ().

4. From 1) of (Hy), Go is continuously differentiable and we have (G (u),v) =
SN Jo Az, Vu) £&. Since Go is convex strictly in &, then (Gf(u) —
Gh(v),u —v) > 0 for all u,v € Wy P(Q) with u # v. The conditions 1),
2) of (Hy) and the fact that (G} (u) — Gh(v),u—v) > 0 for all u,v € WyP(Q),
(u # v) imply that G|, satisfies the (S1) property (see |7| pp,25).

O

In the continuation we consider that the hypotheses (Hy), (H2), (Hs) and (Hy)
are verified.

3. Eigenvalues Problem

Consider the eigenvalues problem, find (u, \) € W, *(2) \ {0} x R, such that
/Ao(a:,Vu)Vvdx = )\/ m|ulP~2uvdzr (7)
Q Q

for all v € W, P(Q), where Ay(z, Vu) = (A(x, Vu))i<i<n, is defined in (6).
Consider B : WP (Q) — R: B(u) = %fﬂ mlu|Pdz.

Lemma 3.1 If (u,\) is a solution of (7), then v = [m]%u is a critical point
of @ = WyP(Q) = R, with ®(v) = G2(v) — B(v), corresponding to the critical
value ¢ = —&. Reciprocally if (u # 0) is a critical point of ® corresponding to the
critical value ¢, then (u, \) is a solution of (7), where A = Qh.

Proof: Let (u,A) be a solution of (7), from Proposition (2.1) we conclude that
1

for all 5 € R*, Bu is also eigenvalue corresponding to A. For 5 = [m]%,
v = Bu verifies Go(v) = 5%, thus A = m and B(v) = 31z. Consequently
®'(v) = 0 and ®(v) = —p5. On the other hand if u # 0 is eigenvalue of ®
corresponding to the critical value ¢, then ®(u) = —G3(u) = ¢, thus Go(u) = /—¢
and (G{(u),v) = ﬁ(u)(B’ u),v), for all v € WyP(Q). O



E1GENVALUES OF AN OPERATOR HOMOGENEOUS AT THE INFINITY 55

Theorem 3.1 The problem (7) admits an increasing positive sequences of the
eigenvalue (A )nens, with lirJrrl Ap, = +00.
n—-+0o0o

Proof: Throughout this paper we put

C, = inf sup ®(v), 8
KeAn(w)veg () ®

where
An(y) ={K C Wol’p(Q) \ {0}; K compact, symmetric, and v(K) > n}, 9)

with (K) indicates the genus of K (see [9]). As ® is even and of C, to prove
the existence of the sequences (A,)n>1, it is sufficient to applied the fundamental
multiplicity theorem (see [§]), i.e,.( to show that: (i) @ is bounded below, (ii) ®
satisfies the Palais—Smale condition, (iii) for all n € N*, there exists K € A, (¥)
such that sup,cr ®(v) < 0. In fact (i), for all v € Wy*(Q), we have ®(v) >
80l — Ellmlloclo]lp, thus @(v) > [[ullf,(6[[vll} , = C7 4lIml|oc), where C is
the Sobolev constant. Hence ® is bounded from below and coercive. (ii) ® satisfies
the Palais-Smale condition; indeed, let (u,) be a sequences of Wy'*(€) such that
(®(uy)) is bounded and ®'(u,) — 0 in W, P(Q). Since & is coercive, (uy) is
bounded. It follows that there exists a subsequences, still denoted by (u,), such
that w, — u in WP(Q), and u, — u in LP(Q), on the other hand |ju,||;, is
bounded in R, hence ||up|l1,, = @ € R, with a > 0. If a« = 0, we conclude that
u, — 0 in WyP(Q). If a > 0, there exists ng € N such that |[uy]|[1, > § for all
n > ng, thus Go(un) > 6(5)?, for all n > ng. Now, for all n > ng

'(un) _ ) — B'(un
2Go(uny ~ Coltn) = 5y (10)

Since u, — u weakly in Wy*(Q2), by (10), we have

1 ! = (G (up), Un — u —# "), Uy, — u
m<® (un), un — u) = (Go(un), un ) 2Go(un) (B'(un), un )

for all n > ng. on account of the fact that B’(u,) is bounded in L* (Q), then we

obtain lim (G{(up),u, —u) = 0, hence limsup(G{(u,), u, — u) < 0, and since
n—+00 n——+oo

{ posses the (ST) property, then u,, — u. (iii) Since meas(Q)™ = meas{z €
Q;m(x) > 0} > 0, then for all n € N*, there exist uy,us,...u, € Wy*(Q), such
that suppu; Nsuppu; =0 if i # j, and B(u;) = 1. Let F,, = span{ui, ug,...u,} be
the subspace of Wy* (), spanned by {uy,ug,...u,}. For allv = Y""1 au; € Fy,
we have B(v) = > '_1 |a;|[PB(u;) = >_i_} |ai[P, hence the function: v — B(v)? isa
norm on F,,, therefore there exist a1, 81 > 0 such that a3 A (v) < B(v) < 814 (v),
where A;(v) = %||v\|’1',p.

Let A = {v € WP (Q); Go(v) < %H’UHZLP,R > §}. For all v € AN F,, we have
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o }. For

%Gy (v) < B(v) < 2Go(v). Now let K = {v € F, N A; <

all v € K, we have

74R2 <B()

®(v) = G%(v) — B(v),
<&p () B(v),
al2 Oé
< 9r? ~ 1RZ

Hence for all v € K, ®(v) < 0 and y(K) > n, consequently C,, is a critical value

and A\, = ﬁ is an eigenvalue. Now we prove that nEIJIrloo Cy, =0 (see also [1]).
O

It suffices to show that, for all £ > 0, there exists n. > 1 such that sup ®(v) >
veEK

—¢, for all K € A,,_(v), with K C E Where E = {ve W,"(Q);®(v) < 0}. Since
® is coercwe then E is bounded in W0 P(Q). Tt results from it, by using the fact
that I : WyP(Q) — LP(Q) is compact that for all n > 0, there exist a subspace
F, C LP(Q ) and I, : E — F,, continuous such that bup [lv— I, (v)||, < n. Putting:

Jn(v) = (I (v) — I,(—v)), for all v € E. It is clear that Jy, is well defined, odd,

continuous and satisfies: sup ||v — J,,(v)||, < n. Lets € > 0, since E is compact in
veE

LP(€2) then there exists n. > 0 such that |B(v) — B(Jp, (v))| < § forallv € E. Let
dc > 0 such that B(v) < £ for ||v||, < J.. Thus for all v € E, with ||J,_(v)]||, < I,
we have B(v) < |B(v) — B(Jn, (v))| + |B(Jn_ (v))]| < e. This last inequality implies
that for each compact K symmetric, with K C EnN {v e W} P(Q); B(v) > ¢}, we
have J,_(K) C {v € F,_;||v||, > d:}. Since J,_(K) is symmetric and compact in
L?(Q), then F(J,_(K)) < dim(F,_), where ¥(K') indicates the genus in L?(Q) of
K’. Finally since J,_ is continuous and odd then v(K) < F(J,_(K)) < dim(F,_).
Consequently for all compact symmetric K C E such that v(K) > dim(F,_) + 1,
there exists vg € K such that inf B(v) < B(vg) < € and since ®(v) > —B(v), then

we have sup ®(v) > — 1nf B( ) —e, the proof is complete.
veK

4. Variational Formulation

Lemma 4.1 Let S, = {v € Wy (Q); pGo(v) = 1}, and S = {v € W, P(Q); o}, =
1}, then S, and S are homeomorphic by an odd homomorphism, more precisely

U:5, =S5 : ¥@)= ol

Proof: Consider ¥ : S, — S,v — W ¥ is an odd and continuous function.
P

’

"o G G
Suppose that W(v) = ¥(v) ie., - = IIU'UHlp thus ﬂvﬁ(v) = 1|7| OI(‘U) therefore
W = W hence v = v, then ¥ is an injection. Let u € S and putting
1.p 1,p
v=—="2+ €8, v t:8 S, :u— —%— this proves that ¥ is a
(pGo(u))? (pGo(u))?

surjection and ¥~! is continuous. O
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Lemma 4.2 There exist a, 8 > 0 such that for allv € Sp, we have o < [[v][} , <

3.

Proof: For all v € W, *(Q), we have Go(v) > d[|v[[f , in particular [[o]} < %,

for all v € S,. There exists a > 0, such that a < [[v|[} , for all v € S,,, otherwise,

for all n > 0, there exists v, € S, such that = > [[v,][f ) thus lim v, =0, but
> n—-+oo

pGo(v,) = 1, this contradicts the continuity of Gy, finally there exist «, 8 > 0,
such that for all v € S, a < [[v]|f , < B. O

Putting
T,.(7) = {K c Wy?(2)\{0}; K compact, symmetric, of S, and v(K) > n}. (11)

Proposition 4.1 For alln > 1

1
= sup inf/mupdx7 12)
A(Y) Ker(v) v€K Jo e (

where Ty, (7) is defined in (11).

Proof: Putting d, = sup inf [, m[v[Pdz, Previously we show that d,, is well
Ker,(y) ve€K

defined and strictly positive. Let F;, the subspace (defined in (iii) proof of theorem

(3.1)), K = {u € F,,|lull1, = 1} and v € K = ¥"(K), ¥(v) = u, (Lemma

(4.1)) so Tl = U Jom|ulPdz = m Jomlv[Pdz, where v € Kanduec K =

U(K). Since u € K C F,,(B and A, are equivalent), then there exists ¢ > 0

such that c%||u|\17p < %fﬂm\uﬁ’dx < $||u||17p and v € K C S, hence o <
|[v][7 , (Lemma (4.2) ). Consequently 0 < ac < [|v|[} , [, m|ulPdz = [, m|v|Pdz,

this result shows that inf [, m|v[’dz > ac, finally d,, > 0. On one hand, let
€K

K eTu(y), and i : K - K; = {tv/v € K,t > 0} : i(v) = tv, i is an odd

continuous homomorphism. By definition of C,,, the number defined in (8), for

all t > 0, we have ﬁ > 4;2%(% JomlulPda — t:—;) For t = (%)%, we obtain

(5= + d2)5— > inf [, m|uPdz, hence A\, < d;'. On the other hand r =
n n ueK n
sup min(B(v) — G§(v)), where A, (7) is defined in (9). For 0 < e < 5%, there

KA, (y) vER z

exists a compact K. € A,(y), such that B(v) > 0, for all v € K.. Thus from (5),

1
we have Go(v) > 0, for all v € K.. Consequently 2 (& - s) * < inf (C]fo((?)).

veK,
Now let b : WyP(Q2)\ {0} = S, : h(v) = ——, h is an odd continuous function
[pGo(v)]?
and h(K.) € T',(y), hence 2 (& —e)j < zr%% )fQ m|ulPdz < d,, therefore
n ue e

Ap > d7 Y, finally A;! = d,,. o

n
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From this proposition we can easily obtain the following result

An, (Q m)

Corollary 4.0A 1. A\, (Q,am) = , for all a > 0.

2. M (2 (,1)) =1, foralln > 1.

- pGo(v) i P
3. A(Q,m) = UGW]/?E(Q) (fnmmpdx)’ with [, m|v[Pdz > 0.

4. Al(éym) = sup [, mlv[Pdz.

vES)
5. If my,mg € MT(Q), and my; < mao a.e, then A\1(mq,Q) > A (ma, Q).
6. m € L>®(Q) = A\n(m) is continuous (see [6]).

5. Quasilinear problem

Consider the problem (1), where f : Q@ xR — R is a Carathéodory function and
hew=h /(Q) Lets the energy functional ® : W, *(Q) — R associated with this
problem, ®(u) — [o F(x,u)dz — (h,u), Where F(z,s) = [; f(z,t)dt. Now
suppose the followmg condmons on f and F.

(f) : There exist a > 0,b € L' (Q) such that | f(z,s)] < a|s|P~ + b(z) ae. z€Q,

Vs € R.

(F) : Bx) = limsup% < A (£2,1) a.e uniformly in z, i.e., there exist v €
|s|—=+o0

LY(Q) such that F(z,s) < @Mp +7(z), B € L*() and S(z) < A(Q2,1) ae.

x € Q.

Theorem 5.1 Assume that the hypotheses (H1), (Hz), (H3) and (Hy) hold. If the

conditions (f) and (F) are verified, then for all h € W’ (Q) the problems (1)
admits a solution that minimizes ®(u) — [ F(z,u)dz — (h,u).

Proof: In our conditions ® is continuously differentiable, weakly lower semicon-
tinuous and to finish the proof, it suffices to show that ® is coercive. Let ®(u) =
fQ x,u)dx — (h,u). Suppose by contradiction that there exist a sequences

(un) and a real ¢ such that ||u,|l1, — +oo and ®(u,) < c¢. we know that,
G(un)=Go(un)

lim
unll? ,

[lwn[[1,p—+o00

exist ng € N, (1 — €)Go(up) < G(un) < (14 ¢)Go(up), for all n > ng. There-
fore we have (1 —&)Go(un) < 3 [o B@)|un|Pdz + [oy(x)dz + (h,un) + c. Putting

Up —

= 0, thus from Proposition (2.1), for all ¢ > 0, there

W, since v, is bounded in W0 P(Q) then there exists a subsequences
n P

still denoted by (v,) such that v, — v weakly in Wy ?(Q) and v,, — v strongly in
Lr(Q ) Consequently from Proposition (2.1), we have §(1 —¢) < (1 — €)Go(v,) <
1 fQ x)|vp [P da:—i—lluan Jo(z dx—l—W—FW(h U ), we passe to limit and
by Remarks (2.1), we obtain 6(1—¢) < (1—¢)Gp(v) < 1 fQ x)|v|Pdz, for alle > 0,
so v # 0. On the other hand p(1 — &)Gp(v) < fQ |v|pdsc < A1) [, JvPde,
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for all € > 0, this proves that pGo(v) < [, B(z)|v[Pdx < A (1) [, |v|Pd, there-
fore v is a solution of equation G{(u) = B(x)|u|P~?u and 1 is an eigenvalue. But
B(xz) < A1(Q,1) and by Corollary (4.0A), we conclude that A\ (8(x)) > A\ (A1) =1,
this contradicts that A\ (5(z)) is the first positive eigenvalue. Finally ® is coercive.

O
It is easily to show that the problem
Gy(u) = flzyu)+h inQ, (13)
u = 0 on 0},

admits a solution that minimizes ®o(u) = Go(u) — [, F(z,u)dx — (h,u), in the
conditions of Theorem (5.1).

Remark 5.2 The condition (f), can be replaced by the condition maxs<g |f(z,s)| €
Ll (Q), for all R > 0, in this case ® is not of class C* on Wol’p(Q). In []], the

loc

authors showed that the problem (1), with G' = —A, admits a solution.

6. Fredholm Alternative

In the following section we show the Fredholm Alternative, this is the reason
we will announce a definition, lemmas and a corollary, whose be frequently used
later. Let X be a Banach space and Sym(X) the class of all closed and symmetric
parties (in comparison with origin) of X \ {0}. Let S5~ = {z € R¥;||z|[gr = 1}.

Definition 6.1 (c¢f [3]) The function 8 : Sym(X) — NU +oco is defined by
1. 0(9) =0
2. If F #0, then O(F) = sup{k € N; there exist an odd f € C(SK~1 F)}.
Let us recall that the numbers Cy,(y) = inf sup ®(v) defined in (8), where
KeAn('Y) veK
A, (7) = {K € WyP(Q) \ {0}/K compact, symmetric and y(K) > n} are critical

points, corresponding to the eigenvalues A, () defined in (12), we define C,,(6) and
An(6) in substitute in (8) v by 6, we obtain

Lemma 6.1 (¢f [3])
1. For alln > 1, Cy(0) is a critical point of ®.
2. —o0 < infwol,p(Q) b =0C1(0) <Ce(0) <...<Cp(f) <0=9(0).

3. lim C,(0) =0.

n—-+oo

Lemma 6.2 (cf [3]) For alln > 1, we have Cy,(0) = fm, where Cy,(0) and
A (0) are defined respectively by (8) and (12) in substitute v by 6.
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Corollary 6.1A (cf [3]) Let ® € CY(X,R) be a functional satisfied the Palais—
Smale condition (PS) on X, Ko € Sym(X) a compact and A1 C X a no empty
symmetrical set. If the following conditions are verified

(Py) If K € Sym(X) compact with v(K) > 0(Ky) + 1, then K N Ay #0.

(P2) a:=maxg, ® <infa, ®:= 5. Then the value

C = inf max ®(u)
heT ueh(D)

where D = co(Kyp) = {tz + (1 — t)2’; z,2" € Ko, 0<t <1} and ' = {h €
C(D, X\ {0})/h = id on Ko} is a critical point of the functional ®. Moreover
c>p.

Now we consider the hypothesis
(Hs) There exists a Carathéodory function ag : Q@ x RY — R such that ag(z,.) is
even, strictly convex and continuously differentiable such that

|Ai(z,t€) — P71 A (2, €)] < P7LC(1)(J€]P! + Ka(x)), a.ex € Q, VEERY, ¢t >0,

where Ky € LV'(Q), Ai(z,¢) = 2428 A%z, &) = 2959 and C(t) a certain

function of ¢ such that t_lgp C(t) = 0 and agp(z,0) =0, Vx € Q.

Remark 6.2 The hypotheses (H1), (Ha) and (Hs) imply that ~ lim Gl)=Co(v)

[|v]]1,p—+o0 [ol7 ,
0. For all v € Wo (), 7 € R, we have Go(rv) = [rPGo(v) and Go(v) 2 8l[vIl
where § is defined in (5).

Consider the problem

—div(A(z, Vu)) Am|ulP~2u+h  in Q,
u = 0 on 0,

where  is a bounded domain in RN, m € M+(Q) and h € WL ().

Theorem 6.3 Assume that the hypotheses (Hy), (Hz2) and (Hs) hold. Then for
all X positive that does not belong to the spectrum of Gy, the problem (14) admits
a solution.

Example 6.4 A(u) = —div((e + |Vu|2)%Vu), with e > 0, G(u) = %Ll(s +
\Vu|?)¥dz and Go(u) = 2 [, |VulPdz.

T

Proof: [Proof of Theorem (6.3).] Consider the energy functional ® : W, (Q) — R
associated to the problem (14)

& (u) = G(u) — %/Qm|u|pdx — (h,u), and ®'(u) = G'(u) — Am|uP"%u — h, (15)
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where G'(u) = —div(A(z,Vu)). If 0 < A < A\ (©2,m), then ® is coercive, and
from our hypotheses the problem admits a solution. If A\;(£2,m) < A, applying
the Corollary 6.1A. Previously we show that the functional ® satisfies the Palais—
Smale condition, otherwise suppose that there exists a sequences (uy,) in W, ()
such that (®(uy,)) is bounded and ® (u,) — 0 in Wy (), and |Jun|1, — +oo.

Put v, = 74— and ¢, = [tnl]1.ps (vn) is bounded in WyP(Q), so there exists

a subsequences still denoted by (v,) such that v, — v weakly in W, (£2), and
v, — v strongly in LT (Q). Let

Do (u) = Golu) — % /Qm|u|pda: — (b, u), ®o(u) = Gy(u) — Am|ulP"u—h. (16)

From (15) and (16), we obtain

(b/(un) (I)éJ (un) G’ (un) Gé)(“n)

-7 - =5 = i = (17)
lunl B! Nualli, Muall, uall?
For all ¢ € W, "() \ {0}, we have
G'(un) _ Gplun) -1 S 9 p, 1
( =1 “m o) < Ctn)(lvallT, + K20l e ) (/I [Pdx)?.
[lunllf" Ilunl 5 ’ o) 2, o,
(18)
Consequently from the hypotheses (Hs), we conclude that
G'(un)  Gyolun
im (upfl - 0(”“;7)1 =0. (19)
e flunl[ 0 ualli,
(17), (19) and @ (u,,) — 0 in W, P(Q), show that
D (un,
Zoltn) (20)
e lug |7,
From (16), we have
D (up) _ h
071;71 = GB(’U”) - >‘m|vn‘p 2Un - T =1 (21)
unlly lunlly
therefore <|Iié(|1rpn21’vn —v) = (Gh(vy) — Am|v,|P~2v, — T =T Un — v). By (20)

and (21), we have lirf (Gy(vn), vn—v) = 0, since G posses the (ST) property, we
n—-+0oQo

conclude that v, — v. From (21), we have G}, (v) = Am|v[P~2v, this contradicts our
assumption, finally ® satisfies the Palais—Smale condition. According to the hy-
pothesis of our Theorem there exists n € N* such that A, (6,m) < A < Ap11(0,m).
Now we must verify the conditions (P;) and (P,) of Corollary (6.1A). Consider the
set

Ay = {v e WP (@) \ {0} Anga (6, m) /Q mlv|Pdz < pGo(v)}, (22)
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we have ®(u) = G(u) — %fﬂ m|uPdx — (h,u), from the Remark (6.2) we conclude

that for ¢ > 0, there exists R > 0 such that G(u) > (1—¢)Go(u) for all |Ju||1,, > R,

therefore ®(u) > Go(u)(l — e — m) — (h,u), for ||u|l1,, > R and u € A;.

Hence for ¢ rather small and p > 1, ® is coercive on A; and the value g := in£ D(u)
u€Ay

is well defined. On the other hand let € > 0, from (12), there exists K € I',(6)
such that for all u € K’

(6m) —£< m1n/m|u\pdx</m|u|pdx

hence for all v € RK', pGo(v) (m - 5) < Jom|v|Pdz, we have ®(v) < G(v) —
/\"(9 ) Go(v) +eXGo(v) — (h,v) and from the Remark (5.2) there exists R > 0 such
that for all v € RK and |[v[1, > R.

Q(v) < Go(v)(1+¢e— +eX) — (h,v).

An(6,m)

Consequently for & rather small ®(v) — —oo when |[v]|1, — +00. Since K is a

compact there exists tg rather big such that o := max ®(v) < . Next putting
vEto K’

Ky = toK', we have K, € Sym(Wol’P(Q)), Ky is a compact and 6(Kjy) > n,
therefore (P,) is verified. There remains to verify (Py), let K a compact, sym-
metric and v(K) > n+ 1, we put K = {—% :u € K}, we have K €

(PGo(u))P
[pi1(f) and min g [ mluPdz < m, finally there exists uy € K such
that Any1(0,m) [, m|ug|Pdx < pGo(ug) ie., KN Ay #. g

7. The eigenvalue in the case N=1

In this section we consider that N = 1.

Proposition 7.1 Assume that the hypotheses (Hy), (Hz) and (H5) hold. Then
there exists 0' > 0 such that A°(x,1) > 0, a.e.x € Q, and (G(u), u) = [, A%z, 1)|u/[Pdx =

pGo(u), for allu € WyP(Q), where A°(z,€) = Ba(’(m 9 s deﬁned in (6).

Proof: From (6) and Proposition (2.1) , we have A%(z,r) = rP=1A%(x, 1), for all
r > 0, hence there exits ¢ > 0 such that ag(x,1) = cP1A%xz,1), consequently
from (5) there exists & > 0 such that A%(z,1) > ¢, a.e.x € . On the other
hand consider the function f(t) = Go(tu), t € R, from Proposition (2.1), we have
(Gh(w),u) = o, A Dl [Pz = pGo(u). 0

Remark 7.1 From (12) and Proposition (7.1), we conclude that for allm > 1,

= sup mf/mupdx 23
M(7)  Ker, (y) u€K [ (23)
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where Ty () is defined in (11) and
Sy, ={ue Wol’p(Q);/ A%z, 1) |/ [Pdx = 1}. (24)
Q

Let p(z) = ag(x,1) and Q = I = (a,b) such that a < b, if p € C1(I) N C°(I), then
we have

Theorem 7.2 ([5]) For allp > 1, m € M (Q) the problem (2), has a non trivial
solution if and only if X belongs to an increasing sequence (Ap)n>1. Moreover

1. Each A, is simple and any corresponding eigenfunction takes the forme avy, ()
with a € R, namely the multiplicity of each eigenfunction is 1. Moreover
vp () has exactly n — 1 simple zeros.

2. Each A, wverifies the strict monotonicity with respect to the weight and the
domain €.

3. 07(Go) = {An,n = 1,2...}. The eigenvalues are ordered as 0 < \j(m) <
Az2(m) < Az(m) < ... Ap(m) — 400 as n — +oo.

7.1. ApPLICATION. Consider the Dirichlet problem
—(A(l', u/))/ = f(xv U) + h in Qa (25)
u = 0 on 092,

where A : Q xR = R, f: @ x R — R, satisfies the Carathéodory conditions
and h € W17 (Q). Now supposing that f satisfies the hypotheses (H, g): for
a, B € R, with a < 8, we have

1. for all R > 0, there exists ¢ € LP (Q2) such that

ln‘lax |f(z,9)] < ¢r(z) ae. z € Q. (26)

2. (fap) for all € > 0 there exists b, € L? () such that a.e. z € Q, for all
s € R, we have

—be(2) + (a —¢)[s]” < sf(z,5) < (B+e)ls|” + be (). (27)

3. (Fup) @ <# l(z) := liminf pP@s) Jimsup 2P = k(2) <#£ B aex € Q

Is|l>too 1817 15|00 [s[?
and for all € > 0, there exists d. € L'(Q), such that a.e.x € Q, for all s € R,
we have

—de(2) + (I(z) —e) =~

|s[”
p
where F(z, s) = [; f(z,t)dt, mi(z) <# ma(z), "ie.," mi(z) < mo(z) aca €
(x
t

|s[”

< F(z,s) < (k()+€)p +do(z), (28)

Q and my(xz) < mz(x), in some subset of © of nonzero measure, for all
my,mg € MT(Q). Le the energy functlonal ® corresponding to the problem
(25), we have ®(u) = — Jo F(z,u)dz — (h,u), where G is defined in
Remarks (2.1).
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Proposition 7.2 Assume that the hypotheses (Hy), (Hz), (Hs) hold and f satisfies
the hypotheses (Hy ). If ® does not satisfied the Palais—Smale condition (PS),
then there exist m(z) € L>(Q), v € WyP(Q)\ {0}, and (u,) C Wy*() such that
v 18 nontrivial solution of the problem

Go(u) = mlulP~2u in €,
(Pm) { u=20 on 01,

and
o <A m(z) < B,
|n||1,p = +o0, W — v in WyP(Q),
(®(un)) is a bounded sequences.

Proof: The proof is an adaptation of the Theorem ((4.1) see [3]) and the Theorem
(6.3). |

Theorem 7.3 Assume that the hypotheses (Hy), (Hz) and (Hs) hold. If f satisfies
(Hx, (1) Anir(1))s for n > 1, then ® will satisfy the Palais-Smale condition (PS)
and the problem (25) admits a solution.

Proof: If ® does not satisfied (PS), then from Proposition (7.2), there exists
m(x) € L*(Q) such that A\,(1) <# m(z) <# A,4+1(1), this contradicts with
Theorem (7.2), the rest of the proof is an adaptation of the Theorem (6.3). O
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