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Eigenvalues of an Operator Homogeneous at the Infinity

Aomar Anane, Omar Chakrone, Mohammed Filali And Belhadj Karim

abstract: In this paper, we show the existence of a sequences of eigenvalues for
an operator homogenous at the infinity, we give his variational formulation and we
establish the simplicity of all eigenvalues in the case N = 1. Finally we study the
solvability of the problem

{

A(u) := −div(A(x,∇u)) = f(x, u) + h in Ω,

u = 0 on ∂Ω,

as well as the spectrum of
{

G′

0
(u) = λm|u|p−2u in Ω,

u = 0 on ∂Ω,

Key Words: : Operator homogeneous at infinity; Eigenvalues; Boundary
Value problem.
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1. Introduction

Consider the quasilinear problem

{
A(u) := −div(A(x,∇u)) = f(x, u) + h in Ω,

u = 0 on ∂Ω,
(1)

where Ω is a bounded domain in R
N , N ≥ 1, f : Ω × R →R is a Carathéodory

function, h ∈ W−1,p′

(Ω) an arbitrary function, p′ is the Hölder conjugate exponent
of p, (1 < p < ∞) and A(x, ξ) = (Ai(x, ξ))1≤i≤N such that Ai(x, ξ) : Ω× R

N → R
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are functions satisfying the usual growth conditions. We require some conditions
on the functional Ai such that the operator A(u) will be homogenous at the infinity
and derive from a potential G(u) (i.e.,G′ = A). For example, for ε > 0, A(u) =

−△ε
pu = −div((ε + |∇u|2) p−2

2 ∇u) is an homogenous operator at the infinity and
G′

0(u) = −△pu = −div(|∇u|p−2∇u) is an associated homogenous operator. The
Problem (1) has been studied by Anane in [2], he showed the existence of the
weak solutions of the problem (1) with conditions of nonresonance under (the first
eigenvalue of the operator A). This paper is organized as follows. In section 2, we
recall some results about our operators. In section 3, we show (see Theorem 3.1)
the existence of sequences of eigenvalues λn(m,Ω) for the following problem

{
G′

0(u) = λm|u|p−2u in Ω,
u = 0 on ∂Ω,

(2)

where G′
0 (not necessarily equal to −△p) is an associated homogenous operator

of A, G0 is a potential associated to G′
0, p > 1 and m ∈ M+(Ω) = {m ∈

L∞(Ω); meas{x ∈ Ω;m(x) > 0} 6= 0} is the weight. In section 4, we give (see
Proposition 4.1) the variational formulation of λn(m,Ω) and some properties. In
section 5 we show a Theorem of nonresonance (see Theorem (5.1)). In section
6 we study (see Theorem 6.3) the Fredholm Alternative for the operators A and
G′

0(i.e., if λ does not belong to the spectrum of G′
0), then the problem (1) ( with

f(x, u) = λm|u|p−2u), and the following problem

{
G′

0(u) = λm|u|p−2u+ h in Ω,
u = 0 on ∂Ω,

(3)

admit a solution for all h ∈ W−1,p′

(Ω). Finally in section 7, in the case N = 1,
we establish the simplicity of all eigenvalues (the simplicity of the first eigenvalue

remains open in the general case) and we study the problem (1), when f(x,s)
|s|p−2s

and pF (x,s)
|s|p are situated between two consecutively eigenvalues, where F (x, s) =∫ s

0
f(x, t)dt ( see Theorem 7.3 ).

2. Preliminaries

Consider the problem (1) with A(x, ξ) = ((Ai(x, ξ))1≤i≤N , satisfies the hy-
potheses:
(H1) Ai : Ω×R

N → R is a Carathéodory function and there exist c ≥ 0, k ∈ Lp′

(Ω)
such that

|Ai(x, ξ)| ≤ c|ξ|p−1 + k(x),∀ξ ∈ R
N , a.e.x ∈ Ω. (4)

(H2) There exists a function a : Ω× R
N → R satisfies:

i) a(x, .) : RN → R is continuously differentiable a.e. x ∈ Ω and ∂a(x,ξ)
∂ξi

=

Ai(x, ξ).
ii) a(x, .) : RN → R is convex and there exists δ > 0 such that

a(x, ξ) ≥ δ|ξ|p, ∀ξ ∈ R
N , a.e. x ∈ Ω. (5)
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(H3) There exists a Carathéodory function a0 : Ω×R
N → R, where a0(x, .) is even

and strictly convex such that

|a(x, tξ)− tpa0(x, ξ)| ≤ tpC(t)(|ξ|p + k1(x)), ∀ξ ∈ R
N , t > 0, a.e. x ∈ Ω,

for a certain function C of t such that lim
t→+∞

C(t) = 0 and k1 ∈ L1(Ω).

(H4) a0(x, .) : R
N → R is continuously differentiable and

1. There exist c′ ≥ 0, k′ ∈ Lp′

(Ω) such that |∂a0(x,ξ)
∂ξi

| ≤ c′|ξ|p−1 + k′(x),∀ξ ∈
R

N , a.e.x ∈ Ω.

2.
∑i=N

i=1
∂a0(x,ξ)

∂ξi
ξi ≥ C0|ξ|p −K0(x), for all x ∈ Ω, ξ ∈ R

N with C0 > 0 some

constant and K0 ∈ L1(Ω).

Remarks 2.1 1. From (H1) the operator A : W1,p
0 (Ω) → W−1,p′

(Ω): A(u) =

−div(A(x,∇u)), with 〈A(u), v〉 =
∫
Ω
A(x,∇u)∇v =

∑i=N
i=1

∫
Ω
Ai(x,∇u) ∂v

∂xi
,

is well defined, continuous on W 1,p
0 (Ω).

2. Let the functional G : W 1,p
0 (Ω) → R defined by G(u) =

∫
Ω
a(x,∇u)dx. Under

the hypotheses (H1), (H2) and (H3), G is well defined, weakly lower semi-
continuous, continuously differentiable and G′(u) = A(u).

3. we consider the functional G0 : W 1,p
0 (Ω) → R: G0(u) =

∫
Ω
a0(x,∇u)dx. By

the hypotheses (H1), (H2) and (H3), the operator G0 is well defined contin-
uous and weakly lower semicontinuous.

Proposition 2.1 Assume that (H1), (H2) and (H3) hold. Then a0 is unique and
verifies the following conditions

1. a0(x, rξ) = |r|pa0(x, ξ), for all ξ ∈ R
N and r ∈ R.

2. We have lim
||u||1,p→+∞

G(u)−G0(u)
||u||p1,p

= 0 and G0(ru) = |r|pG0(u), for all r ∈ R.

3. G0(u) ≥ δ||u||p1,p, for all u ∈ W 1,p
0 (Ω), where ||u||1,p = (

∫
Ω
|∇u(x)|pdx) 1

p the

norm of W 1,p
0 (Ω) and δ is defined in (5).

4. If (H4) holds, then G0 is continuously differentiable and G′
0 satisfies the (S+)

property, i.e., if un ⇀ u weakly in W 1,p
0 (Ω) and lim sup

n→+∞
〈G′

0(un), un −u〉 ≤ 0,

then un → u strongly in W 1,p
0 (Ω)).

Denoted
∂a0(x, ξ)

∂ξi
= A0

i (x, ξ), A0(x, ξ) = (A0
i (x, ξ))1≤i≤N . (6)

such that G′
0 : W 1,p

0 → W−1,p′

0 (Ω) : G′
0(u) = −div(A0(x,∇u), is the unique ho-

mogenous operator associated to the operator A = G′.
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Proof:

1. By (H3), it is clear that a0(x, ξ) = lim
t→+∞

a(x,tξ)
tp

e.a .x ∈ Ω and for all ξ ∈ R
N ,

this proves that a0 is unique. For r > 0, a0(x, rξ) = rp lim
t→+∞

a(x,rtξ)
(rt)p , so

a0(x, rξ) = rpa0(x, ξ). For r < 0, we have a0(x,−rξ) = (−r)pa0(x, ξ), since
a0(x, .) is even, thus a0(x, rξ) = |r|pa0(x, ξ).

2. Results by 1.

3. From (H3), we obtain a(x, t∇u)−tpC(t)(|∇u|p+k1(x)) ≤ tpa0(x,∇u) and by
(5), we conclude that (δ −C(t))|∇u|p ≤ a0(x,∇u), thus δ|∇u|p ≤ a0(x,∇u),
consequently G0(u) ≥ δ||u||p1,p for all u ∈ W 1,p

0 (Ω).

4. From 1) of (H4), G0 is continuously differentiable and we have 〈G′
0(u), v〉 =∑i=N

i=1

∫
Ω
A0

i (x,∇u) ∂v
∂xi

. Since G0 is convex strictly in ξ, then 〈G′
0(u) −

G′
0(v), u − v〉 > 0 for all u, v ∈ W 1,p

0 (Ω) with u 6= v. The conditions 1),
2) of (H4) and the fact that 〈G′

0(u)−G′
0(v), u−v〉 > 0 for all u, v ∈ W 1,p

0 (Ω),
(u 6= v) imply that G′

0 satisfies the (S+) property (see [7] pp,25).

2

In the continuation we consider that the hypotheses (H1), (H2), (H3) and (H4)
are verified.

3. Eigenvalues Problem

Consider the eigenvalues problem, find (u, λ) ∈ W 1,p
0 (Ω) \ {0} × R+ such that

∫

Ω

A0(x,∇u)∇vdx = λ

∫

Ω

m|u|p−2uvdx (7)

for all v ∈ W 1,p
0 (Ω), where A0(x,∇u) = (A0

i (x,∇u))1≤i≤N , is defined in (6).

Consider B : W 1,p
0 (Ω) → R: B(u) = 1

p

∫
Ω
m|u|pdx.

Lemma 3.1 If (u, λ) is a solution of (7), then v = [ 1
2λG0(u)

]
1
pu is a critical point

of Φ : W 1,p
0 (Ω) → R, with Φ(v) = G2

0(v) − B(v), corresponding to the critical
value c = − 1

4λ2 . Reciprocally if (u 6= 0) is a critical point of Φ corresponding to the
critical value c, then (u, λ) is a solution of (7), where λ = 1

2
√
−c

.

Proof: Let (u, λ) be a solution of (7), from Proposition (2.1) we conclude that

for all β ∈ R
∗, βu is also eigenvalue corresponding to λ. For β = [ 1

2λG0(u)
]
1
p ,

v = βu verifies G0(v) = 1
2λ , thus λ = 1

2G0(v)
and B(v) = 1

2λ2 . Consequently

Φ′(v) = 0 and Φ(v) = − 1
4λ2 . On the other hand if u 6= 0 is eigenvalue of Φ

corresponding to the critical value c, then Φ(u) = −G2
0(u) = c, thus G0(u) =

√
−c

and 〈G′
0(u), v〉 = 1

2G0(u)
〈B′(u), v〉, for all v ∈ W 1,p

0 (Ω). 2
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Theorem 3.1 The problem (7) admits an increasing positive sequences of the
eigenvalue (λn)n∈N∗ , with lim

n→+∞
λn = +∞.

Proof: Throughout this paper we put

Cn = inf
K∈An(γ)

sup
v∈K

Φ(v), (8)

where

An(γ) = {K ⊂ W 1,p
0 (Ω) \ {0};K compact, symmetric, and γ(K) ≥ n}, (9)

with γ(K) indicates the genus of K (see [9]). As Φ is even and of C1, to prove
the existence of the sequences (λn)n≥1, it is sufficient to applied the fundamental
multiplicity theorem (see [8]), i.e,.( to show that: (i) Φ is bounded below, (ii) Φ
satisfies the Palais–Smale condition, (iii) for all n ∈ N

∗, there exists K ∈ An(γ)
such that supv∈K Φ(v) < 0. In fact (i), for all v ∈ W 1,p

0 (Ω), we have Φ(v) ≥
δ2||v||2p1,p − 1

p
||m||∞||v||pp, thus Φ(v) ≥ ||v||p1,p(δ2||v||p1,p − Cp 1

p
||m||∞), where C is

the Sobolev constant. Hence Φ is bounded from below and coercive. (ii) Φ satisfies
the Palais–Smale condition; indeed, let (un) be a sequences of W 1,p

0 (Ω) such that
(Φ(un)) is bounded and Φ′(un) → 0 in W 1,p

0 (Ω). Since Φ is coercive, (un) is
bounded. It follows that there exists a subsequences, still denoted by (un), such
that un ⇀ u in W 1,p

0 (Ω), and un → u in Lp(Ω), on the other hand ||un||1,p is
bounded in R, hence ||un||1,p → a ∈ R, with a ≥ 0. If a = 0, we conclude that

un → 0 in W 1,p
0 (Ω). If a > 0, there exists n0 ∈ N such that ||un||1,p > a

2 for all
n ≥ n0, thus G0(un) > δ(a2 )

p, for all n ≥ n0. Now, for all n ≥ n0

Φ′(un)

2G0(un)
= G′

0(un)−
B′(un

2G0(un)
. (10)

Since un ⇀ u weakly in W 1,p
0 (Ω), by (10), we have

1

2G0(un)
〈Φ′(un), un − u〉 = 〈G′

0(un), un − u〉 − 1

2G0(un)
〈B′(un), un − u〉

for all n ≥ n0. on account of the fact that B′(un) is bounded in Lp′

(Ω), then we
obtain lim

n→+∞
〈G′

0(un), un − u〉 = 0, hence lim sup
n→+∞

〈G′
0(un), un − u〉 ≤ 0, and since

G′
0 posses the (S+) property, then un → u. (iii) Since meas(Ω)+ = meas{x ∈

Ω;m(x) > 0} > 0, then for all n ∈ N
∗, there exist u1, u2, . . . un ∈ W 1,p

0 (Ω), such
that suppui∩ suppuj =Ø if i 6= j, and B(ui) = 1. Let Fn = span{u1, u2, . . . un} be

the subspace of W 1,p
0 (Ω), spanned by {u1, u2, . . . un}. For all v =

∑i=n
i=1 αiui ∈ Fn,

we have B(v) =
∑i=n

i=1 |αi|pB(ui) =
∑i=n

i=1 |αi|p, hence the function: v → B(v)
1
p is a

norm on Fn, therefore there exist α1, β1 > 0 such that α1A1(v) ≤ B(v) ≤ β1A1(v),
where A1(v) =

1
p
||v||p1,p.

Let A = {v ∈ W 1,p
0 (Ω);G0(v) ≤ R

p
||v||p1,p, R ≫ δ}. For all v ∈ A ∩ Fn we have
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α1

R
G0(v) ≤ B(v) ≤ β1

pδ
G0(v). Now let K = {v ∈ Fn ∩ A;

α2
1

4R2 ≤ B(v) ≤ α2
1

3R2 }. For
all v ∈ K, we have 




Φ(v) = G2
0(v)−B(v),

≤ R2

α2
1

B2(v)−B(v),

≤ α2
1

9R2 − α2
1

4R2 .

Hence for all v ∈ K,Φ(v) < 0 and γ(K) ≥ n, consequently Cn is a critical value
and λn = 1

2
√
−Cn

is an eigenvalue. Now we prove that lim
n→+∞

Cn = 0 (see also [1]).

2

It suffices to show that, for all ε > 0, there exists nε ≥ 1 such that sup
v∈K

Φ(v) ≥

−ε, for all K ∈ Anε
(γ), with K ⊂ E where E = {v ∈ W 1,p

0 (Ω); Φ(v) ≤ 0}. Since
Φ is coercive then E is bounded in W 1,p

0 (Ω). It results from it, by using the fact
that I : W 1,p

0 (Ω) → Lp(Ω) is compact that for all n > 0, there exist a subspace
Fn ⊂ Lp(Ω) and In : E → Fn continuous such that sup

v∈E

||v− In(v)||p ≤ n. Putting:

Jn(v) =
1
2 (In(v) − In(−v)), for all v ∈ E. It is clear that Jn is well defined, odd,

continuous and satisfies: sup
v∈E

||v − Jn(v)||p ≤ n. Lets ε > 0, since E is compact in

Lp(Ω) then there exists nε > 0 such that |B(v)−B(Jnε
(v))| ≤ ε

2 for all v ∈ E. Let
δε > 0 such that B(v) ≤ ε

2 for ||v||p ≤ δε. Thus for all v ∈ E, with ||Jnε
(v)||p ≤ δε,

we have B(v) ≤ |B(v)−B(Jnε
(v))|+ |B(Jnε

(v))| ≤ ε. This last inequality implies
that for each compact K symmetric, with K ⊂ E ∩ {v ∈ W 1,p

0 (Ω);B(v) ≥ ε}, we
have Jnε

(K) ⊂ {v ∈ Fnε
; ||v||p ≥ δε}. Since Jnε

(K) is symmetric and compact in
Lp(Ω), then γ(Jnε

(K)) ≤ dim(Fnε
), where γ(K ′) indicates the genus in Lp(Ω) of

K ′. Finally since Jnε
is continuous and odd then γ(K) ≤ γ(Jnε

(K)) ≤ dim(Fnε
).

Consequently for all compact symmetric K ⊂ E such that γ(K) ≥ dim(Fnε
) + 1,

there exists v0 ∈ K such that inf
v∈K

B(v) ≤ B(v0) < ε and since Φ(v) ≥ −B(v), then

we have sup
v∈K

Φ(v) ≥ − inf
v∈K

B(v) ≥ −ε, the proof is complete.

4. Variational Formulation

Lemma 4.1 Let Sp = {v ∈ W 1,p
0 (Ω); pG0(v) = 1}, and S = {v ∈ W 1,p

0 (Ω); ||v||p1,p =
1}, then Sp and S are homeomorphic by an odd homomorphism, more precisely
Ψ : Sp → S : Ψ(v) = v

‖v‖1,p
.

Proof: Consider Ψ : Sp → S, v 7→ v
||v||1,p . Ψ is an odd and continuous function.

Suppose that Ψ(v) = Ψ(v
′

) i.e., v
||v||1,p = v

′

||v′ ||1,p
, thus pG0(v)

||v||p1,p
= pG0(v

′

)

||v′ ||p1,p
, therefore

1
||v||p1,p

= 1
||v′||p1,p

hence v = v
′

, then Ψ is an injection. Let u ∈ S and putting

v = u

(pG0(u))
1
p

∈ Sp, Ψ−1 : S → Sp : u → u

(pG0(u))
1
p

, this proves that Ψ is a

surjection and Ψ−1 is continuous. 2
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Lemma 4.2 There exist α, β > 0 such that for all v ∈ Sp, we have α ≤ ||v||p1,p ≤
β.

Proof: For all v ∈ W 1,p
0 (Ω), we have G0(v) ≥ δ||v||p1,p in particular ||v||p1,p ≤ 1

δp
,

for all v ∈ Sp. There exists α > 0, such that α ≤ ||v||p1,p, for all v ∈ Sp, otherwise,

for all n > 0, there exists vn ∈ Sp, such that 1
n
> ||vn||p1,p thus lim

n→+∞
vn = 0, but

pG0(vn) = 1, this contradicts the continuity of G0, finally there exist α, β > 0,
such that for all v ∈ Sp, α ≤ ||v||p1,p ≤ β. 2

Putting

Γn(γ) = {K ⊂ W 1,p
0 (Ω)\{0};K compact, symmetric, of Sp and γ(K) ≥ n}. (11)

Proposition 4.1 For all n ≥ 1

1

λn(γ)
= sup

K∈Γn(γ)

inf
u∈K

∫

Ω

m|u|pdx, (12)

where Γn(γ) is defined in (11).

Proof: Putting dn = sup
K̃∈Γn(γ)

inf
v∈K̃

∫
Ω
m|v|pdx, Previously we show that dn is well

defined and strictly positive. Let Fn the subspace (defined in (iii) proof of theorem

(3.1)), K = {u ∈ Fn, ||u||1,p = 1} and v ∈ K̃ = Ψ−1(K), Ψ(v) = u, (Lemma

(4.1)) so v
||v||1,p = u,

∫
Ω
m|u|pdx = 1

||v||p1,p

∫
Ω
m|v|pdx, where v ∈ K̃ and u ∈ K =

Ψ(K̃). Since u ∈ K ⊂ Fn,(B and A1 are equivalent), then there exists c > 0

such that c 1
p
||u||1,p ≤ 1

p

∫
Ω
m|u|pdx ≤ 1

cp
||u||1,p and v ∈ K̃ ⊂ Sp, hence α ≤

||v||p1,p (Lemma (4.2) ). Consequently 0 < αc ≤ ||v||p1,p
∫
Ω
m|u|pdx =

∫
Ω
m|v|pdx,

this result shows that inf
V ∈K̃

∫
Ω
m|v|pdx ≥ αc, finally dn > 0. On one hand, let

K̃ ∈ Γn(γ), and i : K̃ → K1 = {tv/v ∈ K̃, t > 0} : i(v) = tv, i is an odd
continuous homomorphism. By definition of Cn, the number defined in (8), for

all t > 0, we have 1
λ2
n

≥ 4 inf
u∈K̃

( t
p

p

∫
Ω
m|u|pdx − t2p

p2 ). For t = (pdn

2 )
1
p , we obtain

( 1
λ2
n
+ d2n)

1
2dn

≥ inf
u∈K̃

∫
Ω
m|u|pdx, hence λn ≤ d−1

n . On the other hand 1
4λ2

n
=

sup
K∈An(γ)

min
v∈K

(B(v) −G2
0(v)), where An(γ) is defined in (9). For 0 < ε < 1

λ2
n
, there

exists a compact Kε ∈ An(γ), such that B(v) > 0, for all v ∈ Kε. Thus from (5),

we have G0(v) > 0, for all v ∈ Kε. Consequently 2
(

1
4λ2

n
− ε

) 1
2 ≤ inf

v∈Kε

(
B(v)
G0(v)

)
.

Now let h : W 1,p
0 (Ω) \ {0} → Sp : h(v) = v

[pG0(v)]
1
p

, h is an odd continuous function

and h(Kε) ∈ Γn(γ), hence 2
(

1
4λ2

n
− ε

) 1
2 ≤ inf

u∈h(Kε)

∫
Ω
m|u|pdx ≤ dn, therefore

λn ≥ d−1
n , finally λ−1

n = dn. 2
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From this proposition we can easily obtain the following result

Corollary 4.0A 1. λn(Ω, αm) = λn(Ω,m)
α

, for all α > 0.

2. λn(Ω, λn(Ω, 1)) = 1, for all n ≥ 1.

3. λ1(Ω,m) = inf
v∈W

1,p

0 (Ω)

(
pG0(v)∫

Ω
m|v|pdx

)
, with

∫
Ω
m|v|pdx > 0.

4. 1
λ1(Ω,m) = sup

v∈Sp

∫
Ω
m|v|pdx.

5. If m1,m2 ∈ M+(Ω), and m1 < m2 a.e, then λ1(m1,Ω) > λ1(m2,Ω).

6. m ∈ L∞(Ω) → λn(m) is continuous (see [6]).

5. Quasilinear problem

Consider the problem (1), where f : Ω×R → R is a Carathéodory function and
h ∈ W−1,p′

(Ω). Lets the energy functional Φ : W 1,p
0 (Ω) → R associated with this

problem, Φ(u) = G(u) −
∫
Ω
F (x, u)dx − 〈h, u〉, where F (x, s) =

∫ s

0
f(x, t)dt. Now

suppose the following conditions on f and F .
(f) : There exist a ≥ 0, b ∈ Lp′

(Ω) such that |f(x, s)| ≤ a|s|p−1 + b(x) a.e. x ∈ Ω,
∀s ∈ R.
(F ) : β(x) ≡ lim sup

|s|→+∞

pF (x,s)
|s|p < λ1(Ω, 1) a.e uniformly in x, i.e., there exist γ ∈

L1(Ω) such that F (x, s) ≤ β(x)
p

|s|p + γ(x), β ∈ L∞(Ω) and β(x) < λ1(Ω, 1) a.e.
x ∈ Ω.

Theorem 5.1 Assume that the hypotheses (H1), (H2), (H3) and (H4) hold. If the

conditions (f) and (F ) are verified, then for all h ∈ W−1,p
′

(Ω) the problems (1)
admits a solution that minimizes Φ(u) = G(u)−

∫
Ω
F (x, u)dx− 〈h, u〉.

Proof: In our conditions Φ is continuously differentiable, weakly lower semicon-
tinuous and to finish the proof, it suffices to show that Φ is coercive. Let Φ(u) =
G(u)−

∫
Ω
F (x, u)dx−〈h, u〉. Suppose by contradiction that there exist a sequences

(un) and a real c such that ||un||1,p → +∞ and Φ(un) ≤ c. we know that,

lim
||un||1,p→+∞

G(un)−G0(un)
||un||p1,p

= 0, thus from Proposition (2.1), for all ε > 0, there

exist n0 ∈ N, (1 − ε)G0(un) ≤ G(un) ≤ (1 + ε)G0(un), for all n ≥ n0. There-
fore we have (1− ε)G0(un) ≤ 1

p

∫
Ω
β(x)|un|pdx+

∫
Ω
γ(x)dx+ 〈h, un〉+ c. Putting

vn = un

||un||1,p , since vn is bounded in W 1,p
0 (Ω) then there exists a subsequences

still denoted by (vn) such that vn ⇀ v weakly in W 1,p
0 (Ω) and vn → v strongly in

Lp(Ω). Consequently from Proposition (2.1), we have δ(1− ε) ≤ (1− ε)G0(vn) ≤
1
p

∫
Ω
β(x)|vn|pdx+ 1

||un||p1,p

∫
Ω
γ(x)dx+ c

||un||p1,p
+ 1

||un||p1,p
〈h, un〉, we passe to limit and

by Remarks (2.1), we obtain δ(1−ε) ≤ (1−ε)G0(v) ≤ 1
p

∫
Ω
β(x)|v|pdx, for all ε > 0,

so v 6= 0. On the other hand p(1 − ε)G0(v) ≤
∫
Ω
β(x)|v|pdx ≤ λ1(Ω, 1)

∫
Ω
|v|pdx,
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for all ε > 0, this proves that pG0(v) ≤
∫
Ω
β(x)|v|pdx ≤ λ1(Ω, 1)

∫
Ω
|v|pdx, there-

fore v is a solution of equation G′
0(u) = β(x)|u|p−2u and 1 is an eigenvalue. But

β(x) < λ1(Ω, 1) and by Corollary (4.0A), we conclude that λ1(β(x)) > λ1(λ1) = 1,
this contradicts that λ1(β(x)) is the first positive eigenvalue. Finally Φ is coercive.

2

It is easily to show that the problem

{
G′

0(u) = f(x, u) + h in Ω,
u = 0 on ∂Ω,

(13)

admits a solution that minimizes Φ0(u) = G0(u) −
∫
Ω
F (x, u)dx − 〈h, u〉, in the

conditions of Theorem (5.1).

Remark 5.2 The condition (f), can be replaced by the condition max|s|≤R |f(x, s)| ∈
L1
loc(Ω), for all R > 0, in this case Φ is not of class C1 on W 1,p

0 (Ω). In [4], the
authors showed that the problem (1), with G′ = −△p admits a solution.

6. Fredholm Alternative

In the following section we show the Fredholm Alternative, this is the reason
we will announce a definition, lemmas and a corollary, whose be frequently used
later. Let X be a Banach space and Sym(X) the class of all closed and symmetric
parties (in comparison with origin) of X \ {0}. Let SK−1 = {x ∈ R

k; ||x||Rk = 1}.

Definition 6.1 (cf [3]) The function θ : Sym(X) → N ∪+∞ is defined by

1. θ(Ø) = 0

2. If F 6=Ø, then θ(F ) = sup{k ∈ N; there exist an odd f ∈ C(SK−1, F )}.

Let us recall that the numbers Cn(γ) = inf
K∈An(γ)

sup
v∈K

Φ(v) defined in (8), where

An(γ) = {K ∈ W 1,p
0 (Ω) \ {0}/K compact, symmetric and γ(K) ≥ n} are critical

points, corresponding to the eigenvalues λn(γ) defined in (12), we define Cn(θ) and
λn(θ) in substitute in (8) γ by θ, we obtain

Lemma 6.1 (cf [3])

1. For all n ≥ 1, Cn(θ) is a critical point of Φ.

2. −∞ < infW 1,p

0 (Ω) Φ = C1(θ) ≤ C2(θ) ≤ . . . ≤ Cn(θ) < 0 = Φ(0).

3. lim
n→+∞

Cn(θ) = 0.

Lemma 6.2 (cf [3]) For all n ≥ 1, we have Cn(θ) = − 1
4(λn(θ))2

, where Cn(θ) and

λn(θ) are defined respectively by (8) and (12) in substitute γ by θ.
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Corollary 6.1A (cf [3]) Let Φ ∈ C1(X,R) be a functional satisfied the Palais–
Smale condition (PS) on X, K0 ∈ Sym(X) a compact and A1 ⊂ X a no empty
symmetrical set. If the following conditions are verified
(P1) If K ∈ Sym(X) compact with γ(K) ≥ θ(K0) + 1, then K ∩A1 6=Ø.
(P2) α := maxK0

Φ < infA1
Φ := β. Then the value

C = inf
h∈Γ

max
u∈h(D̄)

Φ(u)

where D = co(K0) := {tx + (1 − t)x′; x, x′ ∈ K0, 0 ≤ t ≤ 1} and Γ = {h ∈
C(D̄,X \ {0})/h = id on K0} is a critical point of the functional Φ. Moreover
C ≥ β.

Now we consider the hypothesis
(H5) There exists a Carathéodory function a0 : Ω × R

N → R such that a0(x, .) is
even, strictly convex and continuously differentiable such that

|Ai(x, tξ)− tp−1A0
i (x, ξ)| ≤ tp−1C(t)(|ξ|p−1 +K2(x)), a.e.x ∈ Ω, ∀ξ ∈ R

N , t > 0,

where K2 ∈ Lp′

(Ω), Ai(x, ξ) = ∂a(x,ξ)
∂ξi

, A0
i (x, ξi) = ∂a0(x,ξ)

∂ξi
and C(t) a certain

function of t such that lim
t→+∞

C(t) = 0 and a0(x, 0) = 0, ∀x ∈ Ω.

Remark 6.2 The hypotheses (H1), (H2) and (H5) imply that lim
||v||1,p→+∞

G(v)−G0(v)
||v||p1,p

=

0. For all v ∈ W 1,p
0 (Ω), r ∈ R, we have G0(rv) = |r|pG0(v) and G0(v) ≥ δ||v||p1,p,

where δ is defined in (5).

Consider the problem

{
−div(A(x,∇u)) = λm|u|p−2u+ h in Ω,

u = 0 on ∂Ω,
(14)

where Ω is a bounded domain in R
N , m ∈ M+(Ω) and h ∈ W−1,p

′

(Ω).

Theorem 6.3 Assume that the hypotheses (H1), (H2) and (H5) hold. Then for
all λ positive that does not belong to the spectrum of G′

0, the problem (14) admits
a solution.

Example 6.4 A(u) = −div((ε + |∇u|2) p−2

2 ∇u), with ε > 0, G(u) = 1
p

∫
Ω
(ε +

|∇u|2) p

2 dx and G0(u) =
1
p

∫
Ω
|∇u|pdx.

Proof: [Proof of Theorem (6.3).] Consider the energy functional Φ : W 1,p
0 (Ω) → R

associated to the problem (14)

Φ(u) = G(u)− λ

p

∫

Ω

m|u|pdx− 〈h, u〉, and Φ′(u) = G′(u)− λm|u|p−2u− h, (15)
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where G′(u) = −div(A(x,∇u)). If 0 ≤ λ < λ1(Ω,m), then Φ is coercive, and
from our hypotheses the problem admits a solution. If λ1(Ω,m) < λ, applying
the Corollary 6.1A. Previously we show that the functional Φ satisfies the Palais–
Smale condition, otherwise suppose that there exists a sequences (un) in W 1,p

0 (Ω)

such that (Φ(un)) is bounded and Φ
′

(un) → 0 in W 1,p
0 (Ω), and ||un||1,p → +∞.

Put vn = un

||un||1,p and tn = ||un||1,p, (vn) is bounded in W 1,p
0 (Ω), so there exists

a subsequences still denoted by (vn) such that vn ⇀ v weakly in W 1,p
0 (Ω), and

vn → v strongly in LP (Ω). Let

Φ0(u) = G0(u)−
λ

p

∫

Ω

m|u|pdx− 〈h, u〉,Φ′

0(u) = G
′

0(u)− λm|u|p−2u− h. (16)

From (15) and (16), we obtain

Φ
′

(un)

||un||p−1
1,p

− Φ
′

0(un)

||un||p−1
1,p

=
G′(un)

||un||p−1
1,p

− G
′

0(un)

||un||p−1
1,p

. (17)

For all ϕ ∈ W 1,p
0 (Ω) \ {0}, we have

|〈 G′(un)

||un||p−1
1,p

− G
′

0(un)

||un||p−1
1,p

, ϕ〉| ≤ C(tn)(||vn||p−1
1,p + ||K2||LP

′

(Ω)
)
i=N∑

i=1

(

∫

Ω

| ∂ϕ
∂xi

|pdx) 1
p .

(18)
Consequently from the hypotheses (H5), we conclude that

lim
n→+∞

G′(un)

||un||p−1
1,p

− G
′

0(un)

||un||p−1
1,p

= 0. (19)

(17), (19) and Φ′(un) → 0 in W 1,p
0 (Ω), show that

lim
n→+∞

Φ′
0(un)

||un||p−1
1,p

= 0. (20)

From (16), we have

Φ′
0(un)

||un||p−1
1,p

= G′
0(vn)− λm|vn|p−2vn − h

||un||p−1
1,p

, (21)

therefore 〈 Φ′

0(un)

||un||p−1

1,p

, vn − v〉 = 〈G′
0(vn) − λm|vn|p−2vn − h

||un||p−1

1,p

, vn − v〉. By (20)

and (21), we have lim
n→+∞

〈G′

0(vn), vn−v〉 = 0, since G
′

0 posses the (S+) property, we

conclude that vn → v. From (21), we have G′
0(v) = λm|v|p−2v, this contradicts our

assumption, finally Φ satisfies the Palais–Smale condition. According to the hy-
pothesis of our Theorem there exists n ∈ N

∗ such that λn(θ,m) < λ < λn+1(θ,m).
Now we must verify the conditions (P1) and (P2) of Corollary (6.1A). Consider the
set

A1 = {v ∈ W 1,p
0 (Ω) \ {0};λn+1(θ,m)

∫

Ω

m|v|pdx ≤ pG0(v)}, (22)
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we have Φ(u) = G(u)− λ
p

∫
Ω
m|u|pdx− 〈h, u〉, from the Remark (6.2) we conclude

that for ε > 0, there exists R > 0 such that G(u) ≥ (1−ε)G0(u) for all ||u||1,p > R,
therefore Φ(u) ≥ G0(u)(1 − ε − λ

λn+1(θ,m) ) − 〈h, u〉, for ||u||1,p > R and u ∈ A1.

Hence for ε rather small and p > 1, Φ is coercive on A1 and the value β := inf
u∈A1

Φ(u)

is well defined. On the other hand let ε > 0, from (12), there exists K
′ ∈ Γn(θ)

such that for all u ∈ K
′

1

λn(θ,m)
− ε ≤ min

u∈K
′

∫

Ω

m|u|pdx ≤
∫

Ω

m|u|pdx,

hence for all v ∈ RK
′

, pG0(v)
(

1
λn(θ,m) − ε

)
≤

∫
Ω
m|v|pdx, we have Φ(v) ≤ G(v)−

λ
λn(θ,m)G0(v)+ελG0(v)−〈h, v〉 and from the Remark (5.2) there exists R > 0 such

that for all v ∈ RK
′

and ||v||1,p > R.

Φ(v) ≤ G0(v)(1 + ε− λ

λn(θ,m)
+ ελ)− 〈h, v〉.

Consequently for ε rather small Φ(v) → −∞ when ||v||1,p → +∞. Since K
′

is a
compact there exists t0 rather big such that α := max

v∈t0K
′
Φ(v) < β. Next putting

K0 = t0K
′

, we have K0 ∈ Sym(W 1,P
0 (Ω)), K0 is a compact and θ(K0) ≥ n,

therefore (P2) is verified. There remains to verify (P1), let K a compact, sym-

metric and γ(K) ≥ n + 1, we put K̃ = { u

(pG0(u))
1
p

;u ∈ K}, we have K̃ ∈

Γn+1(θ) and min
u∈K̃

∫
Ω
m|u|pdx ≤ 1

λn+1(θ,m) , finally there exists u0 ∈ K such

that λn+1(θ,m)
∫
Ω
m|u0|pdx ≤ pG0(u0) i.e., K ∩A1 6= . 2

7. The eigenvalue in the case N=1

In this section we consider that N = 1.

Proposition 7.1 Assume that the hypotheses (H1), (H2) and (H5) hold. Then
there exists δ′ > 0 such that A0(x, 1) > δ′, a.e.x ∈ Ω, and 〈G′

0(u), u〉 =
∫
Ω
A0(x, 1)|u′|pdx =

pG0(u), for all u ∈ W 1,p
0 (Ω), where A0(x, ξ) = ∂a0(x,ξ)

∂ξ
, is defined in (6).

Proof: From (6) and Proposition (2.1) , we have A0(x, r) = rp−1A0(x, 1), for all
r > 0, hence there exits c > 0 such that a0(x, 1) = cp−1A0(x, 1), consequently
from (5) there exists δ′ > 0 such that A0(x, 1) > δ′, a.e.x ∈ Ω. On the other
hand consider the function f(t) = G0(tu), t ∈ R, from Proposition (2.1), we have
〈G′

0(u), u〉 =
∫
Ω
A0(x, 1)|u′|pdx = pG0(u). 2

Remark 7.1 From (12) and Proposition (7.1), we conclude that for all n ≥ 1,

1

λn(γ)
= sup

K∈Γn(γ)

inf
u∈K

∫

Ω

m|u|pdx, (23)
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where Γn(γ) is defined in (11) and

Sp = {u ∈ W 1,p
0 (Ω);

∫

Ω

A0(x, 1)|u′|pdx = 1}. (24)

Let ρ(x) = a0(x, 1) and Ω = I = (a, b) such that a < b, if ρ ∈ C1(I) ∩ C0(I), then
we have

Theorem 7.2 ( [5]) For all p > 1, m ∈ M+(Ω) the problem (2), has a non trivial
solution if and only if λ belongs to an increasing sequence (λn)n≥1. Moreover

1. Each λn is simple and any corresponding eigenfunction takes the forme αvn(x)
with α ∈ R, namely the multiplicity of each eigenfunction is 1. Moreover
vn(x) has exactly n− 1 simple zeros.

2. Each λn verifies the strict monotonicity with respect to the weight and the
domain Ω.

3. σ+(G0) = {λn, n = 1, 2 . . .}. The eigenvalues are ordered as 0 < λ1(m) <
λ2(m) < λ3(m) < . . . λn(m) → +∞ as n → +∞.

7.1. Application. Consider the Dirichlet problem
{

−(A(x, u′))′ = f(x, u) + h in Ω,
u = 0 on ∂Ω,

(25)

where A : Ω × R → R, f : Ω × R → R, satisfies the Carathéodory conditions
and h ∈ W−1,p′

(Ω). Now supposing that f satisfies the hypotheses (Hα,β): for
α, β ∈ R, with α < β, we have

1. for all R > 0, there exists φR ∈ Lp′

(Ω) such that

max
|s|≤R

|f(x, s)| ≤ φR(x) a.e. x ∈ Ω. (26)

2. (fα,β) for all ε > 0 there exists bε ∈ Lp′

(Ω) such that a.e. x ∈ Ω, for all
s ∈ R, we have

− bε(x) + (α− ε)|s|p ≤ sf(x, s) ≤ (β + ε)|s|p + bε(x). (27)

3. (Fα,β) α ≤6= l(x) := lim inf
|s|→+∞

pF (x,s)
|s|p , lim sup

|s|→+∞

pF (x,s)
|s|p := k(x) ≤6= β a.e.x ∈ Ω

and for all ε > 0, there exists dε ∈ L1(Ω), such that a.e.x ∈ Ω, for all s ∈ R,
we have

− dε(x) + (l(x)− ε)
|s|p
p

≤ F (x, s) ≤ (k(x) + ε)
|s|p
p

+ dε(x), (28)

where F (x, s) =
∫ s

0
f(x, t)dt, m1(x) ≤6= m2(x), "i.e.," m1(x) ≤ m2(x) a.e.x ∈

Ω and m1(x) < m2(x), in some subset of Ω of nonzero measure, for all
m1,m2 ∈ M+(Ω). Let the energy functional Φ corresponding to the problem
(25), we have Φ(u) = G(u) −

∫
Ω
F (x, u)dx − 〈h, u〉, where G is defined in

Remarks (2.1).
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Proposition 7.2 Assume that the hypotheses (H1), (H2), (H5) hold and f satisfies
the hypotheses (Hα,β). If Φ does not satisfied the Palais–Smale condition (PS),

then there exist m(x) ∈ L∞(Ω), v ∈ W 1,p
0 (Ω) \ {0}, and (un) ⊂ W 1,p

0 (Ω) such that
v is nontrivial solution of the problem

(Pm)

{
G

′

0(u) = m|u|p−2u in Ω,
u = 0 on ∂Ω,

and 



α ≤6= m(x) ≤6= β,

||un||1,p → +∞, un

||un||1,p → v in W 1,p
0 (Ω),

(Φ(un)) is a bounded sequences.

Proof: The proof is an adaptation of the Theorem ((4.1) see [3]) and the Theorem
(6.3). 2

Theorem 7.3 Assume that the hypotheses (H1), (H2) and (H5) hold. If f satisfies
(Hλn(1),λn+1(1)), for n ≥ 1, then Φ will satisfy the Palais–Smale condition (PS)
and the problem (25) admits a solution.

Proof: If Φ does not satisfied (PS), then from Proposition (7.2), there exists
m(x) ∈ L∞(Ω) such that λn(1) ≤6= m(x) ≤6= λn+1(1), this contradicts with
Theorem (7.2), the rest of the proof is an adaptation of the Theorem (6.3). 2
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