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On faintly πg-continuous functions

N. Rajesh

abstract: A new class of functions, called faintly πg-continuous functions, has
been defined and studied. The relationships among faintly πg-continuous functions
and πg-connected spaces, strongly πg-normal spaces and πg-compact spaces are in-
vestigated. Furthermore, the relationships between faintly πg-continuous functions
and graphs are investigated.
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1. Introduction

Generalized open sets play a very important role in General Topology and they
are now the research topics of many topologists worldwide. Indeed a significant
theme in General Topology and Real analysis concerns the variously modified forms
of continuity, separation axioms etc. by utiliaing generalized closed sets. In 1970,
Levine [9] initiated the study of so-called g-closed sets, that is, a subset A of
a topological space (X, τ) is g-closed if the closure of A included in every open
superset of A and defined a T1/2 space to be one in which the closed sets and
the g-closed sets coincide. Zaitsev [17] defined the concept of π-closed sets and
a class of topological spaces called quasi-normal spaces. Recently, Dontchev and
Noiri [1] defined the notion of πg-closed sets and used this notion to obtain a
characterization and some preservation theorems for quasi-normal spaces. In this
paper, faintly πg-continuity is introduced and studied. Moreover, basic properties
and preservation theorems of faintly πg-continuous functions are investigated and
relationships between faintly πg-continuous functions and graphs are investigated.

2. Preliminaries

In the present paper, (X, τ) and (Y, σ) represent topological spaces on which
no separation axioms are assumed unless otherwise mentioned. For a subset A of
a space (X, τ), Cl(A), Int(A) and Ac denote the closure of A, the interior of A and
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the complement of A in X, respectively. A subset A of a space (X, τ) is said to be
regular open [15] (resp. semiopen [8], preopen [11]) if A = Int(Cl(A)) (resp. A ⊂
Cl(Int(A)), A ⊂ Int(Cl(A))). The complement of a regular open (resp. preopen)
set is called a regular closed (resp. preclosed) set. The finite union of regular open
sets is said to be π-open [1]. The complement of π-open set is said to be π-closed.
A subset A of a topological space (X, τ) is said to be πg-closed [17] if Cl(A) ⊂
U whenever A ⊂ U and U is π-open. The complement of πg-closed set is called
πg-open. The family of all πg-open (resp. πg-closed, πg-clopen) sets of (X, τ) is
denoted by πGO(X) (resp. πGC(X), πGCO(X)). Assume throughout this paper
πGO(X) is closed under arbitrary unions. The intersection (resp. union) of all πg-
closed (resp. πg-open) sets of X containing (resp. contained in) A ⊂ X is called
the πg-closure [6] (resp. πg-interior [6]) of A and is denoted by πg-Cl(A) (resp.
πg-Int(A)). A function f : (X, τ) → (Y, σ) is called πg-continuous [6] if f−1(V ) is
πg-open set in X for each open set V of Y . A point x ∈ X is called a θ-cluster
point of A if Cl(V ) ∩ A 6= ∅ for every open set V of X containing x. The set of
all θ-cluster points of A is called the θ-closure of A and is denoted by Clθ(A). If
A = Clθ(A), then A is said to be θ-closed. The complement of θ-closed set is said
to be θ-open. The union of all θ-open sets contained in a subset A is called the
θ-interior of A and is denoted by Intθ(A). It follows from [16] that the collection
of θ-open sets in a topological space (X, τ) forms a topology τθ on X. A subset
A ⊂ X is said to be δ-open [16] if it is the union of regular open sets of X. The
complement of a δ-open set is called a δ-closed set. The intersection of all δ-closed
sets containing A is called the δ-closure [16] of A and is denoted by Clδ(A).

Definition 2.1 The intersection of all preclosed sets containing the set A in a
space X is called the preclosure of A and is denoted by pCl(A)) [11].

Definition 2.2 A subset A of a topological space (X, τ) is said to be πgp-closed
[12] if pCl(A) ⊂ U whenever A ⊂ U and U is π-open in (X, τ).

Definition 2.3 A function f : (X, τ) → (Y, σ) is said to be faintly continuous [10]
if f−1(V ) is open in (X, τ) for every θ-open set V of (Y, σ).

Definition 2.4 A function f : (X, τ) → (Y, σ) is said to be slightly πg-continuous
[13] if for each x ∈ X and each clopen set V of Y containing f(x), there exists U
∈ πGO(X,x) such that f(U) ⊂ V .

3. Faintly πg-continuous functions

Definition 3.1 A function f : (X, τ) → (Y, σ) is called faintly πg-continuous at
a point x ∈ X if for each θ-open set V of Y containing f(x), there exists U ∈
πGO(X,x) such that f(U) ⊂ V . If f has this property at each point of X, then it
is said to be faintly πg-continuous.

Theorem 3.2 For a function f : (X, τ) → (Y, σ), the following statements are
equivalent:

(i) f is faintly πg-continuous;
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(ii) f−1(V ) is πg-open in X for every θ-open set V of Y ;

(iii) f−1(F ) is πg-closed in X for every θ-closed subset F of Y ;

(iv) f : (X, τ) → (Y, σθ) is πg-continuous.

(v) πg-Cl(f−1(B)) ⊆ f−1(Clθ(B)) for every subset B of Y ;

(vi) f−1(Intθ(G)) ⊆ πg-Int(f−1(G)) for every subset G of Y .

Proof: (i)⇒(ii): Let V be an θ-open set of Y and x ∈ f−1(V ). Since f(x) ∈ V
and f is faintly πg-continuous, there exists U ∈ πGO(X,x) such that f(U) ⊂ V .
It follows that x ∈ U ⊂ f−1(V ). Hence f−1(V ) is πg-open in X.
(ii)⇒(i): Let x ∈ X and V be an θ-open set of Y containing f(x). By (ii), f−1(V )
is a πg-open set containing x. Take U = f−1(V ). Then f(U) ⊂ V . This shows
that f is faintly πg-continuous.
(ii)⇒(iii): Let V be any θ-closed set of Y . Since Y \ V is an θ-open set, by (ii),
it follows that f−1(Y \V ) = X\f−1(V ) is πg-open. This shows that f−1(V ) is
πg-closed in X.
(iii)⇒(ii): Let V be an θ-open set of Y . Then Y \V is θ-closed in Y . By (iii),
f−1(Y \V ) = X\f−1(V ) is πg-closed and thus f−1(V ) is πg-open.
The other equivalances are Obvious. 2

Definition 3.3 A function f : (X, τ) → (Y, σ) is said to be faintly πgp-continuous
[4] if f−1(V ) is πgp-open in (X, τ) for every θ-open set V of (Y, σ).

Remark 3.4 Every faintly πg-continuous function is faintly πgp-continuous but
not conversely as shown by the following example.

Example 3.5 Let X = {a, b, c, d, e}, Y = {a, b, c}, τ = {∅, {a, b}, {c, d}, {a, b, c, d},
X} and σ = {∅, {a}, {b, c}, Y }. Define a function f : (X, τ) → (Y, σ) by f(a) = a,
f(b) = f(c) = f(d) = f(e) = b. Then f is faintly πgp-continuous but not faintly
πg-continuous.

Definition 3.6 A function f : (X, τ) → (Y, σ) is called

(i) (πg, s)-continuous [5] if f−1(V ) is πgp-closed in (X, τ) for every regular open
set V of (Y, σ).

(ii) almost contra-super-continuous [2] if f−1(V ) is δ-closed in (X, τ) for every
regular open set V of (Y, σ).

(iii) contra R-map [3] if f−1(V ) is regular closed in (X, τ) for every regular open
set V of (Y, σ).

(iv) contra πg-continuous [7] if f−1(V ) is πgp-closed in (X, τ) for every open set
V of (Y, σ).
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Remark 3.7 Every almost contra-super-continuous function, every contra πg-continuous
function and every contra-R-map is (πg, s)-continuous function.

Theorem 3.8 Suppose that the collection of πg-closed sets of X is closed under
arbitrary intersections. Then if f : (X, τ) → (Y, σ) is (πg, s)-continuous, then f is
faintly πg-continuous.

Proof: It follows from Theorem 11 of [5] and Theorem 3.2. 2

Theorem 3.9 Every πg-continuous function is faintly πg-continuous.

Proof: Clear. 2

Remark 3.10 The converse of Theorem 3.9 is not true in general as can be seen
from the following example.

Example 3.11 Let X = {a, b, c} with topologies τ = {∅, {a}, {b, c}, X} and σ
= {∅, {a}, {b}, {a, b}, {b, c}, X}. Then the identity function f : (X, τ) → (X,σ)
is faintly πg-continuous but not πg-continuous.

Definition 3.12 A topological space (X, τ) is said to be a πg-T1/2-space [6] if
every πg-closed subset of (X, τ) is in closed.

Theorem 3.13 Let (X, τ) be a πg-T1/2-space. Then a function f : (X, τ) → (Y, σ)
is faintly πg-continuous if and only if it is faintly continuous.

Proof: Follows from the Definition 3.12. 2

Theorem 3.14 If a function f : (X, τ) → (Y, σ) is faintly πg-continuous and
(Y, σ) is a regular space, then f is πg-continuous.

Proof: Let V be any open set of Y . Since Y is regular, V is θ-open in Y . Since f
is faintly πg-continuous, by Theorem 3.2, we have f−1(V ) is πg-open and hence f
is πg-continuous. 2

Definition 3.15 A function f : (X, τ) → (Y, σ) is said to be almost πgp-continuous
[4] if f−1(Int(Cl(V ))) is πgp-open in (X, τ) for every open set V of (Y, σ).

Remark 3.16 [4] Every πg-continuous function is almost πgp-continuous.

Theorem 3.17 If a function f : (X, τ) → (Y, σ) is faintly πg-continuous and
(Y, σ) is regular, then f is almost πg-continuous.

Proof: It follows from Remark 3.16 and Theorem 3.14. 2
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Theorem 3.18 If a function f : (X, τ) → (Y, σ) is faintly πg-continuous, then it
is slightly πg-continuous.

Proof: Let x ∈ X and V be any clopen subset of (Y, σ) containing f(x). Then
V is θ-open in Y . Since f is faintly πg-continuous, there exists U ∈ πGO(X,x)
containing x such that f(U) ⊂ V . This shows that f is slightly πg-continuous. 2

Definition 3.19 Let (X, τ) be a topological space. Since the intersection of two
clopen sets of (X, τ) is clopen, the clopen sets of (X, τ) may be use as a base for
a topology for X. This topology is called the ultra-regularization of τ [8] and is
denoted by τu. A topological space (X, τ) is said to be ultra-regular if τ = τu.

Theorem 3.20 Let (Y, σ) be an ultra-regular space. Then, for a function f :
(X, τ) → (Y, σ), the following properties are equivalent:

(i) f is πg-continuous;

(ii) f is faintly πg-continuous;

(iii) f is slightly πg-continuous.

Proof: The proof follows from definitions and Theorems 3.9, and 3.18. 2

Definition 3.21 A πg-frontier [7] of a subset A of (X, τ) is πg-Fr(A) = πg-Cl(A)
∩ πg-Cl(X\A).

Theorem 3.22 The set of all points x ∈ X in which a function f : (X, τ) → (Y, σ)
is not faintly πg-continuous is the union of πg-frontier of the inverse images of θ-
open sets containing f(x).

Proof: Suppose that f is not faintly πg-continuous at x ∈ X. Then there exists
an θ-open set V of Y containing f(x) such that f(U) is not contained in V for each
U ∈ πGO(X,x) and hence x ∈ θ-Cl(X\f−1(V )). On the otherhand, x ∈ f−1(V ) ⊂
πg-Cl(f−1(V )) and hence x ∈ πg-Fr(f−1(V )). Conversely, suppose that f is faintly
πg-continuous at x ∈ X and let V be a θ-open set of Y containing f(x). Then
there exists U ∈ πGO(X,x) such that U ⊂ f−1(V ). Hence x ∈ πg-Int(f−1(V )).
Therefore, x /∈ πg-Fr(f−1(V )) for each θ-open set V of Y containing f(x). 2

Theorem 3.23 Let f : (X, τ) → (Y, σ) be a function and g : (X, τ) → (X ×Y, τ ×
σ) the graph function of f , defined by g(x) = (x, f(x)) for every x ∈ X. If g is
faintly πg-continuous, then f is faintly πg-continuous.

Proof: Let U be an θ-open set in (Y, σ), then X × U is a θ-open set in X × Y .
It follows that f−1(U) = g−1(X × U) ∈ πGO(X). This shows that f is faintly
πg-continuous. 2
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Definition 3.24 A space (X, τ) is said to be πg-connected [ [7], [5]] if X cannot
be written as a disjoint union of two nonempty πg-open sets.

Theorem 3.25 If f : (X, τ) → (Y, σ) is a faintly πg-continuous function and
(X, τ) is a πg-connected space, then Y is a connected space.

Proof: Assume that (Y, σ) is not connected. Then there exist nonempty open sets
V1 and V2 such that V1 ∩ V2 = ∅ and V1 ∪ V2 = Y . Hence we have f−1(V1)
∩ f−1(V2) = ∅ and f−1(V1) ∪ f−1(V2) = X. Since f is surjective, f−1(V1) and
f−1(V2) are nonempty subsets of X. Since Vi is open and closed, Vi is θ-open for
each i = 1, 2. Since f is faintly πg-continuous, f−1(Vi) ∈ πGO(X). Therefore,
(X, τ) is not πg-connected. This is a contradiction and hence (Y, σ) is connected.

2

Definition 3.26 A space (X, τ) is said to be πg-compact [6] (resp. θ-compact
[14]) if each πg-open (resp. θ-open) cover of X has a finite subcover.

Theorem 3.27 The surjective faintly πg-continuous image of a πg-compact space
is θ-compact.

Proof: Let f : (X, τ) → (Y, σ) be a faintly πg-continuous function from a πg-
compact space X onto a space Y . Let {Gα: α ∈ I} be any θ-open cover of Y .
Since f is faintly πg-continuous, {f−1(Gα): α ∈ I} is a πg-open cover of X. Since
X is πg-compact, there exists a finit subcover {f−1(Gi) : i = 1, 2, .... n} of X.
Then it follows that {Gi: i = 1, 2, .... n} is a finite subfamily which cover Y .
Hence Y is θ-compact. 2

Definition 3.28 A space (X, τ) is said to be:

(i) countably πg-compact [7] (resp. countably θ-compact) if every πg-open [7]
(resp. θ-open) countably cover of X has a finite subcover;

(ii) πg-Lindelof [7] (resp. θ-Lindelof) if every πg-open (resp. θ-open) cover of
X has a countable subocver

Theorem 3.29 Let f : (X, τ) → (Y, σ) be a faintly πg-continuous surjective func-
tion. Then the following hold:

(i) If X is πg-Lindelof, then Y is θ-Lindelof;

(ii) If X is countably πg-compact, then Y is countably θ-compact.

Proof: The proof is similar to Theorem 3.27. 2
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4. Separation Axioms

Definition 4.1 A topological space (X, τ) is said to be:

(i) πg-T1 [7] (resp. θ-T1) if for each pair of distinct points x and y of X, there
exists πg-open (resp. θ-open) sets U and V containing x and y, respectively
such that y /∈ U and x /∈ V .

(ii) πg-T2 [7] (resp. θ-T2 [14]) if for each pair of distinct points x and y in X,
there exists disjoint πg-open (resp. θ-open) sets U and V in X such that
x ∈ U and y ∈ V .

Theorem 4.2 If f : (X, τ) → (Y, σ) is faintly πg-continuous injection and Y is a
θ-T1 space, then X is a πg-T1 space.

Proof: Suppose that Y is θ-T1. For any distinct points x and y in X, there exist
V,W ∈ σθ such that f(x) ∈ V , f(y) /∈ V , f(x) /∈ W and f(y) ∈ W . Since f is
faintly πg-continuous, f−1(V ) and f−1(W ) are πg-open subsets of (X, τ) such that
x ∈ f−1(V ), y /∈ f−1(V ), x /∈ f−1(W ) and y ∈ f−1(W ). This shows that X is
πg-T1. 2

Theorem 4.3 If f : (X, τ) → (Y, σ) is faintly πg-continuous injection and Y is a
θ-T2 space, then X is a πg-T2 space.

Proof: Suppose that Y is θ-T2. For any pair of distinct points x and y in X, there
exist disjoint θ-open sets U and V in Y such that f(x) ∈ U and f(y) ∈ V . Since
f is faintly πg-continuous, f−1(U) and f−1(V ) are πg-open in X containing x and
y, respectively. Therefore, f−1(U) ∩ f−1(V ) = ∅ because U ∩ V = ∅. This shows
that X is πg-T2. 2

Definition 4.4 A space (X, τ) is called strongly θ-regular (resp. strongly πg-
regular) if for each θ-closed (resp. πg-closed) set F and each point x /∈ F , there
exist disjoint θ-open (resp. πg-open) sets U and V such that F ⊂ U and x ∈ V .

Definition 4.5 A space (X, τ) is said to be strongly θ-normal (resp. strongly πg-
normal) if for any pair of disjoint θ-closed (resp. πg-closed) subsets F1 and F2 of
X, there exist disjoint θ-open (resp. πg-open) sets U and V such that F1 ⊂ U and
F2 ⊂ V .

Definition 4.6 A function f : (X, τ) → (Y, σ) is called:

(i) πg-θ-open if f(V ) ∈ σθ for each V ∈ πGO(X).

(ii) πg-θ-closed if f(V ) is θ-closed in Y for each V ∈ πGC(X).

Theorem 4.7 If f is faintly πg-continuous πg-θ-open injective function from a
strongly πg-regular space (X, τ) onto a space (Y, σ), then (Y, σ) is strongly θ-regular.
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Proof: Let F be an θ-closed subset of Y and y /∈ F . Take y = f(x). Since f is
faintly πg-continuous, f−1(F ) is πg-closed in X such that f−1(y) = x /∈ f−1(F ).
Take G = f−1(F ). We have x /∈ G. Since X is strongly πg-regular, then there
exist disjoint πg-open sets U and V in X such that G ⊂ U and x ∈ V . We obtain
that F = f(G) ⊂ f(U) and y = f(x) ∈ f(U) such that f(U) and f(V ) are disjoint
θ-open sets. This shows that Y is strongly θ-regular. 2

Theorem 4.8 If f is faintly πg-continuous πg-θ–open injective function from a
strongly πg-normal space (X, τ) onto a space (Y, σ), then Y is strongly θ-normal.

Proof: Let F1 and F2 be disjoint θ-closed subsets of Y . Since f is faintly πg-
continuous, f−1(F1) and f−1(F2) are πg-closed sets. Take U = f−1(F1) and V
= f−1(F2). We have U ∩ V = ∅. Since X is strongly πg-normal, there exist
disjoint πg-open sets A and B such that U ⊂ A and V ⊂ B. We obtain that F1 =
f(U) ⊂ f(A) and F2 = f(V ) ⊂ f(B) such that f(A) and f(B) are disjoint θ-open
sets. Thus, Y is strongly θ-normal. 2

Recall that for a function f : (X, τ) → (Y, σ), the subset {(x, f(x)) : x ∈ X} ⊂
X × Y is called the graph of f and is denoted by G(f).

Definition 4.9 A graph G(f) of a function f : (X, τ) → (Y, σ) is said to be θ-πg-
closed if for each (x, y) ∈ (X × Y )\G(f), there exist U ∈ πGO(X,x) and V ∈ σθ

containing y such that (U × V ) ∩ G(f) = ∅.

Lemma 4.10 A graph G(f) of a function f : (X, τ) → (Y, σ) is θ-πg-closed in
X × Y if and only if for each (x, y) ∈ (X × Y ) \ G(f), there exist U ∈ πGO(X,x)
and V ∈ σθ containing y such that f(U) ∩ V = ∅.

Proof: It is an immediate consequence of Definition 4.9. 2

Theorem 4.11 If f : (X, τ) → (Y, σ) is faintly πg-continuous function and (Y, σ)
is θ-T2, then G(f) is θ-πg-closed.

Proof: Let (x, y) ∈ (X × Y )\G(f), then f(x) 6= y. Since Y is θ-T2, there exist
θ-open sets V and W in Y such that f(x) ∈ V , y ∈ W and V ∩ W = ∅. Since
f is faintly πg-continuous, f−1(V ) ∈ πGO(X,x). Take U = f−1(V ). We have
f(U) ⊂ V . Therefore, we obtain f(U) ∩ W = ∅. This shows that G(f) is θ-πg
closed. 2

Theorem 4.12 Let f : (X, τ) → (Y, σ) has θ-πg-closed graph G(f). If f is a
faintly πg-continuous injection, then (X, τ) is πg-T2.
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Proof: Let x and y be any two distinct points of X. Then since f is injective, we
have f(x) 6= f(y). Then, we have (x, f(y)) ∈ (X × Y )\G(f). By Lemma 4.10, U
∈ πGO(X) and V ∈ σθ such that (x, f(y)) ∈ U × V and f(U) ∩ V = ∅. Hence
U ∩ f−1(V ) = ∅ and y /∈ U . Since f is faintly πg-continuous, there exists W ∈
πGO(X, y) such that f(W ) ⊂ V . Therefore, we have f(U) ∩ f(W ) = ∅. Since f
is injective, we obtain U ∩ W = ∅. This implies that (X, τ) is πg-T2. 2

Definition 4.13 A function f : (X, τ) → (Y, σ) is said to have a g̃c-closed graph
if for each (x, y) ∈ (X × Y )\G(f), there exists U ∈ πGO(X,x) and an open set V
of Y containing y such that (U × Cl(V )) ∩ G(f) = ∅.

Lemma 4.14 Let f : (X, τ) → (Y, σ) be a function. Then its graph G(f) is g̃c-
closed in X × Y if and only if for each point (x, y) ∈ (X × Y ) \ G(f), there exist
U ∈ πGO(X) and V ∈ σ containing x and y, respectively, such that f(U) ∩ Cl(V )
= ∅.

Proof: It is an immediate consequence of Definition 4.13. 2

Theorem 4.15 If f : (X, τ) → (Y, σ) is a surjective function with a g̃c-closed
graph, then (Y, σ) is Hausdorff.

Proof: Let y1 and y2 be any distinct points of Y . Then since f is surjective, there
exists x1 ∈ X such that f(x1) = y1; hence (x1, y2) ∈ (X×Y ) \ G(f). Since G(f) is
g̃c-closed, there exist U ∈ πGO(X,x1) and an open set V of Y containing y2 such
that f(U) ∩ Cl(V ) = ∅. Therefore, we have y1 = f(x1) ∈ f(U) ⊂ Y \ Cl(V ). Then
there exists an open set H of Y such that y1 ∈ H and H ∩ V = ∅. Moreoever, we
have y2 ∈ V and V is open in Y . This shows that Y is Hausdorff. 2

Theorem 4.16 If f : (X, τ) → (Y, σ) has an θ-πg-closed graph, it has a g̃c-closed
graph.

Proof: Let x ∈ X and y 6= f(x), then (x, y) ∈ (X × Y )\G(f). By Lemma 4.10,
there exist U ∈ πGO(X,x) and a θ-open set V containing y such that f(U) ∩ V
= ∅. Since V is θ-open, there exists an open set V0 such that y ∈ V0 ⊂ Cl(V0) ⊂
V so that f(U) ∩ Cl(V0) = ∅. It follows from Lemma 4.14 that the graph of f is
g̃c-closed. 2

Corollary 4.17 If f : (X, τ) → (Y, σ) is a faintly πg-continuous and (Y, σ) is
θ-T2, then f has a g̃c-closed graph.

Proof: The proof follows from Theorems 4.11 and 4.16. 2

Theorem 4.18 If f : (X, τ) → (Y, σ) has the θ-πg-closed graph , then f(K) is
θ-closed in (Y, σ) for each subset K which is πg-compact relative to X.
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Proof: Suppose that y /∈ f(K). Then (x, y) /∈ G(f) for each x ∈ K. Since G(f)
is θ-πg-closed, there exist Ux ∈ πGO(X,x) and a θ-open set Vx of Y containing y
such that f(Ux) ∩ Vx = ∅ by Lemma 4.10. The family {Ux : x ∈ K} is a cover of
K by πg-open sets. Since K is πg-compact relative to (X, τ), there exists a finite
subset K0 of K such that K ⊂ ∪{Ux : x ∈ K0}. Set V = ∩{Vx : x ∈ K0}. Then V
is a θ-open set in Y containing y. Therefore, we have f(K) ∩ V ⊂ [∪x∈K0

f(Ux)]
∩ V ⊂ ∪x∈K0

[f(Ux) ∩ V ] = ∅. It follows that y /∈ Clθ(f(K)). Therefore, f(K) is
θ-closed in (Y, σ). 2

Corollary 4.19 If f : (X, τ) → (Y, σ) is faintly πg-continuous and (Y, σ) is θ-T2,
then f(K) is θ-closed in (Y, σ) for each subset K which is πg-compact relative to
(X, τ).

Proof: The proof follows from Theorems 4.11 and 4.18. 2
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