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On an elliptic equation of p-Laplacian type with nonlinear boundary
condition

Nguyen Thanh Chung

ABSTRACT: We consider elliptic equations of p-Laplacian type with the nonlinear
boundary condition of the form

—Apu + [ulP~2u Afi(u) +pgi(u)  in Q,
[VulP=29% = Mfa(u) + pg2(u)  in 9,

where Q C RY (N 2 3) is a bounded domain with smooth boundary 9, 6% is the
outer unit normal derivative, A, u are parameters. The functions f;, i = 1,2, are
assumed to be (p — 1)-sublinear while g;, i = 1,2, are (p — 1)-assymptotically linear
at infinity. Using variational techniques, an existence result is given.
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1. Introduction

Consider the elliptic equation of p-Laplacian type with nonlinear boundary
condition

{ —Apu+ |ulP™2u = Afi(u) +pgi(u) in Q, (L1)

|Vu|p722% = Afa(u) + pga(u) in 09,

where Q C RV (N = 3) is a bounded domain with smooth boundary 9<2, 2 is the
outer unit normal derivative, 1 < p < N, A\, u are parameters.

Problem (1.1) has been studied in many works, such as [1,2,3,4,5,9], in which
the authors have used different methods to obtain the existence of solutions. In a
recent paper [7], we have considered the situation: g; =0 (i = 1,2), f;, i = 1,2,
are (p — 1)-sublinear at infinity. We then used the three critical point theorem of
G. Bonanno [6] to obtain a multiplicity result for (1.1). A natural question is to
see what happens if the problem in [7] is affected by a certain perturbation. For
this purpose, in this note, we establish an existence result for (1.1) in the case
when f; : R — R, ¢ = 1,2, are (p — 1)-sublinear and ¢; : R = R, i = 1,2, are
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(p — 1)-assymptotically at infinity. The proof relies essentially on the minimum
principle in [8, Theorem 2.1].

In order to state the main result of this work, we would introduce the following
hypotheses

(f) fi, i =1,2 are continuous and (p — 1)-sublinear at infinity, i.e.,

o 01

[tl—oo [t[P~1

)

(g) gi, i =1,2 are continuous and (p — 1)-assymptotically at infinity, i.e.,

o L0

[t|—oo [E]PL

=1[; < 40

Let WP(£) be the usual Sobolev space with respect to the norm

M%zAWW+M%x

and W, P () is the closure of C§°(Q) in W12(Q). Forany 1 <p < N and 1 < ¢ <
p* = xL;, we denote by S; o the best constant in the embedding WhP(Q) — LI(Q)

and forall 1 < g < p, = %, we also denote by S, gn the best constant in the
embedding WP (Q) < L1(9Q), i.e.

Jo(IVul” + |uP)dz

P
q

Sq.00 = inf )
wEW P \W (@) ([, [ul7do)

Moreover, if 1 < ¢ < p*, then the embedding WP (Q) — L4(f2) is compact and if
1 £ ¢ < py, then the embedding W1?(Q2) < L9(0) is compact. As a consequence,

we have the existence of extremals, i.e. functions where the infimum is attained
(see [2,5]).

Definition 1.1. A function u € WP(Q) is said to be a weak solution of problem
(1.1) if and only if

/ {\Vu\p’QVu -Vo+ |u|p’2uv} dx — )\/ fi(w)vdx — A fo(u)vdo
Q Q a9

- /~L/ g1(uw)vdr — u/ g2(u)vdo =0
Q 19}

for all v € W1P(Q).

Theorem 1.2. Assume conditions (f) and (g) are fulfilled. Moreover, there exists
so > 0 such that

Fl(SO) = /OSO fl(t)dt >0 and FQ(SQ) = /OSO fg(t)dt > 0.

Then for each \ € R large enough, there exists t > 0, such that problem (1.1) has
at least a non-trivial weak solution u in WP(Q) for every u € (0,).
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2. Existence of solutions

For A\, € R, let us define the functional Jy , : W'?(Q) — R associated to
problem (1.1) by the formula

1
T () = 2;/Q [1Vul? + Juf?] e )\/QFl(u)dx A [ R

— /Q Gi(u)dz — p n G (u)do (2.1)
= Aw) = Dy u(w),
where
1
Alu) = - [VulP + |ul? |dz,
b /“ [ } (2.2)

I u(u) = )\/QFl(u)dx + A Fy(u)do + M/Q Gi(u)dz + p Ga(u)do

o0 o0

for all u € WHP(Q). Then, a simple computation shows that Iy is of C" class
and

DJA’M(u)(v):/ [|Vu|p_2Vu-Vv+|u|p_2uv}daz—)\/ fi(w)vdx—X\ fa(u)vdo
Q Q o0
—p /Q g1 (w)vdz — /8 m(ujuds =0

for all u,v € W1P(£2). Thus, weak solutions of problem (1.1) are exactly the critical
points of Jy .

Lemma 2.1. For every A € R, there exists @ > 0, depending on A, such that for
every p € (0,7), the functional J , is coercive.

Proof. Firstly, we have

Spallullzr) = llullip and Spaallullraa) = llull,p

for all u € WHP(Q).
Let us fix A € R, arbitrary. By (f), there exist §; = d;(A), ¢ = 1,2, such that

1
I e— 7l (71 )
|f1( )l— p,Q2(1+|)\|)H ) ||_ 1

and 1
<SP ————[tPTE Yt = 6.
‘f?(t>|_5pyaﬂ2(1+|>\|)‘t| ) ||_ 2

Integrating the above inequalities, we have

1
ItP + max |f1(s)|[t], VteR (2.3)

i) =8 g5
[Fi(t)] = P21 + |A)) EES
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and

[F2(t)] =S

1
S tl, VteR. 2.4
hongpr g 7+ ma () (2.4)

Since g;, ¢ = 1,2 are (p — 1)-asymptotically linear at infinity, there exist two
constants m; > 0, ¢ = 1, 2, such that

|g1(8)] < mapSy o[tP~" +ma,
|92(t)] < mapSy o [t~ +mo
for all ¢ € R. It implies that
[G1(t)] = maS] o[t +malt], (2.5)

and
|Ga(t)] = maS soltl” + malt] (2.6)

for all t € R.
Hence, for any u € WP(Q), we deduce that

Iap(u) 2 A(u) = |Ix . (u)]
1 Al Al
>l — — P — ) a
> L1l = o iy e~ 5 1K Tl max A
Al » Al o
S - - o907
2p(1 I |)\D ||u||17p Sp,(’)ﬂ‘ |N—1Hu||17p |ISI|1§(}5(1 |f2(5)|
|l
= |ulma|lully, m17\9|1v|| ll1.p
= P i o0
llmallully, —m2 2 | |N lullp
p
Z(gi—f—Mmuwwap LIl max 1)
p(1+A]) I
Al N
- |5‘Q|N 1w,y max | f2(s)| — 120X [Jull1,p
Sp,00 [s|<61 Sp.

|l
*m2S |8Q|N 1”“”1 P>
p,0

where p' = -5 Let 1 = and fix p € (0,7). Since p > 1 we have

1
p(mi+ma)(1+[A])
I pu(u) = 400 as ||ul|1,p — oo. Thus, the functional Jy , is coercive. O

Lemma 2.2. Let A and @ be chosen as in the previous lemma. Then for each
p € (0,7), the functional Jy , satisfies the Palais-Smale condition.
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Proof. Let {u,,} be a sequence in W1P() such that
Ip(um) = DIy u(um) — 0in WHP(Q) as m — oo. (2.7)

Since the functional Jy ,, is coercive, the sequence {u,,} is bounded in W1?().
Then, there exist a subsequence still denoted by {u,,} and a function u € W1?(Q),
such that {u,,} converges weakly to u in WP (Q2). Hence, {||um—ull1,,} is bounded
and by (2.7), DJx,,(tm)(tm — u) converges to 0 as m — oo.

By (f), there exists a constant C; > 0 such that

|f1(t)| §01(1+|t‘p_1)7 1=1,2

for all ¢ € R. Therefore,
0= / | f1 () ||t — uldz < Cl/ [t — uldx + C’/ [t [P |t — u|d
Q Q Q
< C IR+l ey |t — wll 2oy

and

0< / o i) [t — il < cl/ o — uldz + 01/ I T——
o0 o0 o0

1
o7 -1
< CL{109IF 1 + llum ooy ltm — wloon)-

Since {u,,} converges strongly to w in the spaces LP(2) and LP(0f?), the above
inequalities imply that

m [ f1(tum)(tm — u)dz =0 (2.8)
m— o0 Q
and
lim fo(um) (U — uw)dz = 0. (2.9)

m—o0 a0

On the other hand, by (g), there exists a constant Cy > 0 such that
‘gi(t” = 02(1 + |t|p—1)’ i=1,2

for all ¢ € R. Therefore, the similar arguments above show that

lim [ g1(um)(um —u)dz =0 (2.10)
m—0o0 Q
and
lim 92 () (U, — u)da = 0. (2.11)

By relations (2.8)-(2.11), we get

lim DIy ,(tm)(tm —u) = 0. (2.12)

m— o0
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Combining (2.11) and (2.7), it follows that

lm  A(tm)(tm —u) = 0. (2.13)
m—ro0
Hence, standard arguments help us to show that the sequence {u,,} converges
strongly to w in WP(Q). Thus, the functional .J) , satisfies the Palais-Smale
condition in W1?(Q). ]

Proof Theorem 1.2. By Lemmas 2.1 and 2.2, using the minimum principle [8, The-
orem 2.1], we deduce that for each A € R, there exists 7 > 0, such that for any
w € (0,7), problem (1.1) has a weak solution u € W?(£2). We will show that u is
not trivial for A large enough. Indeed, let sy be a real number such that

Fl(So) = ASO f1(t)dt > 0 and FQ(SQ) = /OSO f2(t)dt >0

and let 29 C Q be an open subset with |y > 0. Then, there exists ug € C§°(€2)
such that ug(z) = s¢ on Qg and 0 < ug(z) < 50 in Q\Qy. We have

1
T (tt0) = f/ (V0] + fug 7] iz /\/ Fu(uo)dz -\ [ Fa(uo)de
PJa Q f519)

—p | Gi(ug)dx — p Ga(up)dx
Q a0

1
< 7/ (1Vuol? + ol da X [ Fi(uo)dz =X [ Paug)da
P Ja Qo 90

—p [ Gi(ug)dr —p Ga(up)dx
Qo Qo

=C - )\(Fl(SO)|Q()|N + F2(30)|QO|N71>7

where C'is a positive constant (C' depends on u). Therefore, for A > 0 large enough,
we have Jy ,(up) < 0. Thus, the solution w is not trivial. The proof of Theorem
1.2 is now completed. g
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