Bol. Soc. Paran. Mat. (3s.) v. 31 2 (2013): 55—65.
©SPM —ISSN-2175-1188 ON LINE ISSN-00378712 IN PRESS
SPM: www.spm.uem.br/bspm d0i:10.5269/bspm.v31i2.15316

On Some New Modular Sequence Spaces

Cigdem A. Bektas and Giilcan Atici

ABSTRACT: Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to
define the sequence space £j; which is called an Orlicz sequence space. Another
generalization of Orlicz sequence spaces is due to Woo [9]. An important subspace
of £(M), which is an AK-space, is the space h (M) . We define the sequence spaces
Y (A™) and £3(A™), where M = (M) and N = (Ny) are sequences of Orlicz
functions such that M}y and Nji be mutually complementary for each k. We also
examine some topological properties of these spaces. We give the a—, f— and y—
duals of the sequence space h (M) and a— duals of the squence spaces £ (M, A) and
L(N,A).
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1. Introduction

The difference sequence spaces was introduced by Kizmaz [6] and the concept
was generalized by Et and Colak [2]. After, Et and Esi [3]| extended the difference
sequence spaces to the sequence spaces

X (AY) ={z = (z) : (AY'wr) € X}

for X = ly, ¢ or ¢y, where v = (vg) be any fixed sequence of non-zero complex
m .
numbers and (ATz;) = (AT 1z — A" apyq), ATay = > (1) (7)) Vkpirsd

i=0
for all kK € N.
The sequence spaces A" ({s), A" (¢) and Al' (cp) are Banach spaces normed
by
lzlla = 2 foswl + Ay ]o -
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An Orlicz function is a function M : [0, 00) — [0, 00) which is continuous, non-
decreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (z) — oo as
T — 00.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to define the
Orlicz sequence space

EM{z(xk): ZM(W> <oo,forsomep>0}
k=1 P

which is a Banach space with the norm

|x||:inf{p>0: ZM(M) gl}.
k=1 P

It is well known that if M is a convex function and M (0) = 0, then M (Az) <
AM () for all A with 0 < A < 1.
Let A be a sequence space and defined

o0

A = {a=(ar): Y |arzk] < oo, for all z € A},
k=1

M= a=(ax): Y apxy converges, for all z € A},
k=1

< oo, for all z € A} [5].

n
> apxk

k=1

)\’Y

{a = (a) : S%p

Then A%, A%, X7 are called a—, B—, y—dual spaces of ), respectively. It is easy to
show that @ C A* € AP C A, If A C p, then 7 C A" for n = o, 3, . We shall
write A% = (A)* [5].

Definition 1.1. Let A\ be a sequence space. Then X is called
(i) Solid (or normal), if (arzy) € X\ whenever (x) € A for all sequences (ay,)
of scalars with |ag| < 1.
(ii) Monotone, if provided A contains the canonical preimages of all its stepspaces.
(111) Perfect, if X = \** [5].

Proposition 1.2. X is perfect = X\ is normal = X\ is monotone [5].

Proposition 1.3. Let A be a sequence space. If \ is monotone, then \* = N, and
if X is normal, then \* = \7.

A Banach sequence space (A, S) is called a BK —space if the topology S of A is
finer than the co-ordinatewise convergence topology, or equivalently, the projection
maps P; : A — K, P;j(x) = x;, i > 1 are continuous, where K is the scalar field R
(the set of all reals) or C (the complex plane). For x = (x1, ..., Zpn,...) and n € N (the
set of natural numbers), we write the n'* section of z as (™ = (x4, ...,,,0,0,...).
If {2(™} tends to x in (), S) for each = € ), we say that (), S) is an AK —space.
The norm ||.||, generating the topology S of A is said to be monotone if ||z, < ||yl|,
for x = {z;}, y = {y;} € A with |z;| < |y;|, for all i > 1 [4].
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Any Orlicz function M}, always has the integral representation

where pi, known as the kernel of My, is non-decreasing, is right continuous for
t >0, p(0) =0, pp(t) > 0 for t > 0 and px(t) — o0 as t — oo.
Given an Orlicz function M}, with kernel py(t), define

au(s) = sup {t : pu(t) < 5, 5> 0} .

Then ¢ (s) possesses the same properties as pi(t) and the function Ny defined as

is an Orlicz function. The functions M}, and Ny, are called mutually complementary
Orlicz functions. ~

For a sequence M = (My,) of Orlicz functions, the modular sequence class £ (M)
is defined by

T = {o = (ex) : 3 My (Jax) < o).

Using the sequence N = (N},) of Orlicz functions, similarly we define £ (N). The
class £ (M) is defined by

(o) ~
(M) ={z = (zx) : Y. zryr converges, for all y € £ (N)}. (1)
k=1
For a sequence M = (M},) of Orlicz functions, the modular sequence space ¢ (M)

is also defined as

L) = {z = (zx) io: My, ('x;') < 00, for some p > 0}.
k=1

The space £ (M) is a Banach space with respect to the norm ||z||,, defined as

el = (o >0 3 o (121) <1,
k=1

These spaces were introduced by Woo [9] around the year 1973, and generalizes
the Orlicz sequence space ¢, and the modulared sequence spaces considered earlier
by Nakano in [§].

Proposition 1.4. Let My, and Nj be mutually complementary functions for each
k. Then

(t) Forz,y >0, zy < My(z) + Ni(y).

(ii) For x >0, xpi(x) = Mg(z) + Ni(pr(x)).
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An important subspace of ¢ (M), which is an AK-space, is the space h (M)
defined as

h(M):{xEE(M):ki::le (pk') < 00, for some p > 0}.

A sequence (Mj,) of Orlicz functions is said to satisfy uniform Ay— condition at

'0" if there exist p > 1 and ko € N such that for all « € (0,1) and k > ko, we have

x]&i ’;((;)) < p, or equivalently, there exist a constant K > 1 and kg € N such that

Aﬁk(éf)) < K for all k > ko and « € (0, 3]. If the sequence (}Mj,) satisfies uniform

Ay —condition, then h (M) = £ (M) and vice-versa [9).

2. Main Results

Definition 2.1. Let M), and Ny be mutually complementary functions for each k
and let A = {Ax} be a sequence of strictly positive real numbers. Then we define
the following sequence spaces:

AYA™) = {x = (zy) ZM < xk') < o0, for some p > 0}
k>1
and
A |A™
6 (A™) = {2 = (xp) ZN ( £l xk|> < o0, for some p > 0}.
k>1
The spaces XY (A™) and Ix(A™) also can be written as

AUA™) = (& = (zy) - {2k

pet()}
and
N (A™) = {z = (x1) : {AA™ 2} € L(N)}.
Throughout the paper we write My (1) =1 and Ni(1) =1 for all k € N.

Theorem 2.2. Let M = (M) and N = (Ni) be two sequences of Orlicz functions.
Then Y (A™) and (5 (A™) are linear spaces over the field of complex numbers.

Proof:
Let z,y € EZ\W(AT”) and a,b € C. Then there exist positive numbers p; and p,
such that Am
S M, ( . $k|>
k>1 kP1
and

o (52

k>1
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Define p; = max (2|al py,21b| py). Since M}, are non-decreasing and convex func-
tions and A™ is linear, we have

o () =z () -2 () <

- A A
k>1 E>1 kP1 E>1 kP2

This proves that £3%(A™) is a linear space. The proof for £3;(A™) is similar.

The proofs of the following theorems are easy and thus omitted.

Theorem 2.3. The sequence space (Y (A™) is a normed space with norm

m . Amﬂfk
Hx”i\w = Z |z;| + inf{p > 0: ZMk (' op |) <1}.

i=1 E>1

Theorem 2.4. The sequence space E%(Am) is a normed space with norm

S . A | Az
Izl = lai| +inf{p>0: ) Ny ("f'p’“') <1}
i=1

k>1

Theorem 2.5. The spaces (@’E(Am),ﬂﬂg and (Eg\\r(Am),HH?\[) are Banach
spaces.
Theorem 2.6. The sequence spaces {Y'(A™) equipped with the norm ||||g\v[ and

05 (A™) equipped with the norm ||||§‘\r are BK -spaces.

Proof:
The space (EZ\V[(A’"), ||||§V[) is a Banach space by Theorem 2.5. Now let

o — 23 = 0
as n — o0o. Then

|z — x| — 0
as n — oo for each kK < m and

Ay _ A™
inf{p>0:3 M, ('x’ka') <1} =0
=1 Akp

as n — oo for all k € N. Ika(%)glthen%ngforaﬂ

k. Therefore we also obtain

A2 — Ay | < A 2™ — z|3T.
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Since ||z™ — :c||§\V[ — 0, then |A™z} — A™xy| — 0 and

<
s

07 () (et =) | =0

as n — oo for all £k € N. On the other hand, since we may write

n = m n
LTpym — $k+m’ < =, (_1)U (’L}) (xk-‘rv - xk-&-v)
m n m n
+ ‘ (0> (xp —xp)| + ... + ’(m B 1) (xk+m_1 — xk+m_1)

then |2} — 2| — 0 as n — oo for all k € N. Hence (@\W(Am), H||§/[) is a BK-
space.
The proof is similar for £ (A™). O

Theorem 2.7. If p is a normal sequence space containing A, then E%(Am) 18
a proper subspace of w. In addition, if u is equipped with the monotone norm
(quasi-norm) .|| ,, the inclusion map I : BYA™) — p(A™) is continuous with
(L0 < 1w .-

Proof:
Let z € £3Y(A™). Since ZMk (IAAiki"‘) < oo for some p > 0, then there
E>1
exists a constant K > 0 such that % < K for all £ € N. Since p is a normal
sequence space containing A, we have (A™xy) € u and so that x € u(A™). Hence
LA™ C p(am).
Further, since My (1) =1 for all k € N, then

Am
S (1) <
k>1 Ak Iy

and so that
Az < Ag [|lz| 30, for all k € N.
As ||.|, is monotone, [Iz], = [[(A™zx)], < [{Ae}, [} and hence |[I]] <
Jevsim
O
Theorem 2.8. If n is a normal sequence space containing {i} = A1, then

03, (A™) is a proper subspace of n. If the norm (quasi-norm) [[-[[,, on n is monotone,
then the inclusion map J : (3 (A™) — n(A™) is continuous with ||J| < H{)\’;l}”n

The proof is similar to Theorem 2.7 and therefore we omitted.
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3. Interrelationship Between the Spaces (2'(A™) and £} (A™)

If Ay = 1for all k € N, then the sequence space E%,E(Am) reduces to the sequence
space

Am
U (A™) = {x = (ay) ZM <| k><oo, for some p > 0}.
k>1

Theorem 3.1. If A\ = {\;} is a bounded sequence such that inf A\, > 0, then
B(A™) = BU(A™) = £5(A™),

Proof:
Let x € 3 (A™). Then ZMk (%) < oo for some p > 0. Since A = {\;}
k>1
is bounded, we can write a < A\, < b for some b > a > 0. Define p; = pb. Since Mj,
is increasing, it follows that ZMk ()‘klA w’“‘) ZM (‘A x’“l) < co. Hence
k>1
Iyi(A™) C £y(A™). The other inclusion E?‘W(Am) C Uy (A™) follows from the
inequality ZMk (‘Ap/izkl) < ZMk (M) < oo. Therefore 3 (A™) =
k>1 k>1
{3(A™). Similarly, one can prove £31(A™) = l(A™).
O

Theorem 3.2. If {\z} € loo witha = supy>; Ap > 1 and {\; '} is unbounded, then
AY(A™) is properly contained in Uy (A™) and the inclusion map T : 3YA™) —
03 (A™) is continuous with ||T| < a.

Proof:
For any p > 0 and p’ = pa?, we have

S0 ()\k|A wk) S My (|Am9€k|>

k>1 k>1

for © = {z;}. Hence JY(A™) C £5(A™).

We now show that the contamment AY(A™) C £ (A™) is proper. From the
unboundedness of the sequence {)\k }, choose a sequence {k,} of positive integers
such that /\k > n. Define A™x = {A™z} as follows:

m. | 1n, k=k, n=12 ..
AT _{ 0, otherwise

Then x € (3 (A™); but = ¢ (31(A™).
To prove the continuity of the inclusion map T, let us first consider the case
obtained for a = 1. For x € A1(A™), we write

A Ame) =4 p>0:3 My <|A m’“)_

k>1 AP
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and

By (A™z) =2p>0:> M (A’“A x’“')

k>1

Since M, are increasing and a = 1, we get A (A™z) C By (A™z).
Hence
Jel3e = inf By (A7) < inf AX(A™2) = [l2]}° (2)

Le, [|T(2)|ne < ]l Thus T is continuous with || < 1 = a2.
If a # 1, define g, = %, k € N. Then 3, <1 and from (2), it follows that
M m

loll5e < llall3" for = € B (A™). (3)

Hence from (3)
A A M

IT@) e = lzllne < a® 23

i.e., T is continuous with ||T'|| < a2. This completes the proof.

O

Theorem 3.3. If {\} is unbounded with supy>, M =d>1, N\ >0 for all
k, then €3 (A™) is properly contained in (3Y(A™) and the inclusion map U :
3 (A™) — Y A™) is continuous with ||U| < d.

Proof: The proof of the theorem is similar to that of Theorem 3.2 and so is
omitted. a

4. Dual Spaces of h (M), ¢ (M, ) and £(N, )

In this section we give the a—, f— and y— duals of the sequence space h (M)
and a— duals of £ (M, A) and £ (N, \).

Theorem 4.1. Let the functions My and Ny, for each k be mutually complemen-
tary Orlicz functions. Then [h (M)]° = ¢ (N) where

. 1
L(N)={a=(ar) Z (lak><oo for some p >0 and p' = —}.
p
k=
Proof: -
Let a = (a) € ¢(N) and hence ZNk (‘C;)’," ) < oo for some p’ > 0. Take any

k=1
x = (x) in h (M). Then we have

Z lagzy| < ZMk <k> +ZNk (
k=1 k=1 P k=1

lag|
P

) <o
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o0

Hence Zak:ck converges and a € [ (M)]”.
k=1
On the other hand, suppose a € [h (M)]”. Using (1), we find [h (M)]” C £(N).
Thus [h (M)]” = £(N).
O

Proposition 4.2. The sequence space h (M) is normal for any sequence M = (M},)
of Orlicz functions.

Proof: Let x € h (M) and |yi| < |xi| for each k € N. Since M}, are non-decreasing,

we have
ng(wu) ZM (kal)

Hence y € h (M). Thus h (M) is normal.
O

Theorem 4.3. Let My, and Ny, for each k be mutually complementary functions.
Then
[h ()7 = (R (O) = (L O] = £ (N).

Proof is seen from Proposition 1.2, Proposition 1.3 and Proposition 4.2.
For m = 0, we write £ (M, \) and £ (N, \) instead of XT(A™) ve (x(A™), re-

spectively which we define

$k|>
LM A) = {z = (x): E M < 00, for some p >0
( ) { k £ k </\kp p }

= A
EN,A) = {y=(uk) ZNk< k|yk|> < o0, for some p > 0}.
k=1

Theorem 4.4. (i)If the sequence (My) satisfies uniform Ag—condition, then
[£ (M, )] = £(N, A).

(i1) If the sequence (Ny) satisfies uniform Ag—condition, then [£(N,\)]* =
(M, N).

Proof: Let the sequence (My) satisfies uniform As—condition. Then for any = €
(M, A) and a € £ (N, \), we have

Z|akxk| <ZM ('"m) +Z ()‘ka’“> < 00

where p' =1/p and p > 0. Thus a € [¢ (M, \)]*. Hence £ (N, \) C [£ (M, \)]”.
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To prove the inclusion [¢ (M, \)]* C £(N,N), let a € [¢ (M, \)]*. Then for all
{24} with (T) € £ (M) we have

(o)
Z lagzy| < oo.
k=1

Since the sequence (M},) satisfies uniform Ag—condition, then £ (M) = h (M)

and so for (yx) € h (M), we get Z |Akyrak| < oo by (4). Thus (A\gax) € [h (M)]* =
k=1
¢ (N) and hence (ax) € £ (N, ). This gives that [¢ (M, \)]" = £(N,\).
(ii) Similarly, one can prove that [¢ (N, \)]* = £(M,\) if the sequence (Ny)
satisfies uniform As—condition.
O

Theorem 4.5. If the sequences (N) and (My) satisfy uniform Ag—-condition,
then the sequence spaces £ (M, ) and £ (N, \) are perfect.

Proof: It is immediate from Theorem 4.4. O
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