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A non resonance under and between the two first eigenvalues in a
nonlinear boundary problem

Aomar Anane, Omar Chakrone, Najat Moradi

abstract: In this paper we study the non resonance of solutions under and
between the two first eigenvalues for the problem

∆pu = |u|p−2 u in Ω

|∇u|p−2 ∂u

∂ν
= f (x, u) on ∂Ω.
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1. Introduction

Consider the following nonlinear boundary problem

∆pu = |u|p−2
u in Ω

|∇u|p−2 ∂u

∂ν
= g (x, u) on ∂Ω,

where Ω is a bounded domain in RN , p > 1, ∆pu = div(|∇u|p−2 ∇u) is the p-

Laplacian and
∂

∂ν
is the outer normal derivative.

The case g (x, u) = λV (x) |u|p−2
u, where V is the weight such that

V + 6= 0 on ∂Ω and V ∈ Ls(∂Ω), (1.1)

where s > N−1
p−1 if 1 < p ≤ N and s ≥ 1 if N < p, has been treated by J.F.Bonder

and J.D.Rossi in [3], they have proved that there exists a sequence of variational
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eigenvalues λk → +∞, defined by

(λk (V ))
−1

= sup
C∈Ck

min
u∈C

∫

∂Ω
|u|p V (x) ∂σ

‖u‖pW 1,p(Ω)

, (1.2)

where Ck =
{

C ⊂ W 1,p (Ω) ; C is compact, symmetric and γ (C) ≥ k
}

and γ is
the genus’s function. The authors have also proved that λ1 (V ) is the first eigen-
value, isolated, simple and monotone with respect to the weight, and it’s defined

as λ1 (V ) = min

{

‖u‖p

W1,p(Ω)∫
∂Ω

|u|pV (x)∂σ
: u ∈ W 1,p (Ω)

}

, λ2 (V ) is the seconde one charac-

terized by

(λ2 (V ))
−1

= sup

{
∫

∂Ω

|u|p V (x) ∂σ : ‖u‖pW 1,p(Ω) = 1 and u ∈ A

}

, (1.3)

where

A =
{

u ∈ W 1,p (Ω) :
∣

∣∂Ω± (u)
∣

∣ ≥ c (V )
}

if s > 1 or 1 < p ≤ N ,

and

A =

{

u ∈ W 1,p (Ω) :

∫

∂Ω±

|V (x)| ∂σ ≥ d (V )

}

if p > N and s = 1,

with ∂Ω+ (u) = ∂Ω ∩ {u > 0}, ∂Ω− (u) = ∂Ω ∩ {u < 0}, |B| = measσ (B) denotes

the N − 1 dimensional measure of a subset B ⊂ ∂Ω, c (V ) =
(

Sp∗

λ2(V )‖V ‖Ls(∂Ω)

)η

,

d (V ) = S∞

λ2(V ) where Sq is the best constant in the Sobolev trace embedding

W 1,p (Ω) →֒ Lq (∂Ω), p∗ = p(N−1)
N−p

for 1 < p < N , p∗ = ∞ for p ≥ N , η = s(N−1)
sp−N

for 1 < p ≤ N and η = 2s′ for p > N and s > 1, here s′ is the conjugate of s. This
problem will be named P (V ) .

In [2], one has proved that, in the case g (x, u) = λV (x) |u|p−2
u + h with V

satisfies the same last conditions and h ∈ Ls(∂Ω), the solutions are in C1,α
(

Ω
)

for

some α in ]0, 1[. Now we will study the case g (x, u) = f (x, u)+h, with h ∈ Lp′

(∂Ω)
where p′ is the conjugate of p and f : ∂Ω×R → R is a Caratheodory function, we
show a non resonance of solutions under and between the two first eigenvalues.

2. Main results

In the theorems that follow we study a monotonicity of the two first eigenvalues
with respect to the weight. One consider two weight’s functions V1 and V2 satisfying
the condition (1.1). Without loss of generality, one can assume that the weights
are in the same space Ls (∂Ω) .

Theorem 2.1 If V1 (x) � V2 (x) a.e in ∂Ω then λ1 (V1) > λ1 (V2).

Theorem 2.2 If V1 (x) ≤ V2 (x) a.e in ∂Ω and if one of this conditions is satisfied
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(i) s > 1 or 1 < p ≤ N with |∂Ω ∩ {V1 = V2}| < c (V1),

(ii) s = 1 and p > N with
∫

∂Ω∩{V1=V2}
|V1 (x)| ∂σ < d (V1),

then λ2 (V1) > λ2 (V2).

Remark 2.1 The notation � means that one has a large inequality a.e in ∂Ω and
a strict inequality in a subset with a positive measure.

In the theorems 2.4 and 2.5 we prove the existence of solutions to the problem

∆pu = |u|p−2
u in Ω

|∇u|p−2 ∂u

∂ν
= f (x, u) + h on ∂Ω,

(2.1)

where h ∈ Lp′

(∂Ω), p′ is the conjugate of p and f : ∂Ω×R → R is a Caratheodory

function, with conditions on the behavior of the ratios f(x,s)

s|s|p−2 and pF (x,s)
|s|p under

the first eigenvalue and between the two first eigenvalues of the problem

∆pu = |u|p−2
u in Ω

|∇u|p−2 ∂u

∂ν
= λ |u|p−2

u on ∂Ω.
(2.2)

Consider the following conditions

(h1) ∀R > 0,∃ΦR ∈ Lp′

(∂Ω) such that max
|s|≤R

|f (x, s)| ≤ ΦR (x) a.e in ∂Ω.

(h2) λ1 ≤ l (x) := lim inf
|s|→+∞

f(x,s)

s|s|p−2 ≤ k (x) := lim sup
|s|→+∞

f(x,s)

s|s|p−2 ≤ λ2 a.e in ∂Ω.

(h3) λ1 � L (x) := p lim inf
|s|→+∞

F (x,s)
|s|p ≤ K (x) := plim sup

|s|→+∞

F (x,s)
|s|p ≤ λ2 a.e in ∂Ω, with

measσ {x ∈ ∂Ω : K (x) = λ2} < 2

(

SP∗

λ2

)η

, (2.3)

where η = N
p

if 1 < p ≤ N and η = 2 if p > N, and F : Ω × R −→ R is

defined as F (x, s) =
∫ s

0
f (x, t) dt.

(h2’) −∞ < l (x) := lim inf
|s|→+∞

f(x,s)

s|s|p−2 ≤ k (x) := lim sup
|s|→+∞

f(x,s)

s|s|p−2 ≤ λ1 a.e in ∂Ω.

(h3’) K (x) := plim sup
|s|→+∞

F (x,s)
|s|p � λ1 and K+ � 0 a.e in ∂Ω.

One shows the following results
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Theorem 2.3 If V is a weight in L∞ (∂Ω) with λ1 � V (x) ≤ λ2 a.e in ∂Ω, and
if the problem P (V ) admits a non trivial solution u, then

measσ {x ∈ ∂Ω : V (x) = λ2} ≥ 2

(

SP∗

‖V ‖L∞(∂Ω)

)η

,

and u is an eigenfunction associated to λ2.

Theorem 2.4 Under the conditions (h1), (h2) and (h3), the problem (2.1) admits
at least one solution characterized by a min-max principle.

Theorem 2.5 If (h1), (h2’) and (h3’) are satisfied then the problem (2.1) admits
at least one solution.

Remark 2.2 1) The hypothesis (h2), (h3), (h2’) and (h3’) mean that ∀ε > 0
there exists bε ∈ Lp′

(∂Ω) and dε ∈ L1 (∂Ω) such that a.e in ∂Ω and ∀s ∈ R one
has

− bε (x) + (l (x)− ε) |s|p ≤ sf (x, s) ≤ (k (x) + ε) |s|p + bε (x) , (2.4)

and

− dε (x) + (L (x)− ε)
|s|p
p

≤ F (x, s) ≤ (K (x) + ε)
|s|p
p

+ dε (x) , (2.5)

2) If (h1) and (h2) or (h1) and (h2’) are satisfied then there exists a real a > 0
and a function b ∈ Lp′

(∂Ω) such that a.e in ∂Ω and ∀s ∈ R one has

|f (x, s)| ≤ a |s|p−1
+ b (x) . (2.6)

We have to use the theorems

Theorem 2.6 (see [1]) Let Φ ∈ C1 (X,R) be a functional satisfying the palais-
smale condition (PS) in a Banach space X, Q0 ⊂ X \ {0} a symmetric compact
and E ⊂ X a nonempty symmetric set . If the following conditions are satisfied

(P1) If Q ⊂ X \ {0} is a symmetric compact and γ (Q) ≥ θ (Q0)+1, then Q∩E 6=
∅.

(P2) α : = max
Q0

Φ < inf
E
Φ: = β,

then c : = inf
h∈Γ

max
u∈h(D)

Φ is a critical value to the functional Φ, where D =

co (Q0) is the convex envelope of Q0 and Γ =
{

h ∈ C
(

D,X \ {0}
)

: h = id on Q0

}

.
Moreover c ≥ β.

Theorem 2.7 Let X be a Banach space reflexive and Φ : X −→ R a functional
satisfying
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(i) Φ is weakly lower semi-continuous,

(ii) Φ is coercive,

then Φ attends his minimum.

Remark 2.3 In theorem 2.6, θ (F ) is defined for a closed and symmetric subset
F in X \ {0} by:

θ (F ) := sup
{

k ∈ N / ∃ f : Sk−1 −→ F continuous and odd
}

where Sk−1 =
{

x ∈ Rk : ‖x‖
Rk = 1

}

if F 6= ∅, and θ (∅) = 0.

3. Proofs of theorems

3.1. Proof of theorem 2.1. Let u1 be an eigenfunction associated to λ1 (V )
then

λ1 (V ) =
‖u1‖pW 1,p(Ω)

∫

∂Ω
|u1|p V (x) ∂σ

,

and u1 do not change sign in ∂Ω. Supposing that u1 ≥ 0 in ∂Ω, one show that
u1 > 0 on ∂Ω. Indeed, if there exists x ∈ ∂Ω such that u1 (x) = 0, by the regularity
proven in [2], u1 ∈ C1,α

(

Ω
)

and by the maximum principle of Vazquez

∂u1

∂ν
(x) < 0,

so

0 > |∇u1|p−2 ∂u1

∂ν
(x) = λ1 (V )V (x) |u1 (x)|p−2

u1 (x) = 0,

witch is impossible. Let V1 and V2 be two weight’s functions such that for a.e in
∂Ω one has V1 (x) � V2 (x) and u1 be an eigenfunction associated to λ1 (V2), then

(λ1 (V1))
−1

=

∫

∂Ω
|u1|p V1 (x) ∂σ

‖u1‖pW 1,p(Ω)

.

Since u1 (x) 6= 0 for all x ∈ ∂Ω and V1 (x) � V2 (x) a.e in ∂Ω one has

∫

∂Ω
|u1|p V1 (x) ∂σ

‖u1‖pW 1,p(Ω)

<

∫

∂Ω
|u1|p V2 (x) ∂σ

‖u1‖pW 1,p(Ω)

,

also

∫

∂Ω
|u1|p V2 (x) ∂σ

‖u1‖pW 1,p(Ω)

≤ sup

{

∫

∂Ω
|u|p V2 (x) ∂σ

‖u‖pW 1,p(Ω)

: u ∈ W 1,p (Ω)

}

= (λ1 (V2))
−1

,

consequently
(λ1 (V1))

−1
< (λ1 (V2))

−1
.
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3.2. Proof of theorem 2.2. One takes V1 and V2 such that V1 (x) ≤ V2 (x) a.e
in ∂Ω and u2 an eigenfunction associated to λ2 (V1),then for all v ∈ W 1,p (Ω)

∫

Ω

|∇u2|p−2 ∇u2∇vdx+

∫

Ω

|u2|p−2
u2vdx = λ2 (V1)

∫

∂Ω

|u2|p−2
u2V1 (x) v∂σ.

(3.1)

One considers U±
2 = span

{

u+
2 , u

−
2

}

, C = U±
2 ∩ {u ∈ W 1,p (Ω) : ‖u‖pW 1,p(Ω) = p},

and v = αu+
2 + βu−

2 ∈ C. Applying the equality (3.1) at u+
2 and u−

2 one finds

∫

Ω

|∇u2|p−2 ∇u2∇u+
2 dx+

∫

Ω

|u2|p−2
u2u

+
2 dx = λ2 (V1)

∫

∂Ω

|u2|p−2
u2u

+
2 V1 (x) ∂σ

and
∫

Ω

|∇u2|p−2 ∇u2∇u−
2 dx+

∫

Ω

|u2|p−2
u2u

−
2 dx = λ2 (V1)

∫

∂Ω

|u2|p−2
u2u

−
2 V1 (x) ∂σ,

that means that
∫

Ω

∣

∣∇u+
2

∣

∣

p
dx+

∫

Ω

∣

∣u+
2

∣

∣

p
dx = λ2 (V1)

∫

∂Ω

∣

∣u+
2

∣

∣

p
V1 (x) ∂σ,

and
∫

Ω

∣

∣∇u−
2

∣

∣

p
dx+

∫

Ω

∣

∣u−
2

∣

∣

p
dx = λ2 (V1)

∫

∂Ω

∣

∣u−
2

∣

∣

p
V1 (x) ∂σ.

It’s clear that γ (C) = 2, and |v|p = |α|p
∣

∣u+
2

∣

∣

p
+ |β|p

∣

∣u−
2

∣

∣

p
, so

∫

Ω

|∇v|p dx+

∫

Ω

|v|p dx = λ2 (V1)

∫

∂Ω

|v|p V1 (x) ∂σ.

But ‖v‖pW 1,p(Ω) = p, then 1
λ2(V1)

= 1
p

∫

∂Ω
|v|p V1∂σ, this’s true for all v ∈ C. Let

ζ = min

{

∫

∂Ω
|u|p V2 (x) ∂σ

‖u‖pW 1,p(Ω)

/ u ∈ C

}

.

One poses a =
∫

∂Ω

∣

∣u+
2

∣

∣

p
V2 (x) ∂σ, b =

∫

∂Ω

∣

∣u−
2

∣

∣

p
V2 (x) ∂σ, c =

∥

∥u+
2

∥

∥

p

W 1,p(Ω)
and

d =
∥

∥u−
2

∥

∥

p

W 1,p(Ω)
, then one has

ζ = min
(α,β)∈R2

{

1
p

∫

∂Ω
|u|p V2 (x) ∂σ : u = αu+

2 + βu−
2 and ‖u‖pW 1,p(Ω) = p

}

= min
(α,β)∈R2

{

1
p
(a |α|p + b |β|p) : c |α|p + d |β|p = p

}

.

By the Lagrange’s theorem about the extremum, this one is attained for α = 0 or
β = 0, i.e

ζ = min

(

a

c
,
b

d

)

,
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and it’s attained for u0 = ± p
√
p

u+
2

‖u+
2 ‖W1,p(Ω)

or u0 = ± p
√
p

u−

2

‖u−

2 ‖W1,p(Ω)

. Thus we

obtain
1

λ2 (V1)
=

1

p

∫

∂Ω

|u0|p V1 (x) ∂σ

and
1

p

∫

∂Ω

|u0|p V2 (x) ∂σ = min
u∈C

∫

∂Ω
|u|p V2 (x) ∂σ

‖u‖pW 1,p(Ω)

,

with {x ∈ ∂Ω : u0 (x) 6= 0} is either ∂Ω+ (u2) or ∂Ω− (u2) .

• Under the condition (i).

With the hypothesis |{x ∈ ∂Ω : V1 (x) = V2 (x)}| < c (V1) and since |∂Ω± (u2)| ≥
c (V1), one gets

|{x ∈ ∂Ω : V1 (x) < V2 (x)} ∩ {u0 (x) 6= 0}| > 0.

Indeed, if not we have

c (V1) > |{x ∈ ∂Ω : V1 (x) = V2 (x)} ∩ {u0 6= 0}| = |{u0 6= 0}| =
∣

∣∂Ω± (u2)
∣

∣ ,

that’s not true.

• Under the condition (ii).

If |{x ∈ ∂Ω : V1 (x) < V2 (x)} ∩ {u0 (x) 6= 0}| = 0, then

d (V1) >
∫

∂Ω∩{V1=V2}
|V1 (x)| ∂σ ≥

∫

∂Ω∩{V1=V2}∩{u0 6=0}
|V1 (x)| ∂σ,

but

∫

∂Ω∩{V1=V2}∩{u0 6=0}
|V1 (x)| ∂σ =

∫

{u0 6=0}
|V1 (x)| ∂σ =

∫

∂Ω±(u2)
|V1 (x)| ∂σ,

this contradicts the result
∫

∂Ω±(u2)
|V1 (x)| ∂σ ≥ d (V1).

Then, if (i) or (ii), we obtain the following inequality

1

p

∫

∂Ω

|u0|p V1 (x) ∂σ <
1

p

∫

∂Ω

|u0|p V2 (x) ∂σ

with γ (C) = 2, consequently

min
u∈C

∫

∂Ω

|u|p V2 (x) ∂σ ≤ sup
C∈Γ2

min
u∈C

∫

∂Ω
|u|p V2 (x) ∂σ

‖u‖pW 1,p(Ω)

=
1

λ2 (V2)
.

Finally 1
λ2(V1)

< 1
λ2(V2)

.
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3.3. Proof of theorem 2.3. V is taken such that λ1 � V (x) a.e in ∂Ω, so, by
the theorem 2.1, one has λ1 (V ) < λ1 (λ1) = 1, and if u is a non trivial solution
to the problem P (V ), then 1 is an eigenvalue, thus u changes sign on ∂Ω, and

|∂Ω± (u)| ≥ c (V ) =
(

SP∗

‖V ‖L∞(∂Ω)

)η

and |∂Ω(u) ∩ {u = 0}| ≥ c (V ) where η = N
p

if

1 < p ≤ N and η = 2 if p > N . From (1.3) we have

(λ2)
−1

= sup

{
∫

∂Ω

|v|p ∂σ : ‖v‖pW 1,p(Ω) = 1 and
∣

∣∂Ω± (v)
∣

∣ ≥ c (1) =

(

SP∗

λ2

)η}

,

and ‖V ‖L∞(∂Ω) ≤ λ2 implies that c (V ) ≥ c (1) , then

u

‖u‖W 1,p(Ω)

∈
{

v ∈ W 1,p (Ω) : ‖v‖pW 1,p(Ω) = 1 and
∣

∣∂Ω± (v)
∣

∣ ≥ c (1)
}

,

so
λ2

∫

∂Ω
|u|p ∂σ ≤ ‖u‖pW 1,p(Ω) =

∫

∂Ω
V (x) |u|p ∂σ.

One deduct that
∫

∂Ω
(λ2 − V (x)) |u|p ∂σ ≤ 0, but V (x) ≤ λ2 a.e in ∂Ω, thus one

has V (x) = λ2 a.e in {x ∈ ∂Ω : u (x) 6= 0}, consequently

measσ {x ∈ ∂Ω : V (x) = λ2} ≥ 2

(

SP∗

‖V ‖L∞(∂Ω)

)η

.

In addition to this, we have for all w in W 1,p (Ω)

∫

Ω

|∇u|p−2 ∇u∇wdx+

∫

Ω

|u|p−2
uw =

∫

∂Ω

V (x) |u|p−2
uw = λ2

∫

∂Ω

|u|p−2
uw.

i.e u is an eigenfunction associated to λ2.

3.4. Proof of theorem 2.4. One introduces the energy’s function Φ associated
to the problem (2.1)

Φ(u) =
1

p
‖u‖pW 1,p(Ω) −

∫

∂Ω

F (x, u)−
∫

∂Ω

hu ∂σ.

Under the conditions (h1), (h2) and (h3) Φ is well defined, C1 and for all u and v
in W 1,p (Ω)

〈Φ′ (u) , v〉 =
∫

Ω

|∇u|p−2 ∇u∇vdx+

∫

Ω

|u|p−2
uv∂σ −

∫

∂Ω

f (x, u) v∂σ −
∫

∂Ω

hv∂σ.

(3.2)

i) Let us show that Φ is (PS)

By contradiction, we suppose that there exists a sequence (un)n in W 1,p (Ω)
such that ‖un‖W 1,p(Ω) → +∞ , Φ(un) bounded and Φ′ (un) → 0. One poses
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vn = un

‖un‖W1,p(Ω)
then ‖vn‖W 1,p(Ω) = 1, so (vn)n admits a subsequence, noted also,

(vn)n such that

vn ⇀ v in W 1,p(Ω)

vn → v in Lp (Ω)
vn → v in Lp (∂Ω)

vn (x) → v (x) a.e.in Ω

Applying the equality (3.2) at un and dividing by ‖un‖p−1
W 1,p(Ω), we obtain for all w

in W 1,p (Ω)

〈Φ′
p(un),w〉

‖un‖
p−1

W1,p(Ω)

=
∫

Ω
|∇vn|p−2 ∇vn∇wdx+

∫

Ω
|vn|p−2

vnw∂σ

−
∫

∂Ω
f(x,un)

‖un‖
p−1

W1,p(Ω)

w∂σ −
∫

∂Ω
h

‖un‖
p−1

W1,p(Ω)

w ∂σ.
(3.3)

Tending n → +∞ we remark that

〈Φ′
p(un),w〉

‖un‖
p−1

W1,p(Ω)

→ 0
∫

Ω
|∇vn|p−2 ∇vn∇w +

∫

Ω
|vn|p−2

vnw →
∫

Ω
|∇v|p−2 ∇v∇w +

∫

Ω
|v|p−2

vw
∫

∂Ω
h

‖un‖
p−1

W1,p(Ω)

w ∂σ → 0

and for
∫

∂Ω
f(x,un)

‖un‖
p−1

W1,p(Ω)

w∂σ, one has from (2.6) the sequence

(

f(.,un(.))

‖un‖
p−1

W1,p(Ω)

)

n

is

bounded in Lp′

(∂Ω), then for a subsequence

(

f(.,un(.))

‖un‖
p−1

W1,p(Ω)

)

n

converges weakly in

Lp′

(∂Ω) to a function g ∈ Lp′

(∂Ω) .

Lemma 3.4.1 If (2.6) then g (x) = 0 a.e in ∂Ω ∩ {v = 0} .

Proof: Let B = ∂Ω∩{v = 0}, and consider the function test T (x) = sign (g (x)) IB
where IB is the characteristic function of B and sign : R −→ {−1, 1} such that
sign (x) = 1 if x ≥ 0 and sign (x) = −1 if x < 0. From (2.6) for s = un (x),

multiplying by T (x) and dividing by ‖un‖p−1
W 1,p(Ω) , one has a.e in ∂Ω :

∣

∣

∣

∣

∣

f (x, un)

‖un‖p−1
W 1,p(Ω)

T (x)

∣

∣

∣

∣

∣

≤ a |vn (x)|p−1
+

b (x)

‖un‖p−1
W 1,p(Ω)

→ 0 in Lp′

(∂Ω) ,

then
∫

∂Ω

f (x, un)

‖un‖p−1
W 1,p(Ω)

T (x) ∂σ →
∫

∂Ω

g (x)T (x) ∂σ =

∫

B

|g (x)| ∂σ = 0,

so g (x) = 0 a.e in B. 2
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Let, now, consider the function m (x) defined as

m (x) =

{

g(x)

|v|p−2v
in ∂Ω\B

1
2 (λ1 + λ2) in B.

Lemma 3.4.2 The operator T : W 1,p (Ω) → W−1,p′

(Ω) such that for all u and v

in W 1,p (Ω): 〈T (u) , v〉 =
∫

Ω
|∇u|p−2 ∇u∇vdx, is monotone of type (S+).

Proof: For u and v in W 1,p (Ω) one has

〈T (u) , v〉 ≤ ‖∇u‖p−1
Lp(Ω) ‖∇v‖Lp(Ω) ,

and

〈T (u)− T (v) , u− v〉 = ‖∇u‖pp + ‖∇v‖pp − 〈T (u) , v〉 − 〈T (v) , u〉
≥

(

‖∇u‖p−1
p − ‖∇v‖p−1

p

)(

‖∇u‖p − ‖∇v‖p
)

,
(3.4)

with ‖u‖p = ‖u‖Lp(Ω) , so T is monotone. Let (un)n be a sequence such that un ⇀ u

weakly in W 1,p (Ω) and lim sup
n→+∞

〈T (un) , un − u〉 ≤ 0, we will show that un → u

strongly in W 1,p (Ω) . Remarking that un → u strongly in Lp (Ω) , one conclude
that ‖un − u‖Lp(Ω) → 0. From (3.4) one has

〈T (un) , un − u〉 ≥
(

‖∇un‖p−1
p − ‖∇u‖p−1

p

)(

‖∇un‖p − ‖∇u‖p
)

+〈T (u) , un − u〉 ,

since un ⇀ u then 〈T (u) , un − u〉 → 0, and

0 ≥ lim sup
n→+∞

〈T (un) , un − u〉

≥ lim
n→+∞

(

‖∇un‖p−1
p − ‖∇u‖p−1

p

)(

‖∇un‖p − ‖∇u‖p
)

≥ 0.

Thus ‖∇un‖Lp(Ω) → ‖∇u‖Lp(Ω) and ‖un‖Lp(Ω) → ‖u‖Lp(Ω) , then ‖un‖W 1,p(Ω) →
‖u‖W 1,p(Ω). According to the propriety that W 1,p (Ω) is uniformly convexe, one

conclude that ‖un − u‖W 1,p(Ω) → 0. 2

Lemma 3.4.3 The sequence (vn)n is strongly convergent to v in W 1,p (Ω) witch’s
a solution of the problem P (m)

∆pv = |v|p−2
v in Ω

|∇v|p−2 ∂v

∂ν
= m (x) |v|p−2

v on ∂Ω.
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Proof: From (3.2), one has for all u and v in W 1,p (Ω)

〈

Φ′
p (u) , v

〉

= 〈T (u) , v〉+
∫

Ω

|u|p−2
uv∂σ −

∫

∂Ω

f (x, u) v∂σ −
∫

∂Ω

hv∂σ. (3.5)

Replacing u by un, v by vn − v in (3.5) and dividing by ‖un‖p−1
W 1,p(Ω), one concluds

〈T (vn) , vn − v〉 =
〈

Φ′
p (un) , vn − v

〉

‖un‖p−1
W 1,p(Ω)

+

∫

∂Ω

f (x, un) (vn − v)

‖un‖p−1
W 1,p(Ω)

+

∫

∂Ω

h (vn − v)

‖un‖p−1
W 1,p(Ω)

,

(3.6)
but Φ′

p (un) → 0 in W−1,p′

(Ω), ‖un‖W 1,p(Ω) → 0, vn → v in Lp (Ω) and
f(x,un)

‖un‖
p−1

W1,p(Ω)

⇀ m (x) |v|p−2
v weakly in Lp′

(Ω) then we have

lim
n→+∞

〈T (vn) , vn − v〉 = 0,

and since T is (S+) one has vn → v strongly in W 1,p (Ω) , and

‖vn‖W 1,p(Ω) = ‖v‖W 1,p(Ω) = 1.

Moreover, tending n to +∞ in (3.3) one obtains for all w ∈ W 1,p (Ω)

∫

Ω

|∇v|p−2 ∇v∇wdx+

∫

Ω

|v|p−2
vwdx =

∫

∂Ω

m (x) |v|p−2
vw∂σ,

thus v is a solution to the problem P (m), and ‖v‖W 1,p(Ω) = 1 =
∫

∂Ω
m (x) |v|p ∂σ.

2

Lemma 3.4.4 With (h2) one has λ1 ≤ m (x) ≤ λ2 a.e in ∂Ω.

Proof: It’s easy to see that λ1 ≤ m (x) ≤ λ2 a.e in B, it remains to show that
λ1 ≤ m (x) ≤ λ2 a.e in ∂Ω\B. For this, we consider the following subsets

D1 = {x ∈ ∂Ω\B : m (x) < λ1} , D2 = {x ∈ ∂Ω\B : λ2 < m (x)}

and we prove that measσ (D1) = measσ (D2) = 0. Indeed, from (h2) one has

un (x) f (x, un (x)) ≥ (λ1 − ε) |un (x)|p − bε (x) ,

one divides by ‖un‖pW 1,p(Ω) , and one integer on D1, it comes

∫

D1

vn (x)
f (x, un (x))

‖un‖p−1
W 1,p(Ω)

∂σ ≥ (λ1 − ε)

∫

D1

|vn (x)|p ∂σ −
∫

D1

bε (x)

‖un‖pW 1,p(Ω)

∂σ,

and when n tends to +∞ one gets

∫

D1
v (x) g (x) ∂σ ≥ (λ1 − ε)

∫

D1
|v (x)|p ∂σ.
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Since ε is arbitrary, one concludes that

0 ≤
∫

D1

(v (x) g (x)− λ1 |v (x)|p) ∂σ =

∫

D1

(m (x)− λ1) |v (x)|p ∂σ,

according to the definition of D1, this inequality implies that measσ (D1) = 0. By
the same way one proves that measσ (D2) = 0. 2

Lemma 3.4.5 From (h3) one has λ1 � m (x) < λ2 a.e in ∂Ω.

Proof: Let us show that λ1 � m (x) a.e in ∂Ω. By contradiction we suppose that
m (x) = λ1 a.e x ∈ ∂Ω, then v is an eigenfunction associated to λ1, and one has by
(h3), for all ε > 0, ∃dε ∈ L1 (∂Ω) such that a.e in ∂Ω

F (x, un (x)) ≥ (L (x)− ε) |un(x)|
p

p
− dε (x) .

Then, one divides by ‖un‖pW 1,p(Ω) and one integer, it comes

∫

∂Ω

F (x, un (x))

‖un‖pW 1,p(Ω)

∂σ ≥
∫

∂Ω

(L (x)− ε)
|vn (x)|p

p
∂σ −

∫

∂Ω

dε (x)

‖un‖pW 1,p(Ω)

∂σ,

also
Φp (un)

‖un‖pW 1,p(Ω)

=
1

p
−
∫

∂Ω

F (x, un (x))

‖un‖pW 1,p(Ω)

∂σ −
∫

∂Ω

h
vn (x)

‖un‖p−1
W 1,p(Ω)

∂σ,

so
1
p

=
∫

∂Ω
F (x,un(x))
‖un‖

p

W1,p(Ω)

∂σ +
∫

∂Ω
h vn(x)

‖un‖
p−1

W1,p(Ω)

∂σ +
Φp(un)

‖un‖
p

W1,p(Ω)

≥
∫

∂Ω
(L (x)− ε) |vn(x)|

p

p
∂σ −

∫

∂Ω
dε(x)

‖un‖
p

W1,p(Ω)

∂σ

+
∫

∂Ω
h vn(x)

‖un‖
p−1

W1,p(Ω)

∂σ +
Φp(un)

‖un‖
p

W1,p(Ω)

,

passing to the limit one finds

1

p
≥
∫

∂Ω

(L (x)− ε)
|v (x)|p

p
∂σ,

this’s true for all ε > 0, one deducts that 1 ≥
∫

∂Ω
L (x) |v (x)|p ∂σ. In addition, one

has

1 = ‖v‖pW 1,p(Ω) =

∫

∂Ω

m (x) |v|p ∂σ = λ1

∫

∂Ω

|v|p ∂σ,

then
∫

∂Ω
(L (x)− λ1) |v|p ∂σ ≤ 0, witch contradicts the hypothesis λ1 � L (x) a.e

in ∂Ω. We must here show that m (x) < λ2 a.e in ∂Ω. In the opposite case, by
the theorem 2.3, one has v an eigenfunction associated to λ2, i.e 1 = ‖v‖pW 1,p(Ω) =

λ2

∫

∂Ω
|v|p ∂σ, |∂Ω± (v)| ≥

(

SP∗

λ2

)η

and by (2.5), one has

∫

∂Ω

K (x) |v (x)|p ∂σ ≥ 1 = λ2

∫

∂Ω

|v|p ∂σ,
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so K (x) = λ2 a.e in {x ∈ ∂Ω : v (x) 6= 0}, then

|{x ∈ ∂Ω : K (x) = λ2}| ≥ |{x ∈ ∂Ω : v (x) 6= 0}|
≥ |∂Ω+ (v) ∪ ∂Ω− (v)|
≥ 2

(

SP∗

λ2

)η

,

this contradicts (2.3), consequently λ1 � m (x) < λ2 a.e in ∂Ω. 2

Let us return to the demonstration of the theorem 2.4. The result of theorem
2.2 assures that

1 = λ2 (λ2) < λ2 (m) ,

then 1 is an eigenvalue of the problem P (m) strictly between λ1 (m) and λ2 (m),
absurd. Finally Φ is (PS).

ii) For applying the theorem 2.6, one constructs two sets E and Q0 satisfying (P1)
and (P2).

Let E =
{

u ∈ W 1,p (Ω) : λ2 (K)
∫

∂Ω
K (x) |u|p ∂σ ≤ ‖u‖pW 1,p(Ω)

}

, by (2.5) and

the propriety
∫

∂Ω
|u|p ∂σ ≤ 1

λ1(1)
‖u‖pW 1,p(Ω) =

1
λ1(1)

, one has for u ∈ E

Φ(u) = 1
p
‖u‖pW 1,p(Ω) −

∫

∂Ω
F (x, u) ∂σ −

∫

∂Ω
hu∂σ

≥ 1
p
‖u‖pW 1,p(Ω) −

∫

∂Ω
(K (x) + ε) |u|p

p
∂σ −

∫

∂Ω
(dε (x) + hu) ∂σ

≥ 1
p
‖u‖pW 1,p(Ω) − 1

pλ2(K) ‖u‖
p

W 1,p(Ω) −
∫

∂Ω
ε
p
|u|p −

∫

∂Ω
(dε (x) + hu)

≥ 1
p
‖u‖pW 1,p(Ω)

(

1− 1
λ2(K) − ε

λ1(1)

)

−
∫

∂Ω
(dε (x) + hu) ∂σ.

Indeed one knows that K (x) ≤ λ2 a.e in ∂Ω implies that λ2 (K) ≥ 1, moreover if
λ2 (K) = 1 then 1 is an eigenvalue for the problem P (K) with λ1 � K (x) ≤ λ2

a.e in ∂Ω, and from theorem 2.3,

measσ {x ∈ ∂Ω : K (x) = λ2} ≥ 2

(

SP∗

‖K‖L∞(∂Ω)

)η

≥ 2

(

SP∗

λ2

)η

,

this is in contradiction with the hypothesis (2.3), so 1 − 1
λ2(K) > 0. Then for

ε small enough 1 − 1
λ2(K) − ε

λ1(1)
> 0, consequently Φ is coercive in E. Let ξ

be an eigenfunction associated to λ1 (L) with ‖ξ‖W 1,p(Ω) = 1, one shows that

lim
|t|→+∞

Φ(tξ) = −∞. From (2.5) one finds

Φ(tξ) = 1
p
|t|p −

∫

∂Ω
F (x, tξ) ∂σ − t

∫

∂Ω
hξ∂σ

≤ 1
p
|t|p −

∫

∂Ω
(L (x)− ε) |tξ|p

p
∂σ +

∫

∂Ω
(dε (x)− htξ) ∂σ

≤ 1
p
|t|p − 1

pλ1(L) ‖u‖
p

W 1,p(Ω) +
∫

∂Ω
ε
p
|tξ|p ∂σ +

∫

∂Ω
(dε (x)− htξ) ∂σ

≤ 1
p
|t|p
(

1− 1
λ1(L) +

ε
λ1(1)

)

+
∫

∂Ω
(dε (x)− htξ) ∂σ,
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and since λ1 � L (x) a.e in ∂Ω, one obtains 1 > λ1 (L) , then for ε small enough
1− 1

λ1(L) +
ε

λ1(1)
< 0, thus the result is proven. We pose β := inf

E
Φ, it’s finite, and

lim
|t|→+∞

Φ(tξ) = −∞ implies that there exists t′ sufficiently big such that

α := max (Φ (t′ξ) ,Φ(−t′ξ)) < β.

Take the compact Q0 = {−t′ξ, t′ξ}, it’s clear that θ (Q0) = 1, and (P2) is satisfied.
Let Q be a symmetric compact in W 1,p (Ω) such that γ (Q) ≥ 2, by the definition
of λ2 (K) one has

min
w∈Q

∫
∂Ω

K(x)|w|p∂σ

‖w‖p

W1,p(Ω)

≤ 1
λ2(K) ,

thus there exists w0 ∈ Q such that
∫
∂Ω

K(x)|w0|
p∂σ

‖w0‖
p

W1,p(Ω)

≤ 1
λ2(K) i.e w0 ∈ E, and (P1) is

satisfied. One deducts that the value

c : = inf
h∈Γ

max
u∈h(D)

Φ ≥ β

is a critical value for the functional Φ, with Γ =
{

h ∈ C
(

D,X \ {0}
)

: h = id in Q0

}

and D = co (Q0). The proof is completed.

3.5. Proof of theorem 2.5. The same functional Φ is taken, it’s C1 and weakly
lower semi-continuous. According to the theorem 2.7, it remains to prove that it’s
coercive in W 1,p (Ω). Indeed, for u ∈ W 1,p (Ω) one has

Φ(u) = 1
p
‖u‖pW 1,p(Ω) −

∫

∂Ω
F (x, u) ∂σ −

∫

∂Ω
hu∂σ

≥ 1
p
‖u‖pW 1,p(Ω) −

∫

∂Ω
(K (x) + ε) |u|p

p
∂σ −

∫

∂Ω
(dε (x) + hu) ∂σ,

and
∫

∂Ω
K (x) |u|p ∂σ ≤ 1

λ1(K) ‖u‖
p

W 1,p(Ω) ,

then

Φ(u) ≥ 1

p
‖u‖pW 1,p(Ω)

(

1− 1

λ1 (K)
− ε

λ1 (1)

)

−
∫

∂Ω

(dε (x) + hu) ∂σ.

From K (x) � λ1 a.e in ∂Ω, and the theorem 2.1, one has 1− 1
λ1(K) > 0, then for

ε small enough
(

1− 1
λ1(K) − ε

λ1(1)

)

> 0, thus Φ is coercive in W 1,p (Ω) . Finally, Φ

admits a critical point witch’s a solution of the problem (2.1).
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