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On Mannheim Curves in Riemann-Otsuki Space R − O3

Zühal Küçükarslan and Münevver Yıldırım Yılmaz

abstract: In this paper, we studied the Mannheim partner curves and their new
characterizations are also obtained in Riemann-Otsuki space R − O3.
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1. Introduction

The basis of the theory of Otsuki spaces was introduced by T. Otsuki and
A. Moor. The metric used to determine the observed space is Weyl-Otsuki’s or
Riemann-Otsuki’s kind in [1,2]. Many authors studied on the theory by different
aspects in [1,2,3]. Especially on curve theory, F. N. Djerdji obtained the Frenet
formula of the Riemann-Otsuki space in terms of covariant and contravariant part
of the connections in [1], and also observed auto-parallel curves of Riemann-Otsuki
space in [3].

On the other hand for differential geometric point of view it is fundamental
to study special curves and their characterizations. Mannheim curve, one of the
special one, has many interesting features. The notion of Mannheim curve was
introduced by A. Mannheim in 1878. These curves are characterized in Euclidean
3-space E3 with respect to the curvature and torsion in the following way. A curve
is a Mannheim curve if and only if its curvature k1 and the torsion k2 satisfies
the equation k1 = λ

(

k2
1 + k2

2

)

, where λ is a nonzero constant. R. Blum studied
Mannheim curves by using the Riccati equation in [4]. Recently, H. Liu and F.
Wang examined the Mannheim partner curves in Euclidean 3-space and Minkowski
3-space. They showed the necessary and sufficient conditions for the Mannheim
partner curves in [5]. H. Öztekin and M. Ergüt focused on null Mannheim curves
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in Minkowski 3-space in [6]. The Mannheim curves have studied various scientists
in different areas.

In the present paper, firstly we give a short view of the basis of Riemann-Otsuki
space and secondly we study the Mannheim partner curves in R − O3 and obtain
some new characterizations for this curve.

2. Preliminaries

We obtain R − On spaces from W − On spaces assuming that the follow-
ing relation ∇kgij = γkgij holds γk = 0. Then ∇kgij = 0. Namely, R − On

space is an n-dimensional differentiable manifold with Riemannian metric tensor
gij (det ‖gij‖ 6= 0) and connection of Otsuki. The basic elements of the R − On

spaces are metric gij and existence of a-priori P i
j tensor (with respect to the lo-

cal coordinates xi of an n-dimensional differentiable manifold) which satisfies det
∥

∥P i
j

∥

∥ 6= 0 , hence Qi
j inverse tensor exists. The relation between tensor P i

j and an
inverse Qi

j is given in the following way

a) P i
jQ

j
r = δi

r, b)P i
jgia = P i

agij . (2.1)

In Otsuki spaces the covariant differential of the tensor T i
j is defined by

DT i
j = P i

aP
j
b DT a

b = P i
aP

j
b

(

∂kT a
b +

′

Γa
rkT r

b −
′′

Γr
bkT a

r

)

dxk. (2.2)

The Leibnitz formula does not hold for this differential. The differential D is
the basic covariant differential. The different coefficients of the connection are the
characteristic of the Otsuki spaces, and here are

δi
j |k =

′

Γi
jk −

′′

Γi
jk 6= 0. (2.3)

Tensor P i
j and the coefficient of the connection

′

Γi
jk and

′′

Γi
jk satisfy the fol-

lowing Otsuki’s relation

∂kP i
j +

′′

Γi
akP a

j − P i′

a Γa
jk = 0. (2.4)

In Otsuki spaces it is possible to determine the covariant differentials D and D

with respect only to the co-resp. contravariant part of the connection. So

′

DT i
j =

′

∇kT i
jdxk =

(

∂kT i
j +

′

Γi
rkT r

j −
′

Γr
jkT i

r

)

dxk, (2.5)

holds. For this basic covariant differential the Leibnitz formula holds. The basic
covariant differential

′′

D can be defined in the same way.
It is characteristic that the basic covariant differential

′

D is identical in the case
of contravariant indices with the basic covariant differential D , and similarly in
the case of covariant indices the basic covariant differential

′′

D is identical with the
basic covariant differential D.
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In the following we shall use the relations

′

Dgij = dgij −
(

′

Γr
ikgrj +

′

Γr
jkgir

)

dxk, (2.6)

′′

Dgij = dgij −
(

′′

Γr
ikgrj +

′′

Γr
jkgir

)

dxk = 0, (2.7)

′

Dgra = −giagjr
(

′

Dgij

)

, (2.8)
′′

Dgra = 0, (2.9)

[1,2,3].
The following two sections are quoted from [1].

2.1. The Frenet Formula with Respect to the Contravariant Compo-

nents of the Vectors

Let C : xi = xi (s) be curve in R − On at the point P such that s is the arc
length parameter. In that point vi

0 = dxi

ds are the components of the unit tangent
vector v0.

Theorem 2.1. If C : xi (s) is the curve of an R−On space and vl, l = 0, ..., p− 1
(p < n) are mutually orthogonal unit vectors which satisfy the relation

Dv
j
l = −κlv

j
l−1

+ κl+1v
j
l+1

+ vr
l Dδj

r, (2.10)

so that κ0 = 0 and if q = 1, ..., p − 1 then

κq =
(

gij

(

Dv
j
q−1 + κq−1v

j
q−2

))

, (2.11)

and vp+1 is the unit vector orthogonal to all before and κ0 = 0 , κn = 0 holds then
the vector vp satisfies the relation, (2.10) , too.

If we use Otsuki’s covariant differential D, then from the connection Dj
v =

P j
aDva it follows that Dva = Qa

i Dvi. Applying this on (2.10) , we get

Dv
j
l = P

j
i (−κlv

i
l−1 + κl+1v

i
l+1) + v

q
l Qb

qDδ
j
b, (2.12)

with respect to l = 0, ..., n − 1; κ0 = 0 ; κn = 0.
Here, the equation (2.12) is the Frenet formula with respect to the contravariant

components of the observed vectors.

Theorem 2.2. If at the point M of the curve C in the R−On space the mutually
orthogonal unit vectors v0, v1, ..., vn−1 satisfying relations (2.10) and (2.11) so that
κ0 = 0 and κn = 0 hold then (2.12) is the Frenet formula of the curve C of the
R − On space. This formula is applied with respect to the covariant differential D

on the contravariant components of the observed vectors.

Remark 2.3. The relation (2.12) is the Frenet formula with respect to the covariant
differential

′

D, too, applied on the contravariant components of the vectors.
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Now we can construct the first Frenet formula with respect to the basic covariant
differential

′′

D such that
′′

Dv
j
0 = κ1v

j
1,

where v1 ⊥ v0. We shall apply the basic covariant differential
′′

D to the tangent
vectors vi

0 and v
j
0. Then, the belove theorem is given.

Theorem 2.4. From the connection between the basic covariant differentials
′

D

and
′′

D it follows that v1 = v1 and the value of κ1 is equivalent to the value of κ∗
1.

According to the characteristics of the covariant differential
′′

D, we can state
the following,

Theorem 2.5. With respect to the basic covariant differential
′′

D the Frenet for-
mula of the curve C of the R − On space is not different from the known formula
of the Riemannian space . If v0, v1, ..., vn−1 are in point P of the curve C in a
suitable way constructed mutually orthogonal unit vectors, then

′′

Dv
j
l = P

j
i (−κ∗

l v
i
l−1 + κ∗

l+1v
i
l+1), (2.13)

is the Frenet formula with respect to the covariant differential applied on the con-
travariant components of the observed vectors.

2.2. The Frenet Formula with Respect to the Covariant Components of

the Vectors

According to the definition v0i = gij
dxj

ds holds and v0i are the covariant compo-
nents of the unit tangent vector v0.

Now we can construct the mutually orthogonal unit vectors vl

(l = 0, ..., n − 1) as above, such that

′

Dvl j = −κ∗∗
l v

j
l−1

+ κ∗∗
l+1v

j
l+1

− vlrDδr
j , (2.14)

holds with the remarks κ∗∗
0 = 0, κ∗∗

n = 0 and if l = 0, ..., n − 2 then

κ∗∗
l+1 =

(gij

(

′

Dvl j + κ∗∗
l vl−1j + vl+1j − vlrDδr

j

)

(

′

Dvl i + κ∗∗
l vl−1i − vlqDδ

q
i

)

)1/2.
(2.15)

We can now formulate the following

Theorem 2.6. From the relation vl i = gijvlj it follows that the value of κ∗∗
l is

equal to the value of κl and vl ≡ vl holds.

Theorem 2.7. If in the point M of the curve C in the R−On space the mutually or-
thogonal unit vectors v0, ..., vn−1 are constructed so that vp

(p = 1, ..., n − 1) satisfies

vpi =
1

κ∗∗
p

(

′

Dvp−1 i + κ∗∗
p−1v

i
p−2 + vp−1rDδr

i

)

,
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with κ∗∗
0 = 0, κ∗∗

n = 0 then

′

Dvp i = P
j
i

(

−κ∗∗
p vi

p−1 + κ∗∗
p+1v

i
p+1

)

− vprDδa
i Qr

a, (2.16)

is the Frenet formula with respect to the covariant differential
′

D applied on the
covariant components of the observed vectors.

If we make above calculations with respect to the covariant differential
′′

D,

according to equation (2.9) and the fact that in the case of covariant indices the
basic covariant differentials D and

′′

D are not different, it follows that this case
is not different from the observation of Riemannian space. We can only say the
following.

Remark 2.8. The relation

Dvp i = P
j
i

(

−κ∗∗∗
p vp−1 i + κ∗∗∗

p+1vp+1 i
)

, (2.17)

is the Frenet formula with respect to Otsuki’s covariant differential D applied on
the covariant components of the vectors.

Here

κ∗∗∗
p+1 =

(

gij
(

Dvp i + κ∗∗∗
p vp−1 i

) (

Dvp j + κ∗∗∗
p vp−1 j

))1/2
, (2.18)

or using the Dv i =
′

Dv i + vrDδr
i we get

κ∗∗∗
p+1 = (gij

(

′

Dvp i + κ∗∗∗
p vp−1 i + vp rDδr

i

)

(

′

Dvp j + κ∗∗∗
p vp−1 j + vpqDδ

q
j

)

)1/2, (2.19)

[1,2].

3. Mannheim Curves on Riemann-Otsuki Space R − O3 with the

Otsuki Covariant Differential

In this sections, we will define the Manheim curves in Riemann-Otsuki space
R−O3. We will get the necessary and sufficient conditions for the Mannheim curves
in Riemann-Otsuki space R − O3.

Definition 3.1. Let X (s) and X∗ (s) be regular curves in R − O3.
{

v
j
0 (s) , v

j
1 (s) , v

j
2 (s)

}

and
{

v
∗j
0 (s∗) , v

∗j
1 (s∗) , v

∗j
2 (s∗)

}

are Frenet frames, re-

spectively on these curves.

If there exist a corresponding relationship between the space curves X (s) and
X∗ (s∗) such that the binormal lines of X (s) coincides with the principal normal
lines of X∗ (s∗) at the corresponding points of the curves. Thus (X,X∗) is called
Mannheim pair.
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Theorem 3.2. Let (X,X∗) be a Mannheim pair in R − O3 and X,X∗ are given

(I,X) , (I,X∗) coordinate neighbourhood respectively. If λ
′

= Qb
aDδ

j
b then d (X (s) ,X∗ (s∗)) =

const.

Proof: From Definition 3.1 we may write

X∗ (s∗) = X (s) + λ (s) v
j
2 (s) . (3.1)

Let us assume arclength parameters of X and X∗ as s and s∗, respectively. Then
we get

v
∗j
0 (s∗)

ds∗

ds
= X

′

(s) . + λ′ (s) v
j
2 (s) + λ (s)

(

v
j
2 (s)

)
′

, (3.2)

Dv
j
2 (s) = P

j
i (−κ2v

i
1) + va

2Qb
aDδ

j
b, (3.3)

v
∗j
0 (s∗)

ds∗

ds
= v

j
0 (s) + λ

′

(s) v
j
2 (s) + λ (s)

(

P
j
i (−κ2v

i
1) + va

2Qb
aDδ

j
b

)

, (3.4)

v
∗j
0 (s∗)

ds∗

ds
= v

j
0 (s) − λ (s)P

j
i κ2v

i
1 (s) + λ

′

v2 j (s) + λ (s) va
2Qb

aDδ
j
b. (3.5)

Then using linear dependency of v
∗j
1 (s∗) and v

j
2 (s), we get

〈

v
∗j
0 (s∗) , v

j
2 (s)

〉

=

0 and from (3.5) we have

gijv
∗j

0 (s∗) v
j
2 (s)

ds∗

ds
= gijv

j
0 (s) v

j
2 (s) − gijλ (s)P

j
i κ2v

i
1 (s) v

j
2 (s)

+ λ
′

(s) gijv
j
2 (s) v

j
2 (s) + λ (s) gijv

a
2v

j
2Q

b
aDδ

j
b, (3.6)

then we write
λ

′

(s) + λ (s)Qb
aDδ

j
b = 0, (3.7)

λ (s) = −
λ

′

Qb
aDδ

j
b

.

From the hypothesis we recall that λ
′

(s) = Qb
aDδ

j
b. Therefore

d (X (s) ,X∗ (s∗)) = ‖X∗ (s∗) − X (s)‖ =
∥

∥

∥
λv

j
2 (s)

∥

∥

∥
= ‖λ‖ =

∥

∥

∥

∥

∥

−
λ

′

Qb
aDδ

j
b

∥

∥

∥

∥

∥

= const.

(3.8)
2

Theorem 3.3. There exists a curve denoted by X such that (X,X∗) be a Mannheim
pair in R − O3.

Proof: Since v
∗j
1 (s∗) and v

j
2 (s) are linearly dependent, from (3.1) we have

X (s) = X∗ (s∗) − λv
∗j
1 (s∗) . (3.9)

Then, one can find a X curve for all values of λ, where λ is a nonzero constant.
2
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Theorem 3.4. Let (X,X∗) be a Mannheim pair in R − O3. The torsion k2 of X

satisfies the following equation

k2 =
k∗
1

λP
j
i κ∗

2g
i
j

,

where we denote the curvature and torsion of X∗ with k∗
1 and k∗

2 , respectively.

Proof: By considering λ is a nonzero constant in equation (3.5) , we have

v
∗j
0 (s∗)

ds∗

ds
= v

j
0 (s) − λP

j
i κ2v

i
1 (s) + λ

′

v2 j (s) + λ (s) va
2Qb

aDδ
j
b,

v
∗j
0 (s∗)

ds∗

ds
= v

j
0 (s) − λP

j
i κ2g

i
jv

j
1 (s) + λ

′ (

1 − ga
j

)

v
j
2 (s) . (3.10)

Note that λ
′

is a constant, so without loss of generality we may assume λ
′

= 0,
then recalling (2.12) we get

v
∗j
0 (s∗)

ds∗

ds
= v

j
0 (s) − λP

j
i κ2g

i
jv

j
1 (s) . (3.11)

Then we can write above equation such that θ is the angle between v
j
0 and v

∗j
0

at the corresponding points of X and X∗, respectively,

v
∗j
0 (s∗)

ds∗

ds
= cos θv

j
0 (s) + sin θv

j
1 (s) ,

v
∗j
2 (s∗)

ds∗

ds
= − sin θv

j
0 (s) + cos θv

j
1 (s) . (3.12)

From (3.11) and (3.12) , we obtain

cos θ =
ds

ds∗
, sin θ = −λP

j
i κ2g

i
j

ds

ds∗
. (3.13)

If we differentiate of (3.9) with respect to s, we get

v
j
0 (s) =

(

1 + λP
∗j
i κ∗

1g
i
j

)

v
∗j
0 (s)

ds∗

ds
− λP

∗j
i κ∗

2g
i
jv

∗j
2 (s)

ds∗

ds
. (3.14)

From (3.12) , we have

v
j
0 (s) = cos θv

∗j
0 (s∗) − sin θv

∗j
2 (s∗) ,

v
j
1 (s) = sin θv

j
0 (s) + cos θv

∗j
2 (s∗) . (3.15)

Taking into consideration equation (3.14) and (3.15) , we get

cos θ =
(

1 + λP
∗j
i κ∗

1g
i
j

) ds∗

ds
, sin θ = λP

∗j
i κ∗

2g
i
jv

∗j
2 (s)

ds∗

ds
. (3.16)
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From (3.13) and (3.16) , we can write

cos2 θ = 1 + λP
∗j
i κ∗

1g
i
j , sin2 θ = −λg2i

j P
j
i κ2P

∗j
i κ∗

2. (3.17)

Then, if we consider equation (3.17) , one can obtain

k2 =
k∗
1

λP
j
i κ∗

2g
i
j

.

2

Corollary 3.5. Let (X,X∗) be a Mannheim pair in R − O3. Then product of the
torsions κ2 and κ∗

2 at the corresponding points of the Mannheim curves are not
constant where κ2 and κ∗

2 are the torsions of the curves X and X∗, respectively.
Then Schell’s theorem for Mannheim curves in R − O3 is not valid.

Theorem 3.6. Let X and X∗are given (I,X) and (I,X∗) coordinate neighbour-
hoods respectively and (X,X∗) be a Mannheim pair in R−O3. Then the relationship
between the curvature and the torsion of the curve X∗ is

µk∗
2 − λk∗

1 = 1, (3.18)

where λ, µ are non-zero real numbers.

Proof: If we considering equation (3.16) , we can write

cos θ

1 + λgi
jP

∗j
i κ∗

1

=
sin θ

λgi
jP

∗j
i κ∗

2

,

then, we can easily show that

µk∗
2 − λk∗

1 = 1.

2

Corollary 3.7. Let (X,X∗) be a Mannheim pair in R−O3. Then , there is exist
a linear relationship between κ∗

1 and κ∗
2 . Namely, Bertrand’s theorem is valid for

the Mannheim curves.

Theorem 3.8. Let (X,X∗) be a Mannheim pair in R − O3. Then the follow-
ing statements hold for the curvatures and the torsions of the curves X and X∗,
respectively:

i) k1 = −
dθ

dsP
j
i gi

j

,

ii) k2 = −
P

∗j
i k∗

1 sin θ
ds∗

ds
− P

∗j
i k∗

2 cos θ
ds∗

ds

P
j
i

,

iii) k∗
1 =

P
j
i k2 sin θ

P
∗j
i

ds

ds∗
,

iv) k∗
2 =

P
j
i k2 cos θ

P
∗j
i

ds

ds∗
.
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Proof: i) If we derive the equation
〈

v
j
0, v

∗j
0

〉

= cos θ, we have

〈

P
j
i κ1v

i
1 + va

0Qb
aDδ

j
b, v

∗j
0

〉

+
〈

v
j
0, P

∗j
i κ∗

1v
∗i
1 + v

∗a
0 Q∗b

a D∗δ
j
b

〉

= − sin θ
dθ

ds
,

by considering v
∗j
1 and v

j
2 are linearly dependent, using (3.15) and (2.12) , we obtain

k1 = −
dθ

dsP
j
i gi

j

.

By using the
〈

v
j
1, v

∗j
1

〉

= 0,
〈

v
j
2, v

∗j
0

〉

= 0 and
〈

v
j
2, v

∗j
2

〉

= 0, we can easily

show that the proofs of (ii) , (iii) and (iv) holds. 2

Corollary 3.9. Let (X,X∗) be a Mannheim pair in R−O3. Then the relationship
between the curvatures and the torsions of the curves X and X∗ is given by

k∗2
1 + k∗2

2 =

(

P
j
i

P
∗j
i

)2

k2
2

(

ds

ds∗

)2

.

Theorem 3.10. A curve is a Mannheim curve in R − O3 if and only if

k∗
1 = −λP

∗j
i gi

j

(

k∗2
1 − k∗2

2

)

,

where k∗
1 and k∗

2 is the curvatures and the torsions of the curve X∗, respectively,
and λ is a nonzero constant.

Proof: By differentiating the equation (3.9) with respect to s∗, we have

v
j
0

ds

ds∗
=
(

1 + λP
∗j
i κ∗

1g
i
j

)

v
∗j
0 − λP

∗j
i κ∗

2g
i
jv

∗j
2 . (3.19)

Then, if we differentiate (3.19) with respect to s∗ and both sides of the equation
(3.19) is multiply with v

j
2, then we get

k∗
1 = −λP

∗j
i gi

j

(

k∗2
1 − k∗2

2

)

,

2

Remark 3.11. If Otsuki’s covariant differential D applied on the covariant com-
ponents of the vector. The above all calculating holds as the same of Riemannian
case.
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