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ABSTRACT: In this paper, we study general helices in the Gol®. We characterize
the general helices in terms of their curvature and torsion. Finally, we find out their
explicit parametric equations in the Gol®
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1. Introduction

A curve of constant slope or general helix is defined by the property that the
tangent makes a constant angle with a fixed straight line (the axis of the helix).
A classical result stated by M. A. Lancret in 1802 and first proved by B. de Saint
Venant in 1845 (see [9,12] for details) is: A necessary and sufficient condition that
a curve be a helix is that the ratio of curvature to torsion be constant.

Helices arise in nanosprings, carbon nanotubes, a-helices, DNA double and col-
lagen triple helix, the double helix shape is commonly associated with DNA, since
the double helix is structure of DNA. They constructed a molecular model of DNA
in which there were two complementary, antiparallel (side-by-side in opposite di-
rections) strands of the bases guanine, adenine, thymine and cytosine, covalently
linked through phosphodiester bonds. Each strand forms a helix and two helices
are held together through hydrogen bonds, ionic forces, hydrophobic interactions
and van der Waals forces forming a double helix, lipid bilayers, bacterial flagella in
Salmonella and E. coli, aerial hyphae in actynomycetes, bacterial shape in spiro-
chetes, horns, tendrils, vines, screws, springs, helical staircases and sea shells.

In this article, we study general helices in the Gol®. We characterize the general
helices in terms of their curvature and torsion. Finally, we find out their explicit
parametric equations in the Gol>.
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2. Riemannian Structure of Sol Space Gol®

Sol space, one of Thurston’s eight 3-dimensional geometries, can be viewed as
R3 provided with Riemannian metric

Jeor = €2dx® + e dy? + d2?, (2.1)

where (z,y, z) are the standard coordinates in R3.
Note that the Sol metric can also be written as:

3
Jsoe3 = Zwi 0 wi7 (2'2)
i=1
where
wl =e*dr, w?=e"dy, w>=dz, (2.3)
and the orthonormal basis dual to the 1-forms is
1o} 0 0
=e F— = — = —. 2.4
ep=e o, ex=e a9’ e = 5 (2.4)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric gs,3 defined above the following is true:

—es3 0 (S5
V= 0 ez —e€2 y (25)
0 0 0

where the (i, j)-element in the table above equals Ve,e; for our bastis
{ex,k =1,2,3} = {e1,ey,e5}.
Lie brackets can be easily computed as:
[e1,65] =0, [e2,e3] = —eq, [e1,e5] =e.

The isometry group of Gol® has dimension 3. The connected component of the
identity is generated by the following three families of isometries:

(,9,2) — (r+ey,2),

(y,2) — (@y+ez2),
((E, Y, Z) - (e—c$7 601/7 Z+ C) .

3. General Helices in Sol Space Sol®

Assume that {T,N,B} be the Frenet frame field along . Then, the Frenet
frame satisfies the following Frenet—Serret equations:

VTT = ,‘QlV'7
VN = —kT+ 7B, (3.1)
VTB = —TN,
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where « is the curvature of v and 7 its torsion and

9&o13 (T>T) = 1, gsoi (N>N) =1, gsor (BuB) =1, (32)
9&o13 (T’N) = JYeor® (TaB) = J&o13 (NvB) =0.

With respect to the orthonormal basis {e, e,, e5}, we can write

T = Tie +1Trer + Tzes,
N = Nje; + Nyey + Nses, (33)
B = TxN= B161 + Bgeg + 3363.

Theorem 3.1. Let~ : I — Sol® be a unit speed non-geodesic general heliz. Then,
the parametric equations of v are

sin ;’pef cos Ps—C3

z(s) = & ol P [—cos P cos [€15 + o] + €y sin [€15 + Co]| + €y,
sin ;Becos Ps+C3 k

y(s) = m[—el cos [€1s + €3] + cos Psin [€1s + €]] + €5, (5.4)

z(s) = cosPs+ €3,

where €1, €y, &3, &y, €5 are constants of integration.

Proof: Assume that v a unit speed non-geodesic general helix. So, without loss
of generality, we take the axis of «y is parallel to the vector e3. Then,

ot (T, e3) = T3 = cos P,

where ‘B is constant angle.
The tangent vector can be written in the following form

T = T1e1 + Tgeg + Tgeg. (35)

On the other hand the tangent vector T is a unit vector, so the following
condition is satisfied
T? 4+ T3 =1 — cos® P.

Noting that cos? P + sin® P = 1, we have
T? 4 T2 = sin® . (3.6)
The general solution of (3.6) can be written in the following form

T, = sinPcos?,
T, = sin‘PsinD.
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So, substituting the components 77, T» and T3 in the equation (3.5), we have
the following equation

T = sin ‘P cos De; + sin ‘P sin Dey + cos pes. (3.7)

Also, without loss of generality, we take

D=5+ C,, (38)
where €1, € R.
Thus (3.7) and (3.8), imply
T = sin‘Pcos [€15 + €3] e1 + sinPsin [€15 + €3] ea + cos Pes. (3.9)

Using (2.4) in (3.9), we obtain
T = (sinPcos[C1s + E3] e %, sinPsin [€5 + o] €, cos P).

Firstly, we have
dz
&~ P

Integrating both sides, we have
z(s) = cos Ps + €3,

where €3 is constant of integration.
Secondly, we have

d
£ = sin P cos [€15 + Co] e °° Ps—Cs,

Also, integrating both sides, we have

sin (ﬁpef cos‘Ps—C3

€2 + cos? P [—cosPcos [€15 + Co] + &y sin [€y5 + E]] + &y,

z(s) =

where €4 is constant of integration.
Finallly, we obtain

d ‘
& sin P sin [€;5 + €, e P,

ds
Since
sin mecos Ps+C3
§) = —5—5—[—C1cos €15+ &3] + cosPsin [€15 + ]| + €
y(s) @+ o P [~€; cos [¢; 2] P sin [ o]] + &5,
where €5 is constant of integration. This proves our assertion. Thus, the proof of
theorem is completed. O

In terms of Eqs. (2.4) and (3.4), we may give:
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Theorem 3.2. Lety:1 — Sol® be a unit speed non-geodesic general heliz. Then,
the equation of v is

v(s) = [%[—cos‘ﬁcos[@ls—k&}+clsin[¢1s+¢2“+¢4ecosms+e3]el
+[%[—€1 cos [Qlls—i—(’:z]+c03msin[¢18+€2]]+€5e—cos$s—¢3]e2
€2 4 cos2 P
+[cosPs + €3les, (3.10)

where €1, €y, C3, €4, &5 are constants of integration.
Proof: Suppose that v be a unit speed non-geodesic general helix. Using orthonor-
mal basis of Gol®, we have

0 0 0
— =¢e;, — =e “ey, — =e3. (3.11)

ox dy 0z

Substituting (3.11) to (3.4), we have (3.10) as desired. This completes the proof.
O

We can use Mathematica in Theorem 3.1, yields
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