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On the stabilization of the Korteweg–de Vries equation ∗

Vilmos Komornik
Dedicated to D. L. Russell on the occasion of his 70th birthday.

abstract: We consider the Korteweg–de Vries equation on a bounded interval
with periodic boundary conditions. We prove that a natural mass conserving global
feedback exponentially stabilizes the system in all Sobolev norms and we obtain
explicit decay rates. The proofs are based on the family of conservation laws for the
Korteweg–de Vries equation.
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1. Introduction

Let Ω = (0, 1), k > 0, R+ = [0,∞) and consider the problem































w′ + wwx + wxxx = −k(w − [w]) in Ω× R+,

w(0, t) = w(1, t) for t ∈ R+,

wx(0, t) = wx(1, t) for t ∈ R+,

wxx(0, t) = wxx(1, t) for t ∈ R+,

w(0) = w0 on Ω,

(1.1)

where ′ stands for the time derivative, the subscript x for the spatial derivative,
[w] denotes the mean-value of w defined by

[w] :=

∫

Ω

w dx.

For k = 0 the equation (1.1) is a good model of shallow water: w(x, t) denotes the
depth of water at a point x at time t; see [6], [9]. The periodic boundary conditions
correspond to a circular movement. In this model [w] denotes the total volume of
water.
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For k > 0 the action of the “feedback” −k(w − [w]) consists in balancing the
level of water, conserving at the same time its total volume. Indeed, the latter
property follows, at least formally, from (1.1):

[w]′ =

∫

Ω

w′ dx

= −
∫

Ω

wwx + wxxx + k(w − [w]) dx

= −
∫

Ω

(

1

2
w2 + wxx

)

x

dx+ k[w]− k

∫

Ω

w dx

= −
∫

Ω

(

1

2
w2 + wxx

)

x

dx

=

[

1

2
w2 + wxx

]1

0

= 0,

whence
[w(t)] = [w0], for all t ∈ R+. (1.2)

The following formal computation shows that w(t) converges exponentially to
the constant M := [w0] = [w] in L2(Ω) as t → ∞:

(

∫

(w − [w])2 dx
)′

=

∫

2(w −M)w′ dx

=

∫

−2(w −M)(wwx + wxxx + k(w −M)) dx

=

∫

−2w2wx + 2Mwwx − 2wwxxx − 2k(w −M)2 dx

=
[

−2

3
w3 +Mw2 − 2wwxx + w2

x

]1

0
− 2k

∫

(w −M)2 dx

= −2k

∫

(w −M)2 dx,

whence

‖w(t)− [w0]‖L2(Ω) = ‖w0 − [w0]‖L2(Ω)e
−kt for all t ≥ 0. (1.3)

Let us introduce the Hilbert spaces

H0
p := L2(Ω),

Hm
p :=

{

w ∈ Hm(Ω) : wj(0) = wj(1), j = 0, . . . ,m− 1
}

, m = 1, 2, . . . ,

and the dual space

H−1
p := (H1

p )
′.
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Identifying L2(Ω) with its dual (L2(Ω))′ we obtain the algebraical and topological
inclusions

· · · ⊂ H2
p ⊂ H1

p ⊂ H0
p ⊂ H−1

p .

We recall from [8] that the problem (1.1) is well-posed in the following sense:

Theorem 1.1 Let m ≥ 2 and w0 ∈ Hm
p . Then the problem











w′ + wwx + wxxx = −k(w − [w]) in Ω× R+,
∂j

∂xj w(0, t) =
∂j

∂xj w(1, t) for t ∈ R+, j = 0, . . . ,m− 1,

w(0) = w0 on Ω

(1.4)

has a unique solution

w ∈ C(R+;H
m
p ) ∩ C1(R+;H

m−3
p ). (1.5)

Furthermore, the mapping w0 7→ (w,w′) is continuous from Hm
p into Hm×Hm−3.

The purpose of this paper is to extend the estimate (1.3) on the asymptotic
behaviour of the solutions of (1.5):

Theorem 1.2 Let m ≥ 2 and w0 ∈ Hm
p . Then for every fixed 0 < k′ < k there

exists a constant C = C(w0, k′) such that the solution of (1.4) satisfies the estimate

‖(w(t)− [w0], w′(t))‖Hm
p ×H

m−3

p
≤ Ce−k′t, t ∈ R+. (1.6)

In order to convince ourselves about the validity of these estimates let us con-
sider for a moment the linearized problem











w′ + wxxx = −k(w − [w]) in Ω× R+,
∂j

∂xj w(0, t) =
∂j

∂xj w(1, t) for t ∈ R+, j = 0, . . . ,m− 1,

w(0) = w0 on Ω.

Assuming that the solutions satisfy the regularity properties (1.6) (see [7]), the
desired estimates follow by applying the multiplier method. Indeed, [w] is constant
again because

[w]′ =

∫

Ω

w′ dx

= −
∫

Ω

wxxx + k(w − [w]) dx

= − [wxx]
1
0 + k[w]− k

∫

Ω

w dx

= 0.
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Denoting this constant by M , the function v := w − M has the same regularity
properties as w and it solves the following problem:











v′ + vxxx = −kv in Ω× R+,
∂j

∂xj v(0, t) =
∂j

∂xj v(1, t) for t ∈ R+, j = 0, . . . ,m− 1,

v(0) = w0 −M on Ω.

(1.7)

By approximating the initial value by smoother functions it is sufficient to prove
the estimates for periodic solutions belonging to H2m

p . Multiplying the differential

equation in (1.7) by ∂2jv
∂x2j for j = 0, . . . ,m, integrating by parts in Ω and using the

periodic boundary conditions we obtain that

0 =

∫

Ω

(v′ + vxxx + kv)
∂2jv

∂x2j
dx

= (−1)j
∫

Ω

∂jv′

∂xj
· ∂

jv

∂xj
− ∂j+2v

∂xj+2
· ∂

j+1v

∂xj+1
+ k

(

∂jv

∂xj

)2

dx

= (−1)j
∂

∂t

(

1

2

∫

Ω

(

∂jv

∂xj

)2

dx

)

+ (−1)j+1

(

1

2

∫

Ω

∂

∂x

(

∂j+1v

∂xj+1

)2

dx

)

+ (−1)j
∫

Ω

k

(

∂jv

∂xj

)2

dx.

Since

1

2

∫

Ω

∂

∂x

(

∂j+1v

∂xj+1

)2

dx =
1

2

[

(

∂j+1v

∂xj+1

)2
]1

0

= 0

by the boundary conditions, we conclude that

∂

∂t

∫

Ω

(

∂jv

∂xj

)2

dx = −2k

∫

Ω

(

∂jv

∂xj

)2

dx

and hence
∫

Ω

(

∂j

∂xj
v(t)

)2

dx = e−2kt

∫

Ω

(

∂j

∂xj
v(0)

)2

dx

for all t ≥ 0 and j = 0, . . . ,m. Therefore

‖v(t)‖Hm
p

= e−kt‖v(0)‖Hm
p
, t ≥ 0,

and then, using the equation

v′ = −vxxx − kv

we obtain that

‖v′(t)‖Hm−3

p
≤ (1 + k)e−kt‖v(0)‖Hm

p
, t ≥ 0.
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Taking the definition of v into account we obtain finally that

‖(w(t)− [w0], w′(t))‖Hm
p ×H

m−3

p
≤ Ce−kt, t ∈ R+. (1.8)

The presence of the nonlinear term creates serious difficulties with respect to
the linearized problems but as we will see, the final estimates are only slightly
weaker than (1.8): we have a decay rate k − ε with arbitrarily small ε > 0 instead
of k.

Theorem 1.2 has been planned to be a part of a joint work with D. L. Russell
and B.-Y. Zhang (see [2], [3]) but, due to some mismanagement, it has never been
published before. The author is indebted to D. L. Russell and B.-Y. Zhang for
many helpful conversations on this subject.

2. Proof of Theorem 1.2 for m = 2

We shall often use the equality (1.2) and therefore we shall write [w] instead of
[w0]. For brevity we shall write

∫

instead of
∫

Ω
.

Applying a usual density argument it is sufficient to prove the estimates (1.6)
for w0 ∈ H5

p . According to Theorem 1.1 thus we may assume that

w ∈ C(R+;H
5
p ) ∩ C1(R+;H

2
p ). (2.1)

This regularity property is sufficient to justify all computations which follow.
It is convenient to introduce the notations

M := [w0], v := w −M, v0 := w0 −M ; (2.2)

then we deduce from (1.1), (1.2) and (2.1) that

v ∈ C(R+;H
5
p ), (2.3)

v ∈ C1(R+;H
2
p ), (2.4)

[v(t)] = 0 for all t ∈ R+, (2.5)

v′ + vvx +Mvx + vxxx + kv = 0 in Ω× R+, (2.6)

v(0) = v0 on Ω, (2.7)

and the estimates (1.6) take the following form:

‖(v(t), v′(t))‖H2
p×H

−1

p
≤ Ce−k′t, t ∈ R+. (2.8)

Lemma 2.1 The function

t 7→
∫

v(t)2 dx, t ∈ R+ (2.9)

is continuously differentiable, and

(

∫

v2 dx
)′

= −2k

∫

v2 dx. (2.10)
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Proof: Since H2
p is a Banach algebra, it follows from (2.4) that the function v2 is

continuously differentiable. Hence the function (2.9), being the composition of two
function of class C2, is also continuously differentiable.

Using (2.6) and the periodicity of v (see (2.3)) we easily obtain the identity
(2.10):

(

∫

v2 dx
)′

=

∫

2vv′ dx

=

∫

−2v(vvx +Mvx + vxxx + kv) dx

=

∫

−2v2vx − 2Mvvx − 2vvxxx − 2kv2 dx

=
[

−2

3
v3 −Mv2 − 2vvxx + v2x

]1

0
− 2k

∫

v2 dx

= −2k

∫

v2 dx.

2

Lemma 2.2 The function

t 7→
∫

vx(t)
2 − 1

3
v3(t)2 dx, t ∈ R+ (2.11)

is continuously differentiable and

(

∫

vx(t)
2 − 1

3
v3(t)2 dx

)′

= −2k

∫

vx(t)
2 − 1

2
v3(t)2 dx. (2.12)

It follows easily from (2.4) that the function (2.11) is continuously differentiable.
Using (2.6) and the periodicity of v hence the identity (2.12) follows:

(

∫

v2x − 1

3
v3 dx

)′

=

∫

2vxv
′
x − v2v′ dx

=
[

2vxv
′
]1

0
+

∫

−v′(2vxx + v2) dx

=

∫

(vvx +Mvx + vxxx + kv)(2vxx + v2) dx

=

∫

(v2)xvxx +
(

Mv2x + v2xx +
1

4
v4 +

M

3
v3
)

x
+ v2vxxx − 2kv2x + kv3 dx

=
[

v2vxx +Mv2x + v2xx +
1

4
v4 +

M

3
v3
]1

0
+

∫

−2kv2x + kv3 dx

= −2k

∫

−1

2
v3 dx.
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Lemma 2.3 The function

t 7→
∫

vxx(t)
2 − 5

3
v2xv(t)

2 +
5

36
v(t)4 dx, t ∈ R+ (2.13)

is continuously differentiable and

(

∫

v2xx − 5

3
v2xv +

5

36
v4 dx

)′

= −2k

∫

v2xx − 5

2
v2xv +

5

18
v4 dx. (2.14)

By (2.4) the function (2.13) is continuously differentiable. To show the identity
(2.14) first we deduce from (2.6), using the periodicity of v, the following identity:

(

∫

v2xx − 5

3
v2xv +

5

36
v4 dx

)′

=

∫

2vxxv
′
xx − 10

3
vxv

′
xv −

5

3
v2xv

′ +
5

9
v3v′ dx

=
[

2vxxv
′
x − 2vxxxv

′ − 10

3
vvxv

′
]1

0

+

∫

v′
(

2vxxxx +
5

3
v2x +

10

3
vvxx +

5

9
v3
)

dx

=

∫

v′
(

2vxxxx +
5

3
v2x +

10

3
vvxx +

5

9
v3
)

dx

= −
∫

(vvx +Mvx + vxxx + kv)
(

2vxxxx +
5

3
v2x +

10

3
vvxx +

5

9
v3
)

dx

= −k

∫

2vvxxxx +
5

3
vv2x +

10

3
v2vxx +

5

9
v4 dx

−M

∫

2vxvxxxx +
5

3
v3x +

10

3
vvxvxx +

5

9
v3vx dx

−
∫

2vvxvxxxx +
5

3
vv3x +

10

3
v2vxvxx +

5

9
v4vx + 2vxxxvxxxx

+
5

3
v2xvxxx +

10

3
vvxxvxxx +

5

9
v3vxxx dx

=: −kI1 −MI2 − I3.

It suffices to show that

I1 =

∫

2v2xx − 5vv2x +
5

9
v4 dx and I2 = I3 = 0.

We have

I1 =
[

2vvxxx − 2vxvxx +
10

3
v2vx

]1

0

+

∫

2v2xx +
5

3
vv2x − 20

3
vv2x +

5

9
v4 dx

=

∫

2v2xx − 5vv2x +
5

9
v4 dx
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and

I2 =
[

2vxvxxx − v2xx +
5

3
vv2x +

5

36
v4
]1

0
+

∫

5

3
v3x − 5

3
v3x dx

= 0.

Finally, we have

I3 =

∫

2vvxvxxxx +
5

3
vv3x +

5

3
v2xvxxx +

10

3
v2vxvxx +

10

3
vvxxvxxx

+
5

9
v4vx +

5

9
v3vxxx + 2vxxxvxxxx dx

=
[

2vvxvxxx +
1

9
v5]10 +

∫

−2v2xvxxx − 2vvxxvxxx +
5

3
vv3x

+
5

3
v2xvxxx +

10

3
v2vxvxx +

10

3
vvxxvxxx +

5

9
v3vxxx dx

=

∫

−2v2xvxxx − 2vvxxvxxx +
5

3
vv3x +

5

3
v2xvxxx +

10

3
v2vxvxx

+
10

3
vvxxvxxx +

5

9
v3vxxx +

5

9
v3vxx dx

=
[

−2v2xvxx − vv2xx +
5

3
vv2x +

5

3
vv2xx]

1
0

+

∫

4vxv
2
xx + vxv

2
xx

+
5

3
vv3x − 10

3
vxv

2
xx

+
10

3
v2vxvxx − 5

3
vxv

2
xx − 5

3
v2vxvxx dx

=

∫

5

3
vv3x +

5

3
v2vxvxx dx = 0.

In order to simplify the notation we shall write ‖·‖p for the norm of Lp(Ω),
1 ≤ p ≤ ∞. Since Ω is the unit interval, the Hölder inequality is particularly
simple:

‖v‖p ≤ ‖v‖q for all v ∈ Lq(Ω), 1 ≤ p ≤ q ≤ ∞. (2.15)

We shall also use the Poincaré–Wirtinger inequality:

‖v‖∞ ≤ ‖vx‖1 for all v ∈ H1(Ω) satisfying [v] = 0. (2.16)

The proof is simple: since v is continuous, there exists a ∈ Ω such that v(a) = 0.
Then for any y ∈ Ω we have

|v(y)| = |v(y)− v(a)| =
∣

∣

∣

∫ y

a

vx dx
∣

∣

∣
≤
∫

Ω

|vx| dx = ‖vx‖1.
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Noe that Lemma 2.1 implies that

‖v(t)‖2 = ‖v0‖2e−kt for all t ∈ R+. (2.17)

Now let us show that for each fixed k′ ∈ (0, k) there exists a positive constant C ′

such that
‖vx(t)‖2 = C ′e−k′t for all t ≥ 0. (2.18)

Using (2.15)–(2.17) we have

‖v3(t)‖1 ≤ ‖v(t)‖2∞‖v(t)‖1
≤ ‖vx(t)‖21‖v(t)‖2
≤ ‖vx(t)‖22‖v0‖2e−kt;

consequently, for any fixed ε > 0 (to be chosen later) there exists T ′ > 0 such that
∫

v3(t) dx ≤ ε

∫

v2x dx for all t > T ′. (2.19)

If ε ≤ 2, then we deduce from (2.19) the inequalities
∫

(

v2x − 1

3
v3
)

(t) dx ≥ 1

3

∫

v2x(t) dx ≥ 0 for all t > T ′. (2.20)

If ε is sufficiently small, then we also deduce from (2.19) that

− 2k

∫

(

v2x − 1

2
v3
)

(t) dx ≤ −2k′
∫

(

v2x − 1

3
v3
)

(t) dx for all t > T ′. (2.21)

(It suffices to choose ε ≤ (6k − 6k′)/(3k − 2k′).)
Thus, choosing a sufficiently small ε we deduce from (2.11), (2.20) and (2.21)

that

1

3

∫

v2x(t) dx ≤
∫

(

v2x − 1

3
v3
)

(t) dx

≤
(
∫

(

v2x − 1

3
v3
)

(0) dx

)

e−k′(t−T ′)

=: C ′e−k′t for all t > T ′

which implies (2.18) for all t > T ′. The left-hand side of (2.18) being continuous,
the estimate (2.18) remains valid for all t ≥ 0 with some bigger constant C ′.

Next we show similarly that for any fixed k′ < k there exists a positive constant
C ′′ such that

‖vxx‖2 = C ′′e−k′t for all t ≥ 0. (2.22)

Using (2.15)–(2.18)) we have

‖v4(t)‖1 ≤ ‖v(t)‖2∞‖v(t)‖22
≤ ‖vx(t)‖22‖v(t)‖22
≤ ‖vxx(t)‖22‖v0‖22e−2kt
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and

∣

∣

∣

∫

(v2xv)(t) dx
∣

∣

∣
≤ ‖vx(t)‖22‖v(t)‖∞

≤ ‖vx(t)‖t32
≤ ‖vxx(t)‖22C ′e−k′t.

It follows that for any fixed ε > 0 (to be chosen later) there exists T ′′ > 0 such
that

∫

∣

∣(v2xv)(t)
∣

∣+ v(t)4 dx ≤ ε

∫

vxx(t)
2 dx, for all t > T ′′. (2.23)

Choosing ε > 0 sufficiently small we conclude from (2.23) that

∫

(

v2xx − 5

3
v2xv +

5

36
v4
)

(t) dx ≥ 1

3

∫

vxx(t)
2 dx ≥ 0 (2.24)

and

− 2k

∫

(

v2xx − 5

2
v2xv +

5

18
v4
)

(t) dx

≤ −2k′′
∫

(

v2xx − 5

3
v2xv +

5

36
v4
)

(t) dx (2.25)

for all t > T ′′. We deduce from (2.13), (2.24) and (2.25) that

1

3

∫

vxx(t)
2 dx ≤

∫

(

v2xx − 5

3
v2xv +

5

36
v4
)

(t) dx

≤
(
∫

(

v2xx − 5

3
v2xv +

5

36
v4
)

(0) dx

)

e−2k′(t−T ′)

=: (C ′)2e−2k′t,

proving (2.22) for all t > T ′. The left-hand side of (2.22) being continuous, the
estimate (2.22) remains valid for every t ≥ 0 if we choose some larger constant C ′′.

Now we may easily complete the proof of the theorem. By (2.17), (2.18) and
(2.22) for every fixed k′ < k there exists a positive constant C1 > 0 such that

‖v(t)‖H2
p
≤ C1e

−k′t for all t ≥ 0. (2.26)

Using the equation (2.6) hence we conclude easily that

‖w′(t)‖H−1

p
≤ C2e

−k′t for all t ≥ 0 (2.27)

with some constant C2 > 0. The estimate (2.8) follows from (2.26) and (2.27).
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3. Proof of Theorem 1.2 for m ≥ 3

The proof is constructive. It is based on an infinite sequence of polynomial
conservation laws for the KdV equation obtained in [6]. We begin by recalling four
important properties concerning these laws, established in [4] and [6].

(i) There exists a sequence of polynomials Pn = Pn(v0, . . . , vn) of n+1 variables,
n = 0, 1, . . ., such that setting also

P−1 = P−1(v0) := v0

we have
∂Pn

∂v0
= (n+ 1)Pn−1, n = 0, 1, . . . .

(ii) The highest order term of Pn with respect to vn is v2n.

(iii) Defining the rank of a product va0

0 · · · vak

k by

rank (va0

0 · · · vak

k ) =

k
∑

j=0

aj

(

1 +
j

2

)

,

each term of Pn has rank n+ 2, n = 0, 1, . . . .

(iv) Given a function w ∈ C∞ ((0, 1)× (0,∞)) let us compute each partial deriva-
tive

∂Pn

∂t

(

w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

by the Leibniz rule and then replace each factor of the form

∂j+1w

∂t∂xj
by

∂jw

∂xj

(

−w
∂w

∂x
− ∂3w

∂x3

)

, j = 0, . . . , n.

Then the result may be written in the form

∂Pn

∂t

(

w,
∂w

∂x
, . . . ,

∂nw

∂xn

)

=
∂Yn

∂t

(

w,
∂w

∂x
, . . . ,

∂n+2w

∂xn+2

)

where Yn is a suitable polynomial of n+3 variables, independent of the choice
of the function w, n = −1, 0, 1, . . . . (We remark that our notation differs from
that of [4] and [6]: with their notation we have Pn = Tn−2 and Yn = Xn−2;
we follow [5].)

In order to simplify the notation in the sequel we shall denote the partial deriva-

tive ∂jw
∂xj of the solution function w by w,j ; in particular, w,0 = w. Furthermore,

all integrals will be taken on the interval (0, 1), i.e.,
∫

· dx =
∫ 1

0
· dx. Finally, we

write ‖·‖p for the norm in the space Lp(0, 1), 1 ≤ p ≤ ∞.
We need the following important lemma.
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Lemma 3.1 Consider the solution w of (1.4) for some w0 ∈ Hm
p . Then the

following properties hold true:

(a) We have in (0,∞) the identity

d

dt

∫

(w − [w])2 dx = −2K

∫

(w − [w])2 dx. (3.1)

(b) For each n = 1, . . . ,m there exist two polynomials

Qn−1 = Qn−1(v0, . . . , vn−1) and Rn−1 = Rn−1(v0, . . . , vn−1)

of n variables such that the following identity is satisfied in (0,∞):

d

dt

∫

w2
,n +Qn−1(w − [w], w,1, . . . , w,n−1) dx

= −2K

∫

w2
,n +Rn−1(w − [w], w,1, . . . , w,n−1) dx. (3.2)

(c) Each term of Qn−1(v0, . . . , vn−1) and of Rn−1(v0, . . . , vn−1) is the product of
at least three, not necessarily different, factors, the exponent of vn−1 being
always less than four.

(a) As we have seen in the introduction, [w(t)] does not depend on t:

[w(t)] = [w0], t ≥ 0 (3.3)

and the identity (3.1) is satisfied: the formal proofs given before are justified by
the regularity (1.5) of the solution.

(b) Using properties (ii) and (iii) we see that Pn has the form

Pn(v0, . . . , vn) = v2n + bvn + c

where b is a polynomial in v0,. . . , vn−2 (constant if n = 1) and c is a polynomial
in v0,. . . , vn−1. Using the periodic boundary conditions it follows that
∫

Pn(w− [w], w,1, . . . , w,n) dx =

∫

w2
,n +Qn−1(w− [w], w,1, . . . , w,n−1) dx (3.4)

where

Qn−1(w − [w], w,1, . . . , w,n−1) =

{

c(w − [w]) for n = 1,

−bxw,n−1 + c for n ≥ 2.

Now we compute

d

dt

∫

Pn(w − [w], w,1, . . . , w,n) dx. (3.5)

We observe that, as a consequence of (i) and (3.3), Pn(w0 − [w], w1, . . . , wn) is a
linear combination of Pj(w0 − [w], w1, . . . , wj) for j = 0, . . . , n (we apply Taylor’s
formula with respect to w). Therefore, using (1.4) and (iv), we may compute (3.5)
in the following way:
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• we compute (3.5) formally, using the Leibniz rule;

• we replace the factors ∂
∂t
(w − [w]) by −K(w − [w]) and the factors ∂

∂t
w,j by

−Kw,j , j = 1, . . . , n;

• we integrate over (0, 1).

This computation transforms w2
,n into −2Kw2

,n and Qn−1(w−[w], w,1, . . . , w,n−1)
into −2KRn−1(w− [w], w,1, . . . , w,n−1) where Rn−1 is a polynomial in n variables.
Therefore we have

d

dt

∫

Pn(w − [w], w,1, . . . , w,n) dx

= −2K

∫

w2
,n +Rn−1(w − [w], w,1, . . . , w,n−1) dx, (3.6)

and (3.2) follows from (3.4) and (3.6).

(c) One can readily verify that each term of

Qn−1(v0, . . . , vn−1)

and of
Rn−1(v0, . . . , vn−1)

has the same rank as Pn(v0, . . . , vn). Hence, if cva0

0 · · · vak

k is a term of one of these
two polynomials (with some nonzero constant c), then

k
∑

j=0

aj

(

1 +
j

2

)

= n+ 2. (3.7)

Since k ≤ n− 1, we deduce from (3.7) the inequality

k
∑

j=0

aj

(

1 +
n

2

)

> n+ 2, i.e.,

k
∑

j=0

aj > 2;

this proves the first statement. On the other hand, (3.7) implies that

k
∑

j=0

aj

(

1 +
n− 1

2

)

≤ n+ 2,

whence, since n ≥ 1,

an−1 ≤ 2 +
2

n+ 1
≤ 3.

This proves the second statement.
Now we turn to the proof of Theorem 1.2. First we observe that (3.1) immedi-

ately implies
‖w(·, t)− [w]‖2 = e−Kt‖w0 − [w0]‖2, t ≥ 0. (3.8)
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We will prove by induction on j that

‖w,j(·, t)‖2 ≤ ce−K′t, t ≥ 0 (3.9)

for j = 1, . . . ,m.
Let n ≤ m be a positive integer and assume that (3.9) is satisfied for j =

1, . . . , n − 1. We will prove that it is satisfied for j = n, too. Using the trivial
inequalities

‖v − [v]‖∞ ≤ ‖v,1‖1, v ∈ H1(0, 1)

and

‖v‖1 ≤ ‖v‖p, v ∈ Lp(0, 1), p ∈ (1,∞]

and applying part (c) of Lemma 3.1 we obtain the estimates

‖Qn−1(w − [w], w,1, . . . , w,n−1)‖1 ≤ C‖w,n−1‖N2 ‖w,n‖22

and

‖Rn−1(w − [w], w,1, . . . , w,n−1)‖1 ≤ C‖w,n−1‖N2 ‖w,n‖22
where C and N are positive integers, independent of t ≥ 0. Applying (3.8) if n = 1
and (3.9) for j = n− 1 if n ≥ 2, there follows the existence of a positive number T
such that for all t > T the following inequalities hold:

∫

Qn−1(w − [w], w,1, . . . , w,n−1) dx ≤ 1

2
‖w,n‖22 (3.10)

and

− 2K

∫

w2
,n +Rn−1(w − [w], w,1, . . . , w,n−1) dx

≤ −2K ′

∫

w2
,n +Qn−1(w − [w], w,1, . . . , w,n−1) dx. (3.11)

Majorizing the right side of (3.2) by use of (3.11) we see with the use of (3.10)
that there is a constant c1 such that

∫

Qn−1(w − [w], w,1, . . . , w,n−1) dx ≤ c1e
−2K′t, t ≥ T.

Hence, using (3.10) again,

‖w,n(·, t)‖2 ≤
√
2c1e

−K′t, t ≥ T. (3.12)

Since ‖w,n(·, t)‖2 is continuous on [0, T ], it is also bounded there:

‖w,n(·, t)‖2 ≤ c2, t ∈ [0, T ]. (3.13)
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The validity of (3.9) for j = n now follows from (3.12) and (3.13) by taking

C := max
{√

2c1, c2e
K′t
}

.

We have thus proved (3.8) and (3.9) for j = 1, . . . ,m. Equivalently, we have
established that

‖w(·, t)− [w]‖Hm
p

≤ Ce−K′t, t ≥ 0. (3.14)

To complete the proof of the theorem it suffices to prove the estimate

∥

∥

∥

∥

∂w

∂t
(·, t)

∥

∥

∥

∥

H
m−3

p

≤ C‖w(·, t)− [w]‖Hm
p

for some constant C, independent of t ≥ 0. Since

wt = −K(w − [w])− wwx − wxxx = K(w − [w])− (w − [w])wx − [w]wx − wxxx,

in view of (3.14) it is enough to show that

‖(w(·, t)− [w])w,1‖Hm−3

p
≤ Ce−K′t, t ≥ 0. (3.15)

For any nonnegative integers j ≤ m− 1 and k ≤ m− 1, using the definition of
Hm

p we have

∥

∥

∥

∥

∂j

∂xj
(w − [w])

∂k

∂xk
w

,1

∥

∥

∥

∥

2

≤
∥

∥

∥

∥

∂j

∂xj
(w − [w])

∥

∥

∥

∥

∞

∥

∥

∥

∥

∂k

∂xk
w

,1

∥

∥

∥

∥

2

≤ ‖w,j+1‖1‖w,k+1‖2
≤ ‖w,j+1‖2‖w,k+1‖2
≤ ‖w − [w]‖2Hm

p
.

Using the Leibniz formula it follows that

‖(w − [w])w,1‖Hm−1

p
≤ C‖w − [w]‖2Hm

p
. (3.16)

Since K ′ > 0, (3.14) and (3.16) imply

‖(w(·, t)− [w])w,1‖Hm−1

p
≤ Ce−K′t, t ≥ 0 (3.17)

which is even stronger than (3.15).
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