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A non resonance under and between the two first eigenvalues in a
nonlinear boundary problem

Aomar Anane, Omar Chakrone, Najat Moradi

ABSTRACT: In this paper we study the non resonance of solutions under and
between the two first eigenvalues for the problem

Apu = wP2u in Q

|Vu|p_2% = f(x,u) on O
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1. Introduction
Consider the following nonlinear boundary problem
Apu = [uf?u in Q

|Vu|p_2% g(z,u) on 09,

where Q is a bounded domain in RN, p > 1, Ayu = div(|[Vul’"> Vu) is the p-
0]
Laplacian and % is the outer normal derivative.

v
The case g (z,u) = AV () |u”? u, where V is the weight such that

VT #00ndQ and V € L*(09), (1.1)

where s > % ifl<p<N and s >1if N < p, has been treated by J.F.Bonder
and J.D.Rossi in [3], they have proved that there exists a sequence of variational
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eigenvalues A\ — 400, defined by

(Ak (V)rl: sup min M

| (12)
cec, uel ||u||€1/1,p(9)

where C, = {C C W' (Q); C is compact, symmetric and v (C) > k} and 7 is
the genus’s function. The authors have also proved that A; (V) is the first eigen-
value, isolated, simple and monotone with respect to the weight, and it’s defined

as A1 (V) = min {m cu € Whe (Q)}7 A2 (V) is the seconde one charac-
a0

terized by

(A2 (V)" =sup {/ [ul?V (2) 0o : ulljrpgy =1 and ue A} . (1.3)
09
where
A={uewW"r(Q): ‘aQi(u)‘ >c(V)} if s>lorl<p<N,

and
A:{UEWL”(Q):/ |V(x)|802d(V)} if p>Nands=1,
o0+

with 90T (u) = 9Q N {u > 0}, 90~ (u) = 02 N {u < 0}, |B| = meas, (B) denotes

n
the N — 1 dimensional measure of a subset B C 09, ¢(V) = (WM) )
aVv) = % where S; is the best constant in the Sobolev trace embedding
Wl*p(Q)‘—>Lq(6Q),p*:p(jffvi:;)forl<p<N,p*:ooforp2N,n:%

for 1 <p < N and n = 2s for p> N and s > 1, here s is the conjugate of s. This
problem will be named P (V).

In [2], one has proved that, in the case g (z,u) = AV () |u|’ > u + h with V
satisfies the same last conditions and h € L*(992), the solutions are in C** (Q) for
some « in |0, 1[. Now we will study the case g (x,u) = f (z,u)+h, with b € L*' (9Q)
where p’ is the conjugate of p and f : 9Q x R — R is a Caratheodory function, we
show a non resonance of solutions under and between the two first eigenvalues.

2. Main results

In the theorems that follow we study a monotonicity of the two first eigenvalues
with respect to the weight. One consider two weight’s functions V7 and V5 satisfying
the condition (1.1). Without loss of generality, one can assume that the weights
are in the same space L*® (0Q).

Theorem 2.1 If Vi (z) £ Va () a.e in O then Ay (V1) > A (V2).

Theorem 2.2 IfV; () < V5 (2) a.e in OQ and if one of this conditions is satisfied
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(i) s>lorl<p<N with |0QN{Vi =W} <c(W),
(ii) s=1andp> N with fcmm{Vl:VZ} Vi (2)| 00 < d(V1),
then Ao (Vl) > Ao (‘/2)

Remark 2.1 The notation & means that one has a large inequality a.e in 02 and
a strict inequality in a subset with a positive measure.

In the theorems 2.4 and 2.5 we prove the existence of solutions to the problem
Apu = WfPu in Q
ou

[VulP~? 5 = f(z,u)+h on 09,

(2.1)

where h € L?’ (09), p’ is the conjugate of p and f : 9Q xR — R is a Caratheodory
f(z,s) d F(z,s) d
sz and p=7= under

the first eigenvalue and between the two first eigenvalues of the problem

function, with conditions on the behavior of the ratios

Apu = |u|p_2 v in
%

[VulP~? = AMuf/?u on 09.

ov

(2.2)

Consider the following conditions

(h1) YR > 0,3®5 € L” (9Q) such that max |f (z,8)| < PR () a.e in 0.

[s|<

(h2) A\; <(z) == liminf L& <k (2) := limsupL&2L < ), ace in 9.

\s|—>+oos|5\p72 ‘s|_>+ocs\5|p72

(h3) A\ £ L(x) :=plim ian(x;f) < K (z) := plimsup F(z,s) < A\ a.e in 012, with

s s|?
|s|—+o00 sl |s|—+o00 sl

"
measy, {x € 00 : K (x) = A2} <2 (ip*> ) (2.3)
2

Wheren:%if1<p§Nandn:2ifp>N,andF:QxR—)Ris
defined as F (z,s) = [; f(z,t)dt.

(h2’) —oo < I(z) := liminf L& < k(z) := limsupL &) < \; a.e in 09.

s|—>foo 8lsIP 72 . s|s|P=2
[—=+ |s| =400

(h3’) K (z) := plimsup F(z.s) $ A and KT 20 ae in 0.

S|P
|s|—+o00 sl

One shows the following results
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Theorem 2.3 If V is a weight in L (00) with \y £V (z) < A2 a.e in 09, and
if the problem P (V) admits a non trivial solution u, then

n
Sp=
measy {z € 0N:V (1) = Ao} > 2| —F—a | |
VL= a0
and u is an eigenfunction associated to As.

Theorem 2.4 Under the conditions (h1), (h2) and (h3), the problem (2.1) admits
at least one solution characterized by a min-max principle.

Theorem 2.5 If (h1), (h2’) and (h3’) are satisfied then the problem (2.1) admits
at least one solution.

Remark 2.2 1) The hypothesis (h2), (h3), (h2’) and (h3’) mean that Ve > 0
there exists b. € LP (0Q) and d. € L' (0S) such that a.e in 9Q and Vs € R one
has

—be(2) + (I(2) =) |s|” < sf (z,5) < (k(z) +e) s + b (2),  (24)
and
—d. (x)+(L(3:)—s)|;| < F(x,s) < (K(x)+<€)|t;|+d8 (z), (2.5)

2) If (h1) and (h2) or (h1) and (h2’) are satisfied then there exists a real a > 0
and a function b € LP (0R2) such that a.e in OQ and Vs € R one has

If (,8)] < als|"™" +b(x). (2.6)
We have to use the theorems

Theorem 2.6 (see [1]) Let ® € C'(X,R) be a functional satisfying the palais-
smale condition (PS) in a Banach space X, Qo C X \ {0} a symmetric compact
and E C X a nonempty symmetric set . If the following conditions are satisfied

(P1) IfQ C X \ {0} is a symmetric compact and v (Q) > 0 (Qo)+1, then QNE #
0.

P2) a: =max® < infd: =,
( ) Qo E B

then ¢: = inf max ® is a critical value to the functional ®, where D =
heT uen(D)

co (Qo) 1is the convex envelope of Qo and T’ = {h eC (ﬁ,X \ {O}) :h=1id on QO}.
Moreover ¢ > 3.

Theorem 2.7 Let X be a Banach space reflevive and ® : X — R a functional
satisfying
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(1) @ is weakly lower semi-continuous,
(ii) @ is coercive,
then ® attends his minimum.

Remark 2.3 In theorem 2.6, 0 (F) is defined for a closed and symmetric subset
F in X \ {0} by:

O(F) = sup {keN /3 f: S*' — F continuous and odd}
where S*71 = {z € R¥ : ||z||pr =1} if F # 0, and 6 (0) = 0.

3. Proofs of theorems

3.1. PROOF OF THEOREM 2.1. Let uy be an eigenfunction associated to Ay (V)
then

||U1||€V1,p(g)
Joq lua |V (z) 0o’

and u; do not change sign in 9f). Supposing that u; > 0 in 0f2, one show that
ug > 0 on 9N. Indeed, if there exists x € I such that uy () = 0, by the regularity

proven in [2], u; € CH® (Q) and by the maximum principle of Vazquez

A (V) =

8u1

SO 5
p—2 OU1
0> |VU1| 781/

witch is impossible. Let V4 and V5 be two weight’s functions such that for a.e in
0Q one has Vi (z) § V2 (z) and u; be an eigenfunction associated to A (V2), then

Joe luy [P Vi () 0o

[[ua ||€V1,p(9)

(@) =M (V) V (@) |uz (@) s () = 0,

(A ()~

Since ug (z) # 0 for all z € 9Q and Vi (z) £ Va (z) a.e in 9N one has

fOQ [ur [P Vi () Oo _ faﬂ |u1|? Va (z) 0o

w10 (02 lurl[frm@y
also
PV, 0 PV, 0
faQ ‘“1|p 2 (z) 9o < sup fag |u‘p 2 (7) 0o Cue WP Q) = (\ (‘/2))—1’
||u1||W1=P(Q) Hu”vvl,p(gz)
consequently

M) < ()
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3.2. PROOF OF THEOREM 2.2. One takes V; and V5 such that V; (z) < Vs
in 9Q and uy an eigenfunction associated to Ay (Vi),then for all v € WP (

(2) a
Q)

/ |VuQ|p_2 VusVodz +/ |u2|p_2 UsvdxT = Mg (Vl)/ |ug|p_2 us Vi (z) vdo.
Q Q o9

(3.1)
One considers Uy = span {uj,uy }, C = U N{u e WP (Q) : [ullfyie ) = P}
and v = auj + Bu, € C. Applying the equality (3.1) at uj and u; one finds

/ |Vuy P2 VusVug dv +/ lug P2 ugud dr = Ao (Vl)/ lua P2 ugud Vi (z) do
Q Q o0

and
/ |Vu2\p_2 VusVuy, dr + / |U2|p_2 Uy AT = Ao (Vl)/ |U2|p_2 uguy Vi () do,
Q Q o0

that means that

/}vu2+|Pdg;+/|u2| dx—)\g(Vl)/ lug |” Vi (2) o,
Q o0

/ |Vu2_|p da:—l—/ |u2_|p dx = Ao (Vl)/ |u2_|pV1 () Oo.
Q Flo)

It’s clear that v (C) = 2, and |[v[f = |af? [uF|” + |87 [us |", s0

and

/ |Vv\pdx—|—/ [v]P dz = Ay (Vl)/ [v]? V1 (x) Do
Q Q 00

But [|v][jy1.5() = P, then % = %faﬂ |v]” V100, this’s true for all v € C. Let

¢ = min{fagmp%(z)ag / uGC’}.

HU‘HZ[;VI,P(SZ)

One poses a = [, |ug | Vo (2) 80, b= [y, |uy ’ Vo (2) 8o, ¢ = [juy ||€V1,p(g) and

d= ||u2_||€vlvp(ﬂ), then one has

¢ = min {3 foo lul”Va (@) 90w = auf + Bug and [ullfyq) = p)
o : 1 D Py . p P _
= Jmin {5 (alal” +187) : clal” + d|6]" = p} .

By the Lagrange’s theorem about the extremum, this one is attained for & = 0 or

B8=0,ie
. a b
¢ = min (c’ d)’
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4 _
and it’s attained for ug = :I:{/f)+u72 or ug = :t\r/ﬁ,uiQ. Thus we
(|3 lewp(n) [[uz le»p(n)
obtain
1

1 P
= - V; 13)
i p/mmo\  (2) 0o

p V- 9
1/ luo|? Va () Do = minfag |ul” Va (z) 0o
D Joo ”

and

)

Hu”%/l,p(g)

with {z € 9Q : ug (z) # 0} is either QT (uz) or IQ™ (ug).
e Under the condition (i).

With the hypothesis [{x € 9Q : Vi () = Va (2)}] < ¢ (V1) and since |0QF (uy)| >
¢(V1), one gets

{z € 0Q: Vi (z) < Va(x)} N {uo (z) # 0} > 0.

Indeed, if not we have

¢(Vi) > [{z € 00: Vi (2) = Va ()} 1 {uo # 0}] = | {uo # 0}] = |90 (u2)]
that’s not true.

e Under the condition (ii).

If {z € 0Q: Vi (x) < Va(x)} N{ug(x) # 0} =0, then

d(Vi) > fasm{vlzw} Vi (z)| 0o = fBQﬁ{Vlz\/g}ﬂ{uO;ﬁO} Vi ()] do,

but
Joantvieveynfuezoy V1 (@) 00 = [, oy Vi (2)| 00 =[50 (4, V1 (2)] D0,

this contradicts the result f@Qi(uz) Vi (z)| 00 > d (V).
Then, if (i) or (ii), we obtain the following inequality

1 1
7/ luoP Vi (2) 90 < f/ luol” Vs (z) Do
P Joq P Joaa

with v (C') = 2, consequently

pv a 1
wiy [ WPV @0r < sup my DmlbTR@O_ L
ueC Jaq Cer, ueC [ully1.0(0) X2 (Va)
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3.3. PROOF OF THEOREM 2.3. V is taken such that A; £V (z) a.e in 99, so, by
the theorem 2.1, one has A (V) < A1 (A1) = 1, and if u is a non trivial solution
to the problem P (V'), then 1 is an eigenvalue, thus w changes sign on 912, and

n
100 (u)] > ¢ (V) = (Msﬁ) and |92 (u) N {u= 0} > ¢(V) where 5 = ¥ if

l<p<Nandn=2if p> N. From (1.3) we have

_ Sp\"
(A2) = Sup{/aQ [v|P Oo : Hv||€v1,p(9) =1 and |8Qi (v)| >c(l) = ( >\Pz ) }7

and ||V||Loo(aﬂ) S AQ implies that ¢ (V) >c (1) , then
u
—  elveW'P(Q): v||P » —1 and |00* )] >c)},
||u||W1,p(Q) { UK wir(Q) ’ )’ )}

SO
Mo foplul? 00 < Jullhingy = foo V(@) ul” 0.

One deduct that [y, (A2 =V (z)) [ul” o < 0, but V (z) < Ay a.e in 9Q, thus one
has V (z) = Ay a.e in {o € 0Q : u (z) # 0}, consequently
g U
measy {x €00V (z) =X} > 2| ——— | .
IVl o< o0

In addition to this, we have for all w in W17 (Q)

[ v vuSude+ [ = [ V@) Wt a = [ .
Q Q o oN

i.e u is an eigenfunction associated to As.

3.4. PROOF OF THEOREM 2.4. One introduces the energy’s function ® associated
to the problem (2.1)

1
@(u) = 5 ||u||€v1,p(ﬂ) - /69F(x7u) — AQ hu 80'

Under the conditions (h1), (h2) and (h3) ® is well defined, C' and for all u and v
in Whr (Q)

(9 (u),v) :/ \VulP~? VuVudz —|—/ lu|P " wwdo —/ [ (z,u) vOo —/ hvdo.
Q Q 00 o0
(3.2)
i) Let us show that ® is (PS)

By contradiction, we suppose that there exists a sequence (u,), in WP ()
such that [Jun|y1pq) — +00 , ®(us) bounded and @ (u,) — 0. One poses
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— Un
v, = — %
n Hunuwlm(g)

(vn),, such that

then [[vp|[yy1.0(q) = 1, so (vy),, admits a subsequence, noted also,

Un — v in Whp(Q)

Uy  — W in Lr(Q)

Up — W in LP(09)
vp () — w(x) aein Q

Applying the equality (3.2) at w, and dividing by HunH’V’;ﬁp(Q), we obtain for all w
in Wi (Q)

@ n)s - _
M = [ IV, [P 2 Vo, Vwdz + [, |va |~ v,wdo
HUTLHWI P (Q) (33)
- /. S@un) = Joq T w do.
09 HUnHW1 p(Q) o0 H Un le P (Q)

Tending n — 400 we remark that

(CATRED)

4)
. 0
fQ [V, |P™ 2 anVw + fQ |vn|p v — fQ |VolP™ 2YuVw + fQ [v]P™ 2
—2—w J — 0
o9 ||un||wl,,(mw 7

and for [, #waa, one has from (2.6) the sequence <(“’())> is

wl, P (Q) ”u"L”Wl "P(Q)

bounded in L?’ (09), then for a subsequence <f(u"())> converges weakly in

Tunl s

L (89) to a function g € L¥' (99).

Lemma 3.4.1 If (2.6) then g (x) =0 a.e in 00N {v =0}.

Proof: Let B = 02N{v = 0}, and consider the function test T (x) = sign (g (z)) Ip
where Ip is the characteristic function of B and sign : R — {—1,1} such that
sign(xz) = 1if 2 > 0 and sign(z) = —1 if < 0. From (2.6) for s = u, (z),
multiplying by T (z) and dividing by ||un||€[711,p(ﬂ) , one has a.e in 01 :

Hunnwl 2(9)

alvn ()P + b(z) —0in L” (89),

() <

[ e

then

/M(x)aaﬁ g(x)T(x)aa:/mx)\aa:o,
P B

Q Hunle () o0

so g (z) =0 a.e in B. O
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Let, now, consider the function m (x) defined as

g(z) :
m (z) ={ 00\B
2

()\1 + )\2) in B.

Lemma 3.4.2 The operator T : WhP (Q) — W12 (Q) such that for all u and v
in WHP (Q): (T (u),v) = [, |VulP~? VuVudz, is monotone of type (S ).

Proof: For u and v in WP (Q) one has

(T (w),v) < [Vl o) V0]l Loggy »

(T'(u) =T (v),u—v)

IVully + 11Vl = (T (w) ,v) = (T (v) , w)

_ _ 3.4
(Ivulz™* = velz ™) (19l - 19el,) . *

v

with [lul|, = [lu[|;»(q) » so T is monotone. Let (u,), be a sequence such that u, — u
weakly in WP (Q) and limsup (T (uy,) ,u, — u) < 0, we will show that u, — u
n—-+oo

strongly in WP (Q). Remarking that u, — wu strongly in LP (), one conclude
that [lun, — ul;,q) — 0. From (3.4) one has

(T (un) vtn = ) = (9l = [Vlly™) (IVunl, = [Vull, ) +(T () = u).

since u, — u then (T (u),u, —u) — 0, and

0 > lim sup (T (uy,) , Uy, — u)
n—-+oo
. p—1 p—1
> tim (IVulp™ = 196l ™) (19uall, = 1Vul,)
> 0.

Thus [[Vua| 1oy = VUl o) and Juall gy = 1l o) » then [[un ) —
[[ullwrp(q)- According to the propriety that WP (Q) is uniformly convexe, one
conclude that [[u, — ully.,q) — 0. 0

Lemma 3.4.3 The sequence (vy,),, is strongly convergent to v in WP (Q) witch’s
a solution of the problem P (m)

Apv = l|P "2 v in  Q

|Vv|p72@ m(z) ]’ v on Q.

ov
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Proof: From (3.2), one has for all v and v in W? (Q)
<<I>;, (u) ,11> = (T (u),v) + / \u|p_2 uvdo — / f(z,u)vdo — / hvdo.  (3.5)
Q o9 o9

Replacing u by uy,, v by v, —v in (3.5) and dividing by ||Un||€[711,p(9), one concluds

)

(T (vn) ;v —v) = = —
HUTLH;;VLP(Q) o9 ||Un||€vl,p(

<(I);, (un),vn — U> I [ (2, un) (vp —v) + / h(vy, —v)
Q) oQ ‘Iunllllj;ll,p(g)

(3.6)

but @}, (u,) = 0 in WP (Q), |lupllyrwgy — 0, va — v in LP(Q) and

_Swun) sy (z) [P0 weakly in LP' () then we have

p—1
llen wlp()

lim (T (vp),v, —v) =0,

n—-+oo
and since T is (S ) one has v, — v strongly in W? (), and
||vn||wl,p(§z) = ||”||W1,p(g) =1

Moreover, tending n to +o0o in (3.3) one obtains for all w € WP ()
/ IVo|P~? VoVwdz + / [v|P 2 vwdz = / m (z) v’ vwdo,
Q Q o0

thus v is a solution to the problem P (m), and [[v]|y1p() = 1 =[5 m () [v]” Do
O

Lemma 3.4.4 With (h2) one has \y < m(z) < Ay a.e in 9.

Proof: It’s easy to see that \y < m(z) < Ay a.e in B, it remains to show that
A1 <m(z) < Ay a.e in O\ B. For this, we consider the following subsets

Dy ={z€d\B:m(z) <A}, Dy={xe€d\B:l<m(z)}
and we prove that meas, (D1) = meas, (D2) = 0. Indeed, from (h2) one has
Un (2) f (2, un (2)) = (M = ) [un ()" = be (),

one divides by ||un||€V1,p(Q) , and one integer on Dy, it comes

/Dlvn(x)waaz(h—s)/ \Un(x)|p80—/ _be@)

||uTLHZI;[;11m(Q) D, D, Hunllgvlvp(g)

and when n tends to 400 one gets

Jp,v(@)g(@) 00 > (M —e) [, |v(@)] do.
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Since ¢ is arbitrary, one concludes that
0< [ @@ - Nle@)ao= [ @) -2l oo
D, D,

according to the definition of Dy, this inequality implies that meas, (D1) = 0. By
the same way one proves that meas, (Dz2) = 0. O

Lemma 3.4.5 From (h3) one has M1 £ m(z) < Az a.e in 0.

Proof: Let us show that Ay £ m (z) a.e in 9. By contradiction we suppose that
m(z) = A\ a.e x € 99, then v is an eigenfunction associated to A1, and one has by
(h3), for all e > 0, 3d. € L' (9Q) such that a.e in IQ

F(zun(z)) > (L(z)—e) 2Ol —d (a).

Then, one divides by Hun||€‘,1,p(m and one integer, it comes

/8 wagz/m@(x)g)wag/a dsi(x)ao,

Q ||UnH€V1,p(Q) p Q ||Un||%1,p(gz)
also o ) .
pp(un) _ / (%gn (33))80 _ / h Unp(ji) o,
HunHWLp(Q) p Fol9) ||unHW1m(Q) o0 Hunuwl,p(g)
% F(@,un(x)) (x) Pp (un)
1 z,un (T vy (T p(Un
P Joa lunllfy i, q) do +‘ f?sz)lzmnv;;l{m) 8ZT ilun\l’v’vl,p(m
2 Joo(L(2) =) BFE00 = Joq 00
B vn(z) ®p (un
+ Joo M —00 + e =

passing to the limit one finds

1 P
pz/mw() o) g

this’s true for all € > 0, one deducts that 1 > [, L (z) |v (x)|” 0. In addition, one
has

L=l = [ m@lof o0 =1 [ ol 0o,
o0 o0

then [, (L (z) — A1) [v[” o < 0, witch contradicts the hypothesis Ay § L () a.e
in 9. We must here show that m (z) < Ay a.e in 9. In the opposite case, by
the theorem 2.3, one has v an eigenfunction associated to Ay, i.e 1 = ||UH€VLP(Q) =

A2 [oq [v]” Do, |09 (v)] > (sz )77 and by (2.5), one has

K ()]0 ()P 00 > 1 = AQ/ w]? 9o,

1219] o0
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so K () = X2 a.ein {z € 90 : v () # 0}, then

Hz € 0Q: K (z) =X} > H{xed:v(x)#O0}
2 (007 (v) OO (v)]
> 2(%)
this contradicts (2.3), consequently A1 £ m (z) < A2 a.e in 9. O

Let us return to the demonstration of the theorem 2.4. The result of theorem
2.2 assures that
1 = /\2 (/\2) < )\2 (m) s

then 1 is an eigenvalue of the problem P (m) strictly between A\ (m) and Ay (m),
absurd. Finally @ is (PS).

ii) For applying the theorem 2.6, one constructs two sets E and @ satisfying (P1)
and (P2).

Let E = {u e Wie (Q K) [o0 K (z) |ul’ 90 < ||u||W1,p(m}7 by (2.5) and

the propriety [, |ul” do < m ||uHW1,p(Q) = /\11(1 , one has for u € F

P (u) = %HUH{;WP(Q) faQ (z,u) 0o — [, hudo
= . %HUH;;VLP(Q) fasz ) +¢) M 90 — [5q (de )+h“) do
>y llullyeg) - p)\Q(K ”u”Wl »(Q) faQ 5 lul® faQ ) + hu)
> Gl (1 st~ wim) ~Joa @ +hu> 00

Indeed one knows that K (z) < Ay a.e in 9Q implies that Ay (K) > 1, moreover if
A2 (K) = 1 then 1 is an eigenvalue for the problem P (K) with A\; £ K (x) < Ao
a.e in 012, and from theorem 2.3,

S ! Sp-\"
measy {x € 00 : K (x) = Ao} > 2 L i — 22( P*> ,
1K Lo (02) A2

this is in contradiction with the hypothesis (2.3), so 1 — ﬁ > 0. Then for

£

ﬁ o 0, consequently @ is coercive in E. Let &

€ small enough 1 —

be an eigenfunction associated to Ay (L) with [|{[ly1.0) = 1, one shows that
lim @ (t§) = —oc. From (2.5) one finds
|t|—=+o0
D (t6) = %|t|” - faQ (,t8) o —t [ hgaa
< 1 |t|p Joq (L (z) — &) 00 + [ (d- (x) - htg) do
< 2 |t|p pAl(L ”unl r) T fdQ » [t€]" 0o + fdQ () — ht§) Oo
< %Mp (17>\1(L)+>\ (1)>+f39 e )*htf)ﬁa,



70 A. ANaNE, O. CHAKRONE AND N. MORADI

and since A 5 L(z) a.e in 0, one obtains 1 > Ay (L), then for ¢ small enough
1-— >\1(L) + 5 5(1) < 0, thus the result is proven. We pose 3 := iréftﬁ, it’s finite, and
lim @ (&) =

N —oo implies that there exists ¢’ sufficiently big such that
t|—+o0

a:=max (O ('), d (-t'¢)) < B.

Take the compact Qg = {—t'&,t'¢}, it’s clear that 0 (Qp) = 1, and (P2) is satisfied.
Let Q be a symmetric compact in W1 (Q) such that v (Q) > 2, by the definition
of X2 (K) one has

. PO,
min Jon K@lw[*00 1
s I [T 2(K)

P
thus there exists wy € @ such that Jog K(@)lwol "0 < 1t e wy € E, and (P1) is

lwollf,p q) A2(K)
satisfied. One deducts that the value
¢ = inf max & > f
hel’ yen(D)

is a critical value for the functional ®, with T" = {h eC (ﬁ, X\ {O}) :h=1idin QO}
and D = co(Qp). The proof is completed.

3.5. PROOF OF THEOREM 2.5. The same functional @ is taken, it’s C'* and weakly
lower semi-continuous. According to the theorem 2.7, it remains to prove that it’s
coercive in WP (). Indeed, for u € W1? () one has

D(u) = 1 Hu||€vlp(m faﬂ (x,u) do — fBQ hudo
> ;Hunﬁvl,pm Joo (K (@) +2) 4200 — [, (de () + hu) do,
and
fag K (x) ‘u|p do < ﬁ Hu”%/l,p(g) s
then

® (u) > pllullwlm) (1 ﬁ— M“@) —/m (d. (z) + hu) do.

From K (z) £ A1 a.e in 99, and the theorem 2.1, one has 1 — ( y > 0, then for
€ small enough ( — /\1(K) N (1)> > 0, thus ® is coercive in WP (). Finally, ®

admits a critical point witch’s a solution of the problem (2.1).
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