
Bol. Soc. Paran. Mat. (3s.) v. 30 1 (2012): 53–66.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i1.12787

On Ψ∗-operator in ideal m-spaces

Ahmad Al-Omari and Takashi Noiri

abstract: An ideal on a set X is a nonempty collection of subsets of X with

heredity property which is also closed finite unions. The concept of ideal m-spaces

was introduced by Al-Omari and Noiri [1]. In this paper, we introduce and study

an operator Ψ∗ : P(X) → M defined as follows for every A ∈ X, Ψ∗(A) = {x ∈ X :

there exists a U ∈ M(x) such that U − A ∈ I}, and observes that Ψ∗(A) =

X − (X − A)∗.

Key Words: ideal, Ψ∗-operator, ideal m-space

Contents

1 Introduction 53

2 Preliminaries 54

3 Ψ∗-operator in ideal m-spaces 56

4 Ψ̃∗-Sets 63

.

1. Introduction

The notion of ideal topological spaces was first studied by Kuratowski [6] and

Vaidyanathaswamy [15]. Compatibility of the topology τ with an ideal I was first

defined by Njåstad [11]. In 1990, Jankovic and Hamlett [4,3] investigated further

properties of ideal topological spaces and another operator called Ψ-operator is

defined as Ψ(A) = X − (X − A)∗. In 2007 Modak and Bandyopadhyay [8] used

the Ψ-operator to define interesting generalized open sets. In 2009, Ozbakir and

Yildirim [12] defined the minimal local function by using minimal structures and

deduced some results. Quite recently, Al-Omari and Noiri [1] defined the ideal

m-spaces and obtained some interesting results. In this paper, we introduce and

study an operator Ψ∗ : P(X) → M defined as follows for every A ∈ X, Ψ∗(A) =
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{x ∈ X : there exists a U ∈ M(x) such that U − A ∈ I}, and observes that

Ψ∗(A) = X−(X−A)∗. We utilize the Ψ∗-operator to define interesting generalized

m-open sets and study their properties.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For

a subset A of a topological space (X, τ), Cl(A) and Int(A) denote the closure and

the interior of A in (X, τ), respectively. An ideal I on a topological space (X, τ) is

a nonempty collection of subsets of X which satisfies the following properties:

1. A ∈ I and B ⊆ A implies that B ∈ I.

2. A ∈ I and B ∈ I implies A ∪ B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on X

and is denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) = {x ∈ X : A ∩ U /∈ I

for every open set U containing x} is called the local function of A with respect

to I and τ (see [4,6]). We simply write A∗ instead of A∗(I, τ) in case there is

no chance for confusion. For every ideal topological space (X, τ, I), there exists

a topology τ∗(I), finer than τ , generating by the base β(I, τ) = {U − J : U ∈ τ

and J ∈ I}. It is known in [4] that β(I, τ) is not always a topology. When there

is no ambiguity, τ∗(I) is denoted by τ∗. Recall that A is said to be ∗-dense in

itself (resp. τ∗-closed, ∗-perfect) if A ⊆ A∗ (resp. A∗ ⊆ A, A = A∗). For a subset

A ⊆ X, Cl∗(A) and Int∗(A) will denote the closure and the interior of A in (X, τ∗),

respectively.

Definition 2.1 [1] A subfamily M of the power set P(X) of a nonempty set

X is called an m-structure on X if M satisfies the following conditions:

1. M contains φ and X,

2. M is closed under the finite intersection.

The pair (X,M) is called an m-space. An m-space (X,M) with an ideal I

on X is called an ideal m-space and is denoted by (X,M, I).

Definition 2.2 [1] A set A ∈ P(X) is called an m-open set if A ∈ M. B ∈

P(X) is called an m-closed set if X −B ∈ M. We set mInt(A) = ∪{U : U ⊆

A,U ∈ M} and mCl(A) = ∩{F : A ⊆ F,X − F ∈ M}.
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Definition 2.3 [1] Let (X,M, I) be an ideal m-space. For a subset A of X,

we define the following set: A∗(I,M) = {x ∈ X : A ∩ U /∈ I for every

U ∈ M(x)}, where M(x) = {U ∈ M : x ∈ U}. In case there is no confusion

A∗(I,M) is briefly denoted by A∗ and is called the M-local function of A

with respect to I and M.

Lemma 2.1 [1] Let (X,M, I) be an ideal m-space and A, B any subsets of X.

Then the following properties hold:

1. (φ)∗ = φ,

2. (A∗)∗ ⊂ A∗,

3. A∗ ∪ B∗ = (A ∪ B)∗.

Theorem 2.1 [1] Let (X,M) be an m-space, I and J be ideals on X, and let

A and B be subsets of X. Then the following properties hold:

1. If A ⊆ B, then A∗ ⊆ B∗.

2. If I ⊆ J , then A∗(I) ⊇ A∗(J ).

3. A∗ = mCl(A∗) ⊆ mCl(A) (i.e.A∗ is an m-closed subset of mCl(A)).

4. If A ⊆ A∗, then A∗ = mCl(A∗) = mCl(A).

5. If A ∈ I, then A∗ = φ.

Corollary 2.1A [1] Let (X,M, I) be an ideal m-space and A, I subsets of X

with I ∈ I. Then (A ∪ I)∗ = A∗ = (A − I)∗.

Remark 2.1 In [1] Al-Omari and Noiri obtained that Cl∗(A) = A ∪ A∗ is a

Kuratowski closure operator. We will denote by M∗ the topology generated

by Cl∗, that is, M∗ = {U ⊆ X : Cl∗(X − U) = X − U}.

Theorem 2.2 [1] Let (X,M, I) be an ideal m-space. Then β(M, I) = {V − I :

V ∈ M, I ∈ I} is a basis for M∗.
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Theorem 2.3 [1] Let (X,M, I) be an ideal m-space, then the following proper-

ties are equivalent:

1. M∩ I = φ ;

2. If I ∈ I, then mInt(I) = φ;

3. For every G ∈ M, G ⊆ G∗;

4. X = X∗.

3. Ψ∗-operator in ideal m-spaces

Definition 3.1 Let (X,M, I) be an ideal m-space. An operator Ψ∗ : P(X) →

M is defined as follows for every A ∈ X, Ψ∗(A) = {x ∈ X : there exists a

U ∈ M(x) such that U − A ∈ I} and observes that Ψ∗(A) = X − (X − A)∗.

Several basic facts concerning the behavior of the operator Ψ∗ are included in

the following theorem.

Theorem 3.1 Let (X,M, I) be an ideal m-space. Then the following properties

hold:

1. If A ⊆ X, then Ψ∗(A) is m-open.

2. If A ⊆ B, then Ψ∗(A) ⊆ Ψ∗(B).

3. If A,B ∈ P(X), then Ψ∗(A ∩ B) = Ψ∗(A) ∩ Ψ∗(B).

4. If U ∈ M∗, then U ⊆ Ψ∗(U).

5. If A ⊆ X, then Ψ∗(A) ⊆ Ψ∗(Ψ∗(A)).

6. If A ⊆ X, then Ψ∗(A) = Ψ∗(Ψ∗(A)) if and only if

(X − A)∗ = ((X − A)∗)∗.

7. If A ∈ I, then Ψ∗(A) = X − X∗.

8. If A ⊆ X, then A ∩ Ψ∗(A) = Int∗(A).

9. If A ⊆ X, I ∈ I, then Ψ∗(A − I) = Ψ∗(A).

10. If A ⊆ X, I ∈ I, then Ψ∗(A ∪ I) = Ψ∗(A).
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11. If (A − B) ∪ (B − A) ∈ I, then Ψ∗(A) = Ψ∗(B).

Proof. (1) This follows from Theorem 2.1 (3).

(2) This follows from Theorem 2.1 (1).

(3) It follows from (2) that Ψ∗(A ∩ B) ⊆ Ψ∗(A) and Ψ∗(A ∩ B) ⊆ Ψ∗(B). Hence

Ψ∗(A∩B) ⊆ Ψ∗(A)∩Ψ∗(B). Now let x ∈ Ψ∗(A)∩Ψ∗(B). There exist U, V ∈ M(x)

such that U−A ∈ I and V −B ∈ I. Let G = U∩V ∈ M(x) and we have G−A ∈ I

and G−B ∈ I by heredity. Thus G−(A∩B) = (G−A)∪(G−B) ∈ I by additivity,

and hence x ∈ Ψ∗(A ∩ B). We have shown Ψ∗(A) ∩ Ψ∗(B) ⊆ Ψ∗(A ∩ B) and the

proof is complete.

(4) If U ∈ M∗, then X − U is M∗-closed which implies (X − U)∗ ⊆ X − U and

hence U ⊆ X − (X − U)∗ = Ψ∗(U).

(5) This follows from (1) and (4).

(6) This follows from the facts:

1. Ψ∗(A) = X − (X − A)∗.

2. Ψ∗(Ψ∗(A)) = X − [X − (X − (X − A)∗)]∗ = X − ((X − A)∗)∗.

(7) By Corollary 2.1A we obtain that (X − A)∗ = X∗ if A ∈ I.

(8) If x ∈ A ∩ Ψ∗(A), then x ∈ A and there exists a Ux ∈ M(x) such that

Ux − A ∈ I. Then by Theorem 2.2, Ux − (Ux − A) is an M∗-open neighborhood

of x and x ∈ Int∗(A). On the other hand, if x ∈ Int∗(A), there exists a basic M∗-

open neighborhood Vx−I of x, where Vx ∈ M and I ∈ I, such that x ∈ Vx−I ⊆ A

which implies Vx − A ⊆ I and hence Vx − A ∈ I. Hence x ∈ A ∩ Ψ∗(A).

(9) This follows from Corollary 2.1A and Ψ∗(A − I) = X − [X − (A − I)]∗ =

X − [(X − A) ∪ I]∗ = X − (X − A)∗ = Ψ∗(A).

(10) This follows from Corollary 2.1A and Ψ∗(A ∪ I) = X − [X − (A ∪ I)]∗ =

X − [(X − A) − I]∗ = X − (X − A)∗ = Ψ∗(A).

(11) Assume (A − B) ∪ (B − A) ∈ I. Let A − B = I and B − A = J . Observe

that I, J ∈ I by heredity. Also observe that B = (A − I) ∪ J . Thus Ψ∗(A) =

Ψ∗(A − I) = Ψ[(A − I) ∪ J ] = Ψ∗(B) by (9) and (10).

Corollary 3.1A Let (X,M, I) be an ideal m-space. Then U ⊆ Ψ∗(U) for every

m-open set U ∈ M.

Proof. We know that Ψ∗(U) = X−(X−U)∗. Now (X−U)∗ ⊆ mCl(X−U) = X−

U , since X−U is m-closed. Therefore, U = X−(X−U) ⊆ X−(X−U)∗ = Ψ∗(U).
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Now we give an example of a set A which is not m-open but satisfies A ⊆ Ψ∗(A).

Example 3.1 Let X = {a, b, c, d}, M = {φ,X, {a, c}, {d}}, and I = {φ, {c}}.

Let A = {a}. Then Ψ∗({a}) = X−(X−{a})∗ = X−{b, c, d}∗ = X−{b, d} = {a, c}.

Therefore, A ⊆ Ψ∗(A), but A is not m-open.

Theorem 3.2 Let (X,M, I) be an ideal m-space and A ⊆ X. Then the following

properties hold:

1. Ψ∗(A) = ∪{U ∈ M : U − A ∈ I}.

2. Ψ∗(A) ⊇ ∪{U ∈ M : (U − A) ∪ (A − U) ∈ I}.

Proof. (1) This follows immediately from the definition of Ψ∗-operator.

(2) Since I is heredity, it is obvious that ∪{U ∈ M : (U − A) ∪ (A − U) ∈ I} ⊆

∪{U ∈ M : U − A ∈ I} = Ψ∗(A) for every A ⊆ X.

Theorem 3.3 Let (X,M, I) be an ideal m-space. If σ = {A ⊆ X : A ⊆ Ψ∗(A)}.

Then σ is a topology for X and σ = M∗.

Proof. Let σ = {A ⊆ X : A ⊆ Ψ∗(A)}. First, we show that σ is a topology.

Observe that φ ⊆ Ψ∗(φ) and X ⊆ Ψ∗(X) = X, and thus φ and X ∈ σ. Now if

A,B ∈ σ, then A∩B ⊆ Ψ∗(A)∩Ψ∗(B) = Ψ∗(A∩B) which implies that A∩B ∈ σ.

If {Aα : α ∈ ∆} ⊆ σ, then Aα ⊆ Ψ∗(Aα) ⊆ Ψ∗(∪Aα) for every α and hence

∪Aα ⊆ Ψ∗(∪Aα). This shows that σ is a topology. Now if U ∈ M∗ and x ∈ U ,

then by Theorem 2.2 there exist V ∈ M(x) and I ∈ I such that x ∈ V − I ⊆ U .

Clearly V − U ⊆ I so that V − U ∈ I by heredity and hence x ∈ Ψ∗(U). Thus

U ⊆ Ψ∗(U) and we have shown M∗ ⊆ σ. Now let A ∈ σ, then we have A ⊆ Ψ∗(A),

that is, A ⊆ X − (X − A)∗ and (X − A)∗ ⊆ X − A. This shows that X − A is

M∗-closed and hence A ∈ M∗. Thus σ ⊆ M∗ and hence σ = M∗.

Definition 3.2 [1] Let (X,M, I) be an ideal m-space. We say the m-structure

M is m-compatible with the ideal I, denoted M ∼∗ I, if the following holds

for every A ⊆ X, if for every x ∈ A there exists U ∈ M(x) such that U∩A ∈ I,

then A ∈ I.
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Theorem 3.4 Let (X,M, I) be an ideal m-space. Then M ∼∗ I if and only if

Ψ∗(A) − A ∈ I for every A ⊆ X.

Proof. Necessity. Assume M ∼∗ I and let A ⊆ X. Observe that x ∈ Ψ∗(A)−A ∈ I

if and only if x /∈ A and x /∈ (X − A)∗ if and only if x /∈ A and there exists

Ux ∈ M(x) such that Ux − A ∈ I if and only if there exists Ux ∈ M(x) such that

x ∈ Ux−A ∈ I. Now, for each x ∈ Ψ∗(A)−A and Ux ∈ M(x), Ux∩(Ψ∗(A)−A) ∈ I

by heredity and hence Ψ∗(A) − A ∈ I by assumption that M ∼∗ I.

Sufficiency. Let A ⊆ X and assume that for each x ∈ A there exists Ux ∈ M(x)

such that Ux ∩ A ∈ I. Observe that Ψ∗(X − A) − (X − A) = {x : there exists

Ux ∈ M(x) such that x ∈ Ux∩A ∈ I}. Thus we have A ⊆ Ψ∗(X−A)−(X−A) ∈ I

and hence A ∈ I by heredity of I.

Proposition 3.1 Let (X,M, I) be an ideal m-space with M ∼∗ I, A ⊆ X. If N

is a nonempty m-open subset of A∗ ∩ Ψ∗(A), then N − A ∈ I and N ∩ A /∈ I.

Proof. If N ⊆ A∗ ∩ Ψ∗(A), then N − A ⊆ Ψ∗(A) − A ∈ I by Theorem 3.4 and

hence N −A ∈ I by heredity. Since N ∈ M−{φ} and N ⊆ A∗, we have N ∩A /∈ I

by the definition of A∗.

As a consequence of the above theorem, we have the following.

Corollary 3.4B Let (X,M, I) be an ideal m-space with M ∼∗ I. Then Ψ∗(Ψ∗(A)) =

Ψ∗(A) for every A ⊆ X.

Proof. Ψ∗(A) ⊆ Ψ∗(Ψ∗(A)) follows from Theorem 3.1 (5). Since M ∼∗ I,

it follows from Theorem 3.4 that Ψ∗(A) ⊆ A ∪ I for some I ∈ I and hence

Ψ∗(Ψ∗(A)) = Ψ∗(A) by Theorem 3.1 (10).

Theorem 3.5 Let (X,M, I) be an ideal m-space with M ∼∗ I. Then Ψ∗(A) =

∪{Ψ∗(U) : U ∈ M,Ψ∗(U) − A ∈ I}.

Proof. Let Φ(A) = ∪{Ψ∗(U) : U ∈ M,Ψ∗(U) − A ∈ I}. Clearly, Φ(A) ⊆ Ψ∗(A).

Now let x ∈ Ψ∗(A). Then there exists U ∈ M(x) such that U − A ∈ I. By

Corollary 3.1A, U ⊆ Ψ∗(U) and Ψ∗(U)−A ⊆ [Ψ∗(U)−U ]∪ [U −A]. By Theorem

3.4, Ψ∗(U)−U ∈ I and hence Ψ∗(U)−A ∈ I. Hence x ∈ Φ(A) and Φ(A) ⊇ Ψ∗(A).

Consequently, we obtain Φ(A) = Ψ∗(A).

In [9], Newcomb defines A = B [mod I] if (A−B)∪ (B −A) ∈ I and observes

that = [mod I] is an equivalence relation. By Theorem 3.1 (11), we have that if

A = B [mod I], then Ψ∗(A) = Ψ∗(B).
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Definition 3.3 Let (X,M, I) be an ideal m-space. A subset A of X is called a

Baire set with respect to M and I, denoted A ∈ Br(X,M, I), if there exists

an m-open set U ∈ M such that A = U [mod I].

Lemma 3.1 Let (X,M, I) be an ideal m-space with M ∼∗ I. If U , V ∈ M and

Ψ∗(U) = Ψ∗(V ), then U = V [mod I].

Proof. Since U ∈ M, we have U ⊆ Ψ∗(U) and hence U − V ⊆ Ψ∗(U) − V =

Ψ∗(V )−V ∈ I by Theorem 3.4. Similarly V −U ∈ I. Now (U −V )∪ (V −U) ∈ I

by additivity. Hence U = V [mod I].

Theorem 3.6 Let (X,M, I) be an ideal m-space with M ∼∗ I. If A, B ∈

Br(X,M, I), and Ψ∗(A) = Ψ∗(B), then A = B [mod I].

Proof. Let U, V ∈ M such that A = U [mod I] and B = V [mod I]. Now

Ψ∗(A) = Ψ∗(B) and Ψ∗(B) = Ψ∗(V ) by Theorem 3.1(11). Since Ψ∗(A) = Ψ∗(U)

implies that Ψ∗(U) = Ψ∗(V ), hence U = V [mod I] by Lemma 3.1. Hence A = B

[mod I] by transitivity.

Proposition 3.2 Let (X,M, I) be an ideal m-space.

1. If B ∈ Br(X,M, I) − I, then there exists A ∈ M − {φ} such that B = A

[mod I].

2. Let M ∩ I = φ, then B ∈ Br(X,M, I) − I if and only if there exists A ∈

M− {φ} such that B = A [mod I].

Proof. (1) Assume B ∈ Br(X,M, I)−I, then B ∈ Br(X,M, I). Now if there does

not exist A ∈ M− {φ} such that B = A [mod I], we have B = φ [mod I]. This

implies that B ∈ I which is a contradiction.

(2) Assume there exists A ∈ M − {φ} such that B = A [mod I]. Then A =

(B − J) ∪ I, where J = B − A, I = A − B ∈ I. If B ∈ I, then A ∈ I by heredity

and additivity, which contradicts that M∩ I = φ.

Proposition 3.3 Let (X,M, I) be an ideal m-space with M ∩ I = φ. If B ∈

Br(X,M, I) − I, then Ψ∗(B) ∩ mInt(B∗) 6= φ.
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Proof. Assume B ∈ Br(X,M, I) − I, then by Proposition 3.2(1), there exists

A ∈ M − {φ} such that B = A [mod I]. This implies that φ 6= A ⊆ A∗ =

((B − J) ∪ I)∗ = B∗, where J = B − A, I = A − B ∈ I by Theorem 2.3 and

Corollary 2.1A. Also φ 6= A ⊆ Ψ∗(A) = Ψ∗(B) by Theorem 3.1 (11), so that

A ⊆ Ψ∗(B) ∩ mInt(B∗).

Given an ideal m-space (X,M, I), let U(X,M, I) denote {A ⊆ X : there exists

B ∈ Br(X,M, I) − I such that B ⊆ A}.

Proposition 3.4 Let (X,M, I) be an ideal m-space with M∩I = φ. The follow-

ing properties are equivalent:

1. A ∈ U(X,M, I);

2. Ψ∗(A) ∩ mInt(A∗) 6= φ;

3. Ψ∗(A) ∩ A∗ 6= φ;

4. Ψ∗(A) 6= φ;

5. Int∗(A) 6= φ;

6. There exists N ∈ M− {φ} such that N − A ∈ I and N ∩ A /∈ I.

Proof. (1) ⇒ (2): Let B ∈ Br(X,M, I) − I such that B ⊆ A. Then mInt(B∗) ⊆

mInt(A∗) and Ψ∗(B) ⊆ Ψ∗(A) and hence mInt(B∗)∩Ψ∗(B) ⊆ mInt(A∗)∩Ψ∗(A).

By Proposition 3.3, we have Ψ∗(A) ∩ mInt(A∗) 6= φ.

(2) ⇒ (3): The proof is obvious.

(3) ⇒ (4): The proof is obvious.

(4) ⇒ (5): If Ψ∗(A) 6= φ, then there exists U ∈ M − {φ} such that U − A ∈ I.

Since U /∈ I and U = (U − A) ∪ (U ∩ A), we have U ∩ A /∈ I. By Theorem 3.1,

φ 6= (U ∩ A) ⊆ Ψ∗(U) ∩ A = Ψ∗((U − A) ∪ (U ∩ A)) ∩ A = Ψ∗(U ∩ A) ∩ A ⊆

Ψ∗(A) ∩ A = Int∗(A). Hence Int∗(A) 6= φ.

(5) ⇒ (6): If Int∗(A) 6= φ, then by Theorem 2.2 there exists N ∈ M− {φ} and

I ∈ I such that φ 6= N − I ⊆ A. We have N −A ∈ I, N = (N −A)∪ (N ∩A) and

N /∈ I. This implies that N ∩ A /∈ I.

(6) ⇒ (1): Let B = N ∩ A /∈ I with N ∈ M − {φ} and N − A ∈ I. Then

B ∈ Br(X,M, I) − I since B /∈ I and (B − N) ∪ (N − B) = N − A ∈ I.

Theorem 3.7 Let (X,M, I) be an ideal m-space, where M ∩ I = φ. Then for

A ⊆ X, Ψ∗(A) ⊆ A∗.
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Proof. Suppose x ∈ Ψ∗(A) and x /∈ A∗. Then there exists a nonempty neigh-

borhood Ux ∈ M(x) such that Ux ∩ A ∈ I. Since x ∈ Ψ∗(A), by Theorem 3.2

x ∈ ∪{U ∈ M : U−A ∈ I} and there exists V ∈ M such that x ∈ V and V −A ∈ I.

Now we have Ux ∩ V ∈ M(x), Ux ∩ V ∩ A ∈ I and (Ux ∩ V ) − A ∈ I by heredity.

Hence by finite additivity we have (Ux ∩ V ∩ A) ∪ (Ux ∩ V − A) = (Ux ∩ V ) ∈ I.

Since (Ux ∩ V ) ∈ M(x), this is contrary to M∩ I = φ. Therefore, x ∈ A∗. This

implies that Ψ∗(A) ⊆ A∗.

Corollary 3.7C Let (X,M, I) be an ideal m-space, where M∩ I = φ. Then for

A ⊆ X, Ψ∗(A) ⊆ mCl(A∗).

Theorem 3.8 Let (X,M, I) be an ideal m-space. Then the following properties

are equivalent:

1. M∩ I = φ;

2. Ψ∗(φ) = φ;

3. If A ⊆ X is m-closed, then Ψ∗(A) − A = φ;

4. If I ∈ I, then Ψ∗(I) = φ.

Proof. (1) ⇒ (2) Since M∩I = φ, by Theorem 3.2 we have Ψ∗(φ) = ∪{U ∈ M :

U ∈ I} = φ.

(2) ⇒ (3) Suppose x ∈ Ψ∗(A) − A, then there exists a Ux ∈ M(x) such that

x ∈ Ux −A ∈ I and Ux −A ∈ M. But Ux −A ∈ {U ∈ M : U ∈ I} = Ψ∗(φ) which

implies that Ψ∗(φ) 6= φ. Hence Ψ∗(A) − A = φ.

(3) ⇒ (4) Let I ∈ I and since φ is m-closed, then Ψ∗(I) = Ψ∗(I ∪φ) = Ψ∗(φ) = φ.

(4) ⇒ (1) Suppose A ∈ M∩ I, then A ∈ I and by (4) Ψ∗(A) = φ. Since A ∈ M,

by Corollary 3.1A we have A ⊆ Ψ∗(A) = φ. Hence M∩ I = φ.

Definition 3.4 A subset A in an ideal m-space (X,M, I) is said to be IM-

dense if A∗ = X.

The collection of all IM-dense in (X,M, I) is denoted by IMD(X,M). The

collection of all dense sets in (X, τ) is denoted by D(X, τ). Now we show that

the collection of dense sets in a topological space (X,M∗) and the collection of

IM-dense sets in the ideal m-space (X,M, I) are equal if M∩ I = φ.

Theorem 3.9 Let (X,M, I) be an ideal m-space. If M∩I = φ, then IMD(X,M) =

D(X,M∗).
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Proof. Let D ∈ IMD(X,M). Then Cl∗(D) = D ∪ D∗ = X, i.e. D ∈ D(X,M∗).

Therefore, IMD(X,M) ⊆ D(X,M∗).

Conversely, let D ∈ D(X,M∗). Then Cl∗(D) = D ∪ D∗ = X. We prove that

D∗ = X. Let x ∈ X such that x /∈ D∗. Therefore there exists φ 6= U ∈ M such

that U ∩ D ∈ I. Since U /∈ I, U ∩ (X − D) /∈ I and hence U ∩ (X − D) 6= φ.

Let x0 ∈ U ∩ (X − D). Then x0 /∈ D and also x0 /∈ D∗. Because x0 ∈ D∗ implies

that U ∩ D /∈ I which is contrary to U ∩ D ∈ I. Thus x0 /∈ D ∪ D∗ = Cl∗(D) =

X. This is a contradiction. Therefore, we obtain D ∈ IMD(X,M). Therefore,

D(X,M∗) ⊆ IMD(X,M). Hence IMD(X,M) = D(X,M∗).

Theorem 3.10 Let (X,M, I) be an ideal m-space. Then for x ∈ X, X − {x} is

IM-dense if and only if Ψ∗({x}) = φ.

Proof. The proof follows from the definition of IM-dense sets, since Ψ∗({x}) =

X − (X − {x})∗ = φ if and only if X = (X − {x})∗.

Proposition 3.5 Let (X,M, I) be an ideal m-space with M ∩ I = φ. Then

Ψ∗(A) 6= φ if and only if A contains a nonempty M∗-interior.

Proof. Let Ψ∗(A) 6= φ. By Theorem 3.2 (1), Ψ∗(A) = ∪{U ∈ M : U − A ∈ I}

and there exists a nonempty set U ∈ M such that U − A ∈ I. Let U − A = P ,

where P ∈ I. Now U − P ⊆ A. By Theorem 2.2, U − P ∈ M∗ and A contains a

nonempty M∗-interior.

Conversely, suppose that A contains a nonempty M∗-interior. Hence there

exists U ∈ M and P ∈ I such that U−P ⊆ A. So U−A ⊆ P . Let H = U−A ⊆ P ,

then H ∈ I. Hence ∪{U ∈ M : U − A ∈ I} = Ψ∗(A) 6= φ.

4. Ψ̃∗-Sets

Definition 4.1 Let (X,M, I) be an ideal m-space. A subset A of X is called

a Ψ̃∗-set if A ⊆ mCl(Ψ∗(A)).

The collection of all Ψ̃∗-sets in (X,M, I) is denoted by Ψ̃∗(X,M).

Proposition 4.1 Let (X,M, I) be an ideal m-space. If A ∈ M, then A ∈

Ψ̃∗(X,M).

Proof. From Corollary 3.1A it follows that M ⊆ Ψ̃∗(X,M).

Now we give an example which shows that the reverse inclusion is not true.
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Remark 4.1 By Example 3.1, the reverse of Proposition 4.1 is not true even

though A ⊆ Ψ∗(A).

In the following examples, by C(M) we denote the family of all m-closed sets

in (X,M).

Example 4.1 Let X = {a, b, c, d}, M = {φ,X, {a}, {c, d}} and I = {φ, {c}}.

Then C(M) = {φ,X, {b, c, d}, {a, b}}. Let A = {a, d}, then Ψ∗(A) = X −{b, c}∗ =

X − {b} = {a, c, d}. Thus mCl(Ψ∗(A)) = X. Therefore, A ⊆ mCl(Ψ∗(A)) and

hence A ∈ Ψ̃∗(X,M) but A /∈ M.

We give an example which shows that any m-closed set in (X,M, I) may not be a

Ψ̃∗-set.

Example 4.2 Let X = {a, b, c}, M = {φ,X, {a}, {b}, {b, c}} and I = {φ, {a}}.

Then C(M) = {φ,X, {a, c}, {b, c}, {a}}. Let A = {a, c}, then Ψ∗(A) = X −{b}∗ =

X − {b, c} = {a}. Thus mCl(Ψ∗(A)) = {a}. Therefore, A * mCl(Ψ∗(A)) and

hence A is not a Ψ̃∗-set but A ∈ C(M).

Proposition 4.2 Let {Aα : α ∈ ∆} be a collection of nonempty Ψ̃∗-sets in an

ideal m-space (X,M, I), then ∪α∈∆Aα ∈ Ψ̃∗(X,M).

Proof. For each α ∈ ∆, Aα ⊆ mCl(Ψ∗(Aα)) ⊆ mCl(Ψ∗ (∪α∈∆Aα)). This implies

that ∪α∈∆Aα ⊆ mCl(Ψ∗ (∪α∈∆Aα)). Thus ∪α∈∆Aα ∈ Ψ̃∗(X,M).

The following example shows that the intersection of two Ψ̃∗-sets in (X,M, I)

may not be a Ψ̃∗-set.

Example 4.3 Let X = {a, b, c, d}, M = {φ,X, {a}, {b, c}} and I = {φ, {c}}.

Then C(M) = {φ,X, {b, c, d}, {a, d}}. Let A = {a, d}, then Ψ∗(A) = X−{c, b}∗ =

X − {b, c, d} = {a}. Thus mCl(Ψ∗(A)) = {a, d} and hence A is a Ψ̃∗-set. Also let

B = {b, c, d}, then Ψ∗(B) = X −{a}∗ = X −{a, d} = {b, c}. Thus mCl(Ψ∗(B)) =

{b, c, d} and hence B is a Ψ̃∗-set. Now A∩B = {d} and Ψ∗({d}) = X−{a, c, b}∗ =

X − {a, b, c, d} = φ. Thus {d} * mCl(Ψ∗({d})) = φ and hence A ∩ B is not a

Ψ̃∗-set.

Theorem 4.1 Let (X,M, I) be an ideal m-space and A ∈ Ψ̃∗(X,M). If U ∈ M,

then U ∩ A ∈ Ψ̃∗(X,M).
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Proof. Let U ∈ M and A ∈ Ψ̃∗(X,M). By Theorem 3.1 and Corollary 3.1A, we

have

U ∩ A ⊆ U ∩ mCl(Ψ∗(A))

⊆ mCl(U ∩ Ψ∗(A))

⊆ mCl(Ψ∗(U) ∩ Ψ∗(A))

= mCl(Ψ∗(U ∩ A)).

Hence U ∩ A ∈ Ψ̃∗(X,M).
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