
Bol. Soc. Paran. Mat. (3s.) v. 28 1 (2010): 67–77.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/spm doi:10.5269/bspm.v28i1.10816

Odd-order quasilinear evolution equations posed on a bounded interval

Andrei V. Faminskii∗ & Nikolai A. Larkin†

Contents

1 Introduction 67

2 Notations. Statement of main results 69

3 Decay of small solutions 72

1. Introduction

We study in a rectangle QT = (0, T )× (0, 1) global well-posedness of nonhomo-
geneous initial-boundary value problems for general odd-order quasilinear partial
differential equations

ut + (−1)l+1∂2l+1
x u+

2l∑

j=0

aj∂
j
xu+ uux = f(t, x) (1.1)

with initial data
u(0, x) = u0(x), x ∈ (0, 1) (1.2)

and boundary data

∂jxu(t, 0) = µj(t), j = 0, . . . , l − 1, (1.3)

∂jxu(t, 1) = νj(t), j = 0, . . . , l, t ∈ (0, T ), (1.4)

where l ∈ N, aj are real constants. This class of equations includes well-known
Korteweg–de Vries and Kawahara equations which model the dynamics of long
small-amplitude waves in various media.
Our study is motivated by physics and numerics and our main goal is to formulate
a correct nonhomogeneous initial-boundary value problem for (1.1) in a bounded
interval and to prove the existence and uniqueness of global in time weak and
regular solutions in a large scale of Sobolev spaces as well as to study decay of
solutions while t→ ∞.
For reasonable initial and boundary conditions we prove existence and uniqueness
of global weak and regular solutions as well as the exponential decay while t→ ∞
of the obtained solution with small boundary conditions, the right-hand side and
initial data.
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Dispersive equations such as KdV and Kawahara equations have been devel-
oped for unbounded regions of wave propagations, however, if one is interested
in implementing numerical schemes to calculate solutions in these regions, there
arises the issue of cutting off a spatial domain approximating unbounded domains
by bounded ones. In this occasion some boundary conditions are needed to specify
the solution. Therefore, precise mathematical analysis of boundary value problems
in bounded domains for general dispersive equations is welcome and attracts at-
tention of specialists in the area of dispersive equations, especially KdV and BBM
equations, [3,5,6,7,8,9,12,15,16,17,18,21,25,26,27,28,31,37,38]. Cauchy problem for
dispersive equations of high orders was successfully explored by various authors,
[2,10,11,15,23,33,36]. On the other hand, we know few published results on initial-
boundary value problems posed on a finite interval for general nonlinear odd-order
dispersive equations, such as the Kawahara equation, see [13,14,29,20].

Well-posedness of such a problem for a linearized version of (1.1) with homoge-
neous initial and boundary data (1.2)–(1.4) was established in [32]. It should be
noted that imposed boundary conditions are reasonable at least from mathematical
point of view, see comments in [13].

The theory of global solvability of dispersive equations is based on conservation
laws, the first one — in L2. Let u(t, x) be a sufficiently smooth and decaying
while |x| → ∞ solution of an initial value problem for (1.1) (where a2j = 0, j =
1, . . . , l, f ≡ 0), then ∫

R

u2 dx = const.

The analogous equality can be written for problem (1.1)–(1.4) in the case of zero
boundary data. In the general case one has to make this data zero with the help
of a certain auxiliary function. In our paper [20] we constructed a solution of an
initial-boundary value problem for the linear homogeneous equation

ut + (−1)l+1∂2l+1
x u = 0 (1.5)

with the same initial and boundary data (1.2)–(1.4) and used it as such an auxiliary
function. This idea gives us an opportunity to establish our existence results for
(1.1) under natural assumptions on boundary data (see Remark 2.2 below).

Another important fact is extra smoothing of solutions in comparison with
initial data. In a finite domain it was first established for the KdV equation in [25,7]
based on multiplication of the equation by (1 + x)u and consequent integration.
In our case, we also have an extra smoothing effect. Roughly speaking, if u0 ∈
H(2l+1)k(0, 1), then u ∈ L2(0, T ;H(2l+1)k+l(0, 1)).

It has been shown in [27,28] that the KdV equation is implicitly dissipative.
This means that for small initial data the energy decays exponentially as t→ +∞
without any additional damping terms in the equation. Moreover, the energy
decays even for the modified KdV equation with a linear source term, [28]. In
[20] we proved that this phenomenon takes place for general dispersive equations
of odd-orders for homogeneous boundary data and the right-hand side. Here we
generalize this result proving the exponential stability for small nonhomogeneous
boundary data and the right-hand side.
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2. Notations. Statement of main results

For any space of functions, defined on the interval (0, 1), we omit the symbol
(0, 1), for example, Lp = Lp(0, 1), Hk = Hk(0, 1), C∞

0 = C∞
0 (0, 1) etc.

Define linear differential operators in L2 with constant coefficients

P0 ≡

2l∑

j=0

aj∂
j
x, P ≡ (−1)l+1∂2l+1

x + P0.

The main assumption on P0 is the following.

Definition 2.1. We say that the operator P0 satisfies Assumption A if either

(−1)ja2j ≥ 0, j = 1, . . . , l,

or there is a natural number m ≤ l such, that

(−1)ma2m > 0 and a2j = 0, j = m+ 1, . . . , l.

Lemma 2.1. Assumption A is equivalent to the following property: there exists a
constant c0 ≥ 0 such that for any function ϕ ∈ H2l+1, ϕ(0) = · · · = ϕ(l−1)(0) = 0,
ϕ(1) = · · · = ϕ(l−1)(1) = 0,

(P0ϕ,ϕ) ≥ −c0‖ϕ‖
2
L2 (2.1)

(here and further (·, ·) denotes the scalar product in L2).

Let F and F−1 be respectively the direct and inverse Fourier transforms of a
function f . For s ∈ R define the fractional order Sobolev space

Hs(R) =
{
f : F−1[(1 + |ξ|2)

s
2 f̂(ξ)] ∈ L2(R)

}

and for a certain interval I ⊂ R let Hs(I) be a space of restrictions on I of functions
from Hs(R). Define also

Hs
0(I) =

{
f ∈ Hs(R) : supp f ⊂ I

}
.

If ∂I is a finite part of the boundary of the interval I, then for s ∈ (k+1/2, k+3/2),
where k ≥ 0 – integer,

Hs
0(I) =

{
f ∈ Hs(I) : f (j)

∣∣
∂I
= 0, j = 0, . . . , k

}
.

Note, that Hs
0(I) = Hs(I) for s ∈ [0, 1/2).

If X is a certain Banach (or full countable–normed) space, define by Cb(I;X )
a space of continuous bounded mappings from I to X . Let

Ck
b (I;X ) =

{
f(t) : ∂jt f ∈ Cb(I;X ), j = 0, . . . , k},

C∞
b (I;X ) =

{
f(t) : ∂jt f ∈ Cb(I;X ), ∀j ≥ 0}.
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If I is a bounded interval, the index b is omitted.

The symbol Lp(I;X ) is used in the usual sense for the space of Bochner mea-
surable mappings from I to X , summable with order p (essentially bounded if
p = +∞).

Next we introduce some special functional spaces.

Definition 2.2. For integer k ≥ 0, T > 0 and an interval (bounded or unbounded)
I ⊂ R define

Xk((0, T )× I) = {u(t, x) :

∂nt u ∈ C([0, T ];H(2l+1)(k−n)(I)) ∩ L2(0, T ;H(2l+1)(k−n)+l(I)), n = 0, . . . , k},

Mk((0, T )× I) = {f(t, x) : ∂kt f ∈ L2(0, T ;H−l(I)),

∂nt f ∈ C([0, T ];H(2l+1)(k−n−1)(I)) ∩ L2(0, T ;H(2l+1)(k−n)−l−1(I)),

n = 0, . . . , k − 1}.

Obviously,

‖P0u‖Mk((0,T )×I)) ≤ c‖u‖Xk((0,T )×I)). (2.2)

In fact, we construct solutions to problem (1.1)–(1.4) in the spaces Xk(QT ) for the
right parts of equation (1.1) in the spaces Mk(QT ).

To describe properties of boundary functions µj , νj we use the following func-
tional spaces.

Definition 2.3. Let s ≥ 0, m = l − 1 or m = l, define

Bm
s (0, T ) =

m∏

j=0

Hs+(l−j)/(2l+1)(0, T ).

We also use auxiliary subsets of Bm
s (0, T ):

Bm
s0(0, T ) =

m∏

j=0

H
s+(l−j)/(2l+1)
0 (R+)

∣∣
(0,T )

, R+ = (0,+∞).

For the study of properties of equation (1.5) we need more sophisticated spaces
than Xk.

Definition 2.4. For s ≥ 0, I ⊂ R define

Ys((0, T )× I) = {u(t, x) : ∂nt u ∈ C([0, T ];H(2l+1)(s−n)(I)), n = 0, . . . , [s],

∂jxu ∈ Cb(I;H
s+(l−j)/(2l+1)(0, T )), j = 0, . . . , [(2l + 1)s] + l}.
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Obviously, Yk(QT ) ⊂ Xk(QT ).
The spaces Ys originate from internal properties of the linear operator ∂t +

(−1)l+1∂2l+1
x . In fact, consider an initial value problem in a strip ΠT = (0, T )×R

for (1.5) with the initial data (1.2). This problem was studied in [23]. In particular,
if u0 ∈ H(2l+1)s(R), then for any T > 0 there exists a solution of (1.5), (1.2),
S(t, x;u0), given by the formula

S(t, x;u0) = F−1
x

[
eiξ

2l+1tû0(ξ)
]
(x). (2.3)

For this solution for any t ∈ R and integer 0 ≤ n ≤ s, 0 ≤ j ≤ (2l + 1)(s− n)

‖∂nt ∂
j
xS(t, ·;u0)‖L2(R) = ‖u

((2l+1)n+j)
0 ‖L2(R), (2.4)

and for any x ∈ R and integer 0 ≤ j ≤ (2l + 1)s+ l

‖D
s+(l−j)/(2l+1)
t ∂jxS(·, x;u0)‖L2(R) = c(l)‖D(2l+1)s

x u0‖L2(R), (2.5)

where the symbol Ds denotes the Riesz potential of the order −s. In particular,
the traces of ∂jxS for x = 0, j = 0, . . . ,m = l − 1, and x = 1, j = 0, . . . ,m = l lie
in Bm

s (0, T ).
In order to formulate compatibility conditions for the original problem we now

introduce certain special functions.

Definition 2.5. Let Φ0(x) ≡ u0(x) and for natural n

Φn(x) ≡ ∂n−1
t f(0, x)− PΦn−1(x)−

n−1∑

m=0

(
n− 1

m

)
Φm(x)Φ′

n−m−1(x).

The following theorems have been proved in [20].

Theorem 2.1 (local well-posedness). Let the operator P0 satisfy Assumption A.
Let u0 ∈ H(2l+1)k(0, 1), (µ0, . . . , µl−1) ∈ Bl−1

k (0, T ), (ν0, . . . , νl) ∈ Bl
k(0, T ), f ∈

Mk(QT ) for some T > 0 and integer k ≥ 0. Assume also that µ
(n)
j (0) = Φ

(j)
n (0),

j = 0, . . . , l − 1, ν
(n)
j (0) = Φ

(j)
n (1), j = 0, . . . , l, for 0 ≤ n ≤ k − 1. Then there

exists t0 ∈ (0, T ] such that problem (1.1)–(1.4) is well–posed in Xk(Qt0).

Theorem 2.2 (global well-posedness). Let the hypothesis of Theorem 2.1 be sat-
isfied and, in addition, if k = 0, then f ∈ L1(0, T ;L2), and if l = 1, k = 0, then
µ0, ν0 ∈ H1/3+ε(0, T ) for certain ε > 0. Then problem (1.1)–(1.4) is well–posed in
Xk(QT ).

Remark 2.1. We mean that the problem is well-posed in the spaceXk, if there exists
a unique solution u(t, x) in this space and the map (u0, (µ0, . . . , µl−1), (ν0, . . . , νl), f) 7→
u is Lipschitz continuous on any ball in the corresponding norms.

Remark 2.2. The properties (2.5) of the solution S to the initial-value problem
(1.5), (1.2) show that the smoothness conditions on the boundary data in our results
are natural (with the only exception in the case l = 1, k = 0 for global results)
because they originate from the properties of the operator ∂t + (−1)l+1∂2l+1

x .
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Remark 2.3. All these well-posedness results can be easily generalized for an equa-
tion of (1.1) type with a nonlinear term g(u)ux, where a sufficiently smooth function
g has not more than linear rate of growth.

3. Decay of small solutions

Consider in Q∞ = (0,+∞)× (0, 1) the equation

ut + P (∂x)u+ uux = f(x, t), (3.1)

where

P (∂x) = (−1)l+1∂2l+1
x +

2l∑

j=0

aj∂
j
x,

with initial and boundary data:

u(0, x) = u0(x), x ∈ (0, 1), (3.2)

∂jxu(t, 0) = µj(t), j = 0, . . . , l − 1, (3.3)

∂jxu(t, 1) = νj(t), j = 0, . . . , l, t > 0. (3.4)

Let for j = 0, . . . , l − 1

ψj(x) =
xjη(1− x)

j!
,

where η is a certain smooth "cut-off" function, namely, η ≥ 0, η′ ≥ 0, η(x) = 0 for
x ≤ 1/4, η(x) = 1 for x ≥ 3/4, η(x) + η(1 − x) ≡ 1. One can see that uniformly
on j for a certain positive constant c∗ and ∀x ∈ (0, 1)

| ψj |, | ψ
′
j |≤ c∗. (3.5)

Let

ψ(t, x) =

l−1∑

j=0

(µj(t)ψj(x) + νj(t)ψj(1− x)).

Then for a function
U(t, x) ≡ u(t, x)− ψ(t, x)

problem (3.1)-(3.4) becomes

Ut + P (∂x)U + UUx + (ψU)x = f − ψt − P (∂x)ψ − ψψx ≡ F (t, x), (3.6)

U(0, x) = u0(x)− ψ(0, x) ≡ U0(x), (3.7)

∂jxU(t, 0) = ∂jxU(t, 1) = 0, j = 0, . . . , l − 1, (3.8)

∂lxU(t, 1) = νl(t), t > 0. (3.9)

Since

‖ψ(0, ·)‖L2(0,1) ≤ c∗l
l−1∑

j=0

(| µj(0) | + | νj(0) |)
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and

‖ψt + P (∂x)ψ + ψψx‖L2(0,1)

≤ c

l−1∑

j=0

(| µj(t) | + | µ′
j(t) | +µ

2
j (t)+ | νj(t) | + | ν′j(t) | +ν

2
j (t)),

where c depends on l, the values of aj and properties of the function η, it easy to
see that U0 and F are small if u0, f, µj , νj , j = 0, . . . , l − 1, are small.

Define

Aj = (−1)j+1(2j + 1)a2j+1 + (−1)jσa2j , j = 0, . . . , l,

where σ = 2 if (−1)ja2j ≥ 0, σ = 4 if (−1)ja2j < 0; (−1)l+1a2l+1 = 1.

Theorem 3.1. Let Assumption A is satisfied and

Al +
∑

j:Aj<0

23(j−l)Aj = 2K > 0. (3.10)

Letu0 ∈ L2, f ∈ L2(0,+∞;L2(0, 1)), µj , νj ∈ H1(0,+∞), j = 0, . . . , l − 1; νl ∈
L2(0,+∞). Assume also that for a certain δ ∈ (0, 1]

3c∗2−3l
l−1∑

j=0

(‖µj‖L∞(0+∞) + ‖νj‖L∞(0+∞)) ≤
(1− δ)K

2
, (3.11)

{‖(1 + x)1/2U0‖
2
L2 +

23(1−l)

δK

∫ +∞

0

‖F (t, ·)‖2L2dt+ 2

∫ +∞

0

ν2l (t)dt}
1/2

< 3K23(l−1), (3.12)

and for all t > 0

∫ t

0

eκτ{
1

δK
23(1−l)‖F (τ, ·)‖2L2 + 2ν2l (τ)}dt ≤Meγt, (3.13)

where M is a positive constant, γ ∈ (0, κ) and

2κ = 23lK +
∑

j<l:Aj≥0

23jAj .

Then a unique solution u(t, x) to problem (3.1)-(3.4), such that u ∈ X0(QT ) for
all T > 0, satisfies for all t > 0 the inequality

‖U(t, ·)‖2L2 ≤ 2e−κt‖U0‖
2
L2 +Me(γ−κ)t. (3.14)
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Proof. First of all note that the hypothesis of Theorem 2.2 are satisfied, hence such
a unique solution exists. By Assumption A, (−1)la2l ≥ 0, hence Al ≥ 2l + 1 > 0.
Multiplying (3.6) by 2(1 + x)U(t, x) and integrating, we find

d

dt

∫ 1

0

(1+x)U2(t, x) dx+

l∑

j=0

∫ 1

0

[
(−1)j+1(2j+1)a2j+1+(−1)j2a2j(1+x)

]
(∂jxU)2 dx

−
2

3

∫ 1

0

U3 dx+

∫ 1

0

[
(1 + x)ψx − ψ

]
U2dx

≤ 4‖U‖L2‖F‖L2 + 2ν2l (t). (3.15)

(In fact, such a calculation must be first performed for smooth solutions and the
general case can be obtained via closure). We use the Friedrichs inequality as
follows: for any ϕ ∈ H l

0

‖ϕ‖L∞ ≤ 21−3l/2‖ϕ(l)‖L2 , ‖ϕ‖L2 ≤ 2−3l/2‖ϕ(l)‖L2 .

Then ∣∣∣
∫ 1

0

U3 dx
∣∣∣ ≤ ‖U‖L∞‖U‖2L2 ≤ 21−3l‖U(t, ·)‖L2‖∂lxU‖2L2 ,

and

|

∫ 1

0

[
(1 + x)ψx − ψ

]
U2dx |

≤ 3c∗2−3l
l−1∑

j=0

(‖µj‖L∞(0,+∞) + ‖νj‖L∞(0,+∞))‖∂
l
xU‖2L2 ≤

(1− δ)K

2
‖∂lxU‖2L2 .

Taking this into account, we rewrite (3.15) as follows:

d

dt

∫ 1

0

(1 + x)U2(t, x)dx+
3K

2

∫ 1

0

(∂lxU)2dx

+

∫ 1

0

[K
2

−
1

3
2(2−3l)‖(1 + x)1/2U(t, ·)‖L2

]
(∂lxU)2dx

≤
K

2

∫ 1

0

(∂lxU)2dx+
1

δK
23(1−l)‖F‖2L2 + 2ν2l (t).

Since
1

3
22−3l‖(1 + x)1/2U0‖L2 <

K

2
,

exploiting standard arguments, one can prove that

1

3
22−3l‖(1 + x)1/2U(t, ·)‖L2 <

K

2
, ∀t ≥ 0.
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Returning to (3.15), we get

d

dt

∫ 1

0

(1 + x)U2(t, x)dx+

∫ 1

0

(
23lK +

∑

j<l:Aj≥0

23jAj

)
U2dx

≤
1

δK
23(1−l)‖F‖2L2 + 2ν2l (t),

whence

d

dt

∫ 1

0

(1 + x)U2(t, x)dx+ κ

∫ 1

0

(1 + x)U2(t, x)dx ≤
1

δK
23(1−l)‖F‖2L2 + 2ν2l (t).

From here follows (3.14). 2

Remark 3.1. Inequality (3.13) is valid if ‖f‖ and functions νj(t), µj(t), j = 0, . . . , l−
1; νl(t) and their first derivatives are exponentially decreasing and small.

Remark 3.2. In [21] a non-trivial stationary solution to the initial-boundary value
problem for the homogeneous KdV equation under zero boundary data was con-
structed. Therefore certain assumptions on the initial data u0 are necessary for the
decay of the corresponding solution as t→ +∞.
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