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1. Introduction

In Riemannian geometry, integral formulas have been studied by many mathe-
maticians [1] and their use many beatiful global results have been obtained. Per-
haps the Reilly’s formula is one of the most well known integral formula in Rieman-
nian geometry as well as a very powerful tool for obtaining global results. Nonethe-
less, a Reilly’s Formula in semi-Riemannian geometry has not been available. The
main difficulty in stating an integral formula for semi-Riemannian manifolds is
that the boundary may become degenerate at some points and hence there exists
no well-defined unit outward normal at such points. Consequently there is no well
defined induced volume form on the boundary.

Duggal was the first one who studied semi-Riemannian manifolds with boundary
in one of his works on integral formulas in semi-Riemannian geometry [2]. In [2],
Duggal defined a semi-Riemannian manifold to be regular if the usual form of
integral formulas remains valid on it. In [3], Ünal defined nondegenerate boundary
of a semi-Riemannian manifold and by making use of the volume form on the
nondegenerate boundary, he obtained integral formulas.

In this paper, we define two type semi-Riemannian inner product. Using this
definition we classify the boundaries.We define nondegenerate boundary of a semi-
Riemannian manifold and we get Reilly’s formula on the nondegenerate boundary.
Of course, the validity of the Reilly’s formula depends on some restrictions, namely,
the degenerate part of the boundary must have measure zero. Finally, we obtain
different results from Riemannian geometry.
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2. Basic Notions and Terminologies

Let Rn be n-dimensional real vector space. Semi-Riemannian inner product for
n-dimensional real vector space Rn is defined as follows [4]:

〈, 〉
1

: R
n × R

n → R (2.1)

(
−→
X,

−→
Y ) →

〈−→
X,

−→
Y

〉
1

=
v∑

i=1

xiyi −
n∑

j=v+1

xjyj

or

〈, 〉
2

: R
n × R

n → R (2.2)

(
−→
X,

−→
Y ) →

〈−→
X,

−→
Y

〉
2

= −
v∑

i=1

xiyi +
n∑

j=v+1

xjyj

In addition, βi and εi are defined as follows:

βi =

{
1 , if 1 ≤ i ≤ v

−1 , if v + 1 ≤ i ≤ n
(2.3)

and

εi =

{
−1 , if 1 ≤ i ≤ v

1 , if v + 1 ≤ i ≤ n
(2.4)

Considering βi and εi in Eq. (2.1) and Eq. (2.2), respectively, we get

〈−→
X,

−→
Y

〉
1

=

n∑

i=1

βixiyi (2.5)

and

〈−→
X,

−→
Y

〉
2

=

n∑

i=1

εixiyi (2.6)

Here the functions of 〈, 〉
1

and 〈, 〉
2

are semi-Riemannian inner product in Rn

and Rn
v is semi-Riemannian space which is united with the functions of 〈, 〉

1
and

〈, 〉
2
.
For the sake of shortness, let’s unite both of semi-Riemannian inner product

definition and let’s express this definition as follows:
If is written as the following,

γi =

{
βi , if 〈, 〉

1

εi , if 〈, 〉
2

then semi-Riemannian inner product is as follows:
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〈−→
X,

−→
Y

〉
=

n∑

i=1

γixiyi (2.7)

Throughout this paper, let M denote an n-dimensional semi-Riemannian man-
ifold with metric 〈, 〉 of index 0 ≤ v ≤ n and boundary ∂M . Then the open
submanifold ∂M

′

= ∂M+ ∪ ∂M− of ∂M is called the nondegenerate boundary of
(M, 〈, 〉). A vector 0 6= v ∈ TM is respectively called spacelike, timelike and null
if 〈, 〉 > 0, 〈, 〉 < 0, 〈, 〉 = 0. We will also assume that M is oriented and ∂M is
oriented by the induced orientation. Also let dv be the semi-Riemannian volume
element on M, that is, dv is an exterior n-form on M with

dv =
√
|g|dx1 ∧ ... ∧ dxn (2.8)

for semi-Riemannian orthonormal basis
{

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

}
of χ(U) on a ∈ U ⊂

M , where g = det(gij) [5] and let en be the unit outward normal vector field on
the nondegenerate boundary ∂M

′

of (M, 〈, 〉).
Let M be an n-dimensional semi-Riemannian manifold, ∧k(M) be k-forms set

defined on M and dv be volume element. Hence,

∗ : ∧k(M) → ∧n−k(M)

If ” ∗ ” isomorphism holds the following equality for ∀α, β ∈ ∧k(M),

α ∧ ∗β = 〈α, β〉 dv (2.9)

then this transformation is called Hodge-star operator [6].
For n-dimensional semi-Riemannian manifold M , gradf denotes the gradient of

f and we define as [7]

gradf =

n∑

i=1

γi

∂f

∂xi

∂

∂xi

(2.10)

In addition we define the Laplace operator on M as [7]

∆(f) =
n∑

i=1

γifii (2.11)

and also we define Hessian form of differentiable function f on M as [7]

Hf (u, v) = 〈▽ugradf, v〉 (2.12)

where Hf (ei, ej) = fij.
In addition, we define the second fundamental form of vector fields U and V of

nondegenerate boundary ∂M
′

= ∂M+ ∪ ∂M− as follows:

II(U, V ) = 〈∇Uen, V 〉



128 Mahmut Ergüt and Mihriban Külahcı

Definition 2.1. Let M be an n-dimensional semi-Riemannian manifold and R be
a Riemannian curvature tensor of M . Let {e1, e2, ..., en} be a semi-Riemannian
orthonormal basis of Tp(M). Thus, one can write the following:

Ric : Tp(M) × Tp(M) → IR

(U, V ) → Ric(U, V ) =

n∑

i=1

γi 〈R(ei, V )U, ei〉 (2.13)

where the curvature tensor field Ric is called Ricci curvature tensor field and also
the value of Ric(U, V ) on pǫM is called Ricci curvature of M [7].

Taking U and V as follows in (2.13)

U =
n∑

i=1

ui

∂

∂xi

, V =
n∑

j=1

vj

∂

∂xj

ǫχ(M)

and defining Rij as follows

Rij =
n∑

k=1

Rk
ikj (2.14)

we have

Ric(U, V ) =

n∑

i,j=1

Rijuivj . (2.15)

Definition 2.2. Let M be an n-dimensional semi-Riemannian manifold and
fǫC∞(M, R). Hence the differential of f can be defined as follows:

df|p : Tp(M) → R

−→
X p → df|p(

−→
X p) =

−→
X p[f ]

If {x1, x2, ..., xn} is local coordinate system on point p, then
{dx1|p, dx2|p, ..., dxn|p} will be basis on T ∗

p (M). In addition there is the following
relation among the components of the basis {dx1, dx2, ..., dxn}

gij = γiδij = 〈dxi, dxj〉 , 1 ≤ i, j ≤ n, (2.16)

where {dx1, dx2, ..., dxn} is the dual basis of { ∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

} and also gij is the
inverse matrix of gij [7].

Definition 2.3. Let M be an n-dimensional semi-Riemannian manifold with bound-
ary ∂M . Then the open subset ∂M+ is called nondegenerate space-like boundary
where unit outward normal is timelike and index of the induced nondegenerate met-
ric is v − 1 on ∂M+.



The Reilly’s Integral Formula on Semi-Riemannian Manifolds 129

Definition 2.4. Let M be an n-dimensional semi-Riemannian manifold with bound-
ary ∂M . Then the open subset ∂M− is called nondegenerate time-like boundary
where unit outward normal is spacelike and index of the induced nondegenerate
metric is v on ∂M−.

Remark 1. Note that ∂M = ∂M+∪∂M−∪∂M0 and ∂M+, ∂M−, ∂M0 are pairwise
disjoint subsets of ∂M . Also notice that ∂M+ and ∂M− are open submanifolds of
∂M and ∂M

′

= ∂M+ ∪ ∂M− can be considered as the nondegenerate boundary of
M .

Definition 2.5. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate space-like boundary and time-like unit outward normal. In addition let
{u1, ..., un−1} be an orthonormal basis of Ta∂M+ and D = (n1, ..., nn) be a time-like
unit outward normal of ∂M+. Then

w∂M+
(u1, u2, ..., un−1) = det




u1

.

.

.

un−1

D




= 〈u1 ∧ u2 ∧ ... ∧ un−1,D〉
1

the equality defined in the above is called volume element of ∂M+.

Definition 2.6. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate time-like boundary and space-like unit outward normal. In addition let
{u1, ..., un−1} be an orthonormal basis of Ta∂M− and D = (n1, ..., nn) be a space-
like unit outward normal of ∂M−. Then

w∂M−
(u1, u2, ..., un−1) = det




u1

.

.

.

un−1

D




= 〈u1 ∧ u2 ∧ ... ∧ un−1,D〉
2

the equality defined in the above is called volume element of ∂M−.

Definition 2.7. Let U be an open set of semi-Riemannian manifold M and w1, w2,

..., wn be 1-forms on U . In addition, let wi
j be connection coefficients. E. Cartan

structure equations are defined as follows:
1. E. Cartan Structure Equation;

dwi =
n∑

j=1

γiw
i
j ∧ wj , wi

j + w
j
i = 0, (2.17)
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and
2. E. Cartan Structure Equation;

dwi
j =

n∑

k=1

γkwi
k ∧ wk

j +
1

2

n∑

k,l=1

γkγlRijklwk ∧ wl (2.18)

where Rijkl is the component of the Riemannian-Christoffel curvature tensor [8].

Lemma 2.8. (Cartan’s Lemma) Let M be an n-dimensional manifold and wi be
1-forms on M for i = 1, 2, ..., n . In addition, let λi be the other 1-forms. Suppose
that λi and wi are linearly independent. Then

n∑

i=1

wi ∧ λi = 0.

Hence, for 1 ≤ i, j ≤ n, aij = aji and aijǫC
∞(M, R), one can write the following

[6]

λi =

n∑

j=1

aijwj .

Theorem 2.9. Let M be an n-dimensional semi-Riemannian manifold and U be
open subset of M . In addition, let w1, w2, ..., wn be 1-forms on U ⊂ M and f be
any differentiable function. Then

fijk − fikj =

n∑

l=1

γiγjR
k
jilfl (2.19)

where i, j, k = 1, ..., n.

Proof: Suppose that, f ∈ C∞(M, R), wi ∈ χ∗(M). The differential of f is as
follows:

df =
n∑

i=1

fiwi

Here, by using exterior differential, we get

dfi ∧ wi −

n∑

j=1

fjdwj = 0

Considering (2.18) equality here and making routine calculations, we have

n∑

i=1


dfi −

n∑

j=1

γifjdw
j
i


 ∧ wi = 0
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In addition, from Lemma 2.8, there are fij functions on an open subset U of M .
Hence, from fij = fji , the above equality can be written as follows:

dfi −
n∑

j=1

γifjdw
j
i =

n∑

j=1

fijwj (2.20)

Using exterior differential for the (2.20) equality, we obtain

n∑

j=1

(dfij −

n∑

k=1

γifkjdwk
i −

n∑

k=1

γifikdwk
j ) ∧ wj (2.21)

=
1

2

n∑

l,k,j=1

γiγlR
k
lijwk ∧ wl

From Lemma 2.8, there are fijk functions on an open subset U of M . Then we
have

dfij −

n∑

k=1

γifkjw
k
i −

n∑

k=1

γifikwk
j =

n∑

k=1

fijkwk (2.22)

On the other hand, let

fijk = fjik (2.23)

Here writing the similar equality of Eq. (2.22) for fijk and considering Eq. (2.21),
we get

fijk − fikj =
n∑

l=1

γiγjR
k
jilfl

This completes the proof of theorem. 2

Definition 2.10. Let M be an n-dimensional semi-Riemannian manifold and N

be a semi-Riemannian submanifold with index (v− 1). Let’s consider the following
isometric immersion

τ : N → M.

Owing to this immersion, local semi-Riemannian orthonormal basis
{e1, e2, ..., en−1} in the coordinate neighbourhood U of N transforms a local semi-
Riemannian orthonormal basis {e1, e2, ..., en}. (Here, en is the time-like unit out-
ward normal of N). In addition, 1-forms {w1, w2, ..., wn} which are the dual basis
of local semi-Riemannian orthonormal basis {e1, e2, ..., en} transform dual 1-forms
which are defined as follows of N , under this immersion,

θi = τ∗(wi), 1 ≤ i ≤ n, (2.24)
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and connection coefficients wi
j, 1 ≤ i, j ≤ n also transform dual connection coeffi-

cients θi
j of N which are defined as follows

θi
j = τ∗(wi

j), 1 ≤ i, j ≤ n. (2.25)

That is, 1-forms wi , 1 ≤ i ≤ n under the transformation of τ transform 1-forms
θ1, θ2, ..., θn−1 on N , where

θn = 0 (2.26)

This 1-forms are shortly called co-frame.
On the other hand, using exterior differential for (2.26), we have dθn = 0. In

addition, let IIij = IIji that are the components of second fundamental form of N .
This 1-forms are defined as follows [1]:

θn
i = −

n−1∑

j=1

IIijθj (2.27)

and

dθi =
n−1∑

j=1

βjθ
i
j ∧ θj , θi

j = −θ
j
i . (2.28)

Definition 2.11. Let M and M be an n-dimensional and (n-1)-dimensional semi-
Riemannian manifold, respectively. Let’s consider the following isometric immer-
sion

τ : M → M.

Owing to this isometric immersion, local semi-Riemannian orthonormal basis {e1,

e2, ..., en−1} in the coordinate neighbourhood U of M transforms a local semi-
Riemannian orthonormal basis {e1, e2, ..., en} of M . (Here, en is the space-like
unit outward normal of M). In addition, 1-forms {w1, w2, ..., wn} which are the
dual basis of local semi-Riemannian orthonormal basis {e1, e2, ..., en} transform
dual 1-forms θi which are defined as follows of M , under this immersion,

θi = τ∗(wi), 1 ≤ i ≤ n, (2.29)

and connection coefficients wi
j, 1 ≤ i, j ≤ n, also transform dual connection coeffi-

cients θi
j of M which are defined as follows

θi
j = τ∗(wi

j), 1 ≤ i, j ≤ n. (2.30)

That is, 1-forms wi, 1 ≤ i ≤ n, under the transformation of τ transform 1-forms
θ1, θ2, ..., θn−1 on M , where

θn = 0 (2.31)
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This 1-forms are called semi-Riemannian co-frame.
On the other hand, using exterior differential for (2.31), we have dθn = 0. In

addition, let IIij = IIji that are the components of second fundamental form of
M . This 1-forms are defined as follows:

θn
i = −

n∑

j=1

IIijθj (2.32)

and

dθi =

n−1∑

j=1

εjθ
i
j ∧ θj θi

j = −θ
j
i . (2.33)

Definition 2.12. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate space-like boundary ∂M+. Let {e1, ..., en−1} be local semi-Riemannian
orthonormal frame of ∂M+ and en be a time-like unit outward normal of ∂M+.
Thus {e1, ..., en} is a local semi-Riemannian orthonormal frame of M . Let {w1, ...,

wn} be dual co-frame of this local semi-Riemannian orthonormal frame and f be a
differentiable function on M .

Now, getting ∂M+ instead of N in definition 2.10 let’s study the covariant
derivative of function f . Firstly, let’s compute fi, fij , fni on a point of ∂M+.

Hence let’s take

z = τ∗(f)

such that τ is inclusion transformation as follows:

τ : ∂M+ → M

Thus, we can write the following:

dz = τ∗(df) =
n−1∑

i=1

fi |∂M+
θi (2.34)

Here, if

zi = fi |∂M+
(2.35)

then

dz =

n−1∑

i=1

fiθi (2.36)

Using exterior differential for (2.36), we get
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n−1∑

j=1

zijθj = dzi −
n−1∑

j=1

βjzjθ
j
i

= τ∗(dfi −
n−1∑

j=1

βjfjw
j
i )

= τ∗(dfi −
n∑

j=1

βjfjw
j
i − fnwn

i )

= τ∗(dfi −

n∑

j=1

βjfjw
j
i ) − fnτ∗(wn

i )

Here, getting u instead of fn and using (2.22) and (2.25), we get

= τ∗(

n∑

j=1

fijwj) − uθn
i (2.37)

In the last equality, considering (2.24) and (2.27), we have

n−1∑

j=1

zijθj =

n−1∑

j=1

fij |∂M+
θj + u

n−1∑

j=1

IIij |∂M+
θj

or

fij |∂M+
= zij − uIIij (2.38)

Let’s consider (2.34) equality for computing fni . According to this, we get

n−1∑

i=1

fni | ∂M+
θi = τ∗(

n∑

i=1

fniwi)

= τ∗(dfn −

n∑

i=1

βifiw
i
n)

= τ∗(dfn) − τ∗(
n∑

i=1

βifiw
i
n)

= du −

n−1∑

i=1

ziτ
∗(wi

n)

= du −

n−1∑

i=1

ziθ
i
n, θi

n = − θn
i

= du +

n−1∑

i=1

ziθ
n
i
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Using (2.27) in the last equality, we obtain

n−1∑

i=1

fni |∂M+
θi = du −

n−1∑

i,j=1

βiziIIijθj

or

fni |∂M+
= ui −

n−1∑

j=1

βjzjIIij (2.39)

Thus, the covariant derivatives of fi, fij , fni are obtained for semi-
Riemannian manifold with nondegenerate spacelike boundary ∂M+.

Definition 2.13. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate time-like boundary ∂M−. Let {e1, ..., en−1} be local semi-Riemannian
orthonormal frame of ∂M− and en be a space-like unit outward normal of ∂M−.
Thus {e1, ..., en} is a local semi-Riemannian orthonormal frame of M . Let {w1, ...,

wn} be dual co-frame of this local semi-Riemannian orthonormal frame and f be a
differentiable function on M .

Now, getting ∂M− instead of M in definition 2.11 let’s study the covariant
derivative of function f . Firstly, let’s compute fi, fij , fni on a point of ∂M−.

Hence let’s take

z = τ∗(f)

such that τ is inclusion transformation as follows:

τ : ∂M− → M

Thus, we can write the following:

dz = τ∗(df) =
n−1∑

i=1

fi |∂M−
θi (2.40)

Here, if

zi = fi |∂M−
(2.41)

then

dz =

n−1∑

i=1

fiθi (2.42)
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Using exterior differential for (2.42), we get

n−1∑

j=1

zijθj = dzi −

n−1∑

j=1

εjzjθ
j
i

= τ∗(dfi −

n−1∑

j=1

εjfjw
j
i )

= τ∗(dfi −

n∑

j=1

εjfjw
j
i + fnwn

i )

= τ∗(dfi −
n∑

j=1

εjfjw
j
i ) + fnτ∗(wn

i )

Here, getting u instead of fn and considering (2.22), (2.29) and (2.30), we obtain

=
n−1∑

j=1

fij |∂M−
θj + uθn

i

and using (2.32), we get

=
n−1∑

j=1

fij |∂M−
θj − u

n−1∑

j=1

IIijθj

or
fij |∂M−

= zij + uIIij (2.43)

Now, let’s consider (2.40) equality for computing fni. According to this, we have

n−1∑

i=1

fni | ∂M−
θi = τ∗(

n∑

i=1

fniwi)

= τ∗(dfn −

n∑

i=1

εifiw
i
n)

= τ∗(dfn) − τ∗(

n∑

i=1

εifiw
i
n)

= du +

n−1∑

i=1

εiziθ
n
i

Using (2.32) in the last equality, we obtain

= du −
n−1∑

i,j=1

εiziIIijθj
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or

fni |∂M−
= ui −

n−1∑

j=1

εjzjIIij . (2.44)

Theorem 2.14. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate boundary ∂M

′

(∂M
′

= ∂M+ ∪ ∂M−). In addition, let D = (n1, ..., nn)
be unit outward normal and {x1, ..., xn} be semi-Riemannian coordinate system of
M [4].

i) If M has ∂M+ space-like boundary and D time-like unit outward normal,
w∂M+

volume element of ∂M+ is as follows:

w∂M+
=

n∑

j=1

(−1)j−1njdx1 ∧ ... ∧ d̂xj ∧ ... ∧ dxn (2.45)

or

− βj .nj .w∂M+
= (−1)j−1dx1 ∧ ... ∧ d̂xj ∧ ... ∧ dxn, 1 ≤ j ≤ n (2.46)

where βj is as (2.3).
ii) If M has ∂M− time-like boundary and D space-like unit outward normal,

w∂M−
volume element of ∂M− is as follows:

w∂M−
=

n∑

j=1

(−1)j−1njdx1 ∧ ... ∧ d̂xj ∧ ... ∧ dxn (2.47)

or

εj .nj .w∂M−
= (−1)j−1dx1 ∧ ... ∧ d̂xj ∧ ... ∧ dxn, 1 ≤ j ≤ n (2.48)

where εj is as Eq. (2.4).

Theorem 2.15. (Stokes Theorem) Let M be an n-dimensional compact, ori-
entable semi-Riemannian manifold with nondegenerate boundary ∂M ′ (∂M ′ =
∂M+ ∪ ∂M−). If αǫ ∧n−1 (M), then [4]

∫

M

dα = −

∫

∂M+

α −

∫

∂M−

α (2.49)

Theorem 2.16. (Green Formula) Let M be an n-dimensional compact, ori-
entable semi-Riemannian manifold with nondegenerate boundary ∂M ′ (∂M ′ =
∂M+ ∪ ∂M−) and let f and h be two differentiable functions on M . Then [4],

∫

M

(〈gradf, gradh〉 + f∆h)dv =

∫

∂M+

fhnw∂M+
−

∫

∂M−

fhnw∂M−
(2.50)

where dv, w∂M+
, w∂M−

are the volume elements on M, ∂M+, ∂M−, respectively.
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3. Reilly’s Formula

Let M be an n-dimensional compact, orientable semi-Riemannian manifold with
nondegenerate boundary ∂M ′(∂M ′ = ∂M+ ∪ ∂M−). Thus, for wǫ ∧1 (M) we can
write the following from Stokes theorem

−

∫

∂M+

∗ w −

∫

∂M−

∗ w =

∫

M

d ∗ w (3.1)

where ∗ is the Hodge-star operator. Throughout this paper, ∆1 is the Laplace
operator on ∂M+ and ∆2 is the Laplace operator on ∂M−.

Theorem 3.1. Let M be an n-dimensional compact orientable semi-
Riemannian manifold with nondegenerate boundary ∂M ′(∂M ′ = ∂M+ ∪ ∂M−).
Let f be a differentiable function on semi-Riemannian manifold M and dv be a
volume element of M . Then

∫

M

[Ric(gradf, gradf) + 〈gradf, grad∆f〉 + Hessf.Hessf ]dv (3.2)

= −

∫

∂M+

n∑

i,j=1

βj(fjfji)(−1)i−1
√
|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

−

∫

∂M−

n∑

i,j=1

εj(fjfji)(−1)i−1
√

|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

Proof: i) Let’s choose 1-form wǫ ∧1 (M) as follows:

w =

n∑

i,j=1

βj(fjfji)dxi

Here, considering the property of Hodge-star operator, we have

∗ w =

n∑

i,j=1

βj(fjfji)(−1)i−1
√
|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn (3.3)

Using exterior differential for (3.3) and using (2.16) and (2.8), we have

d ∗ w = [

n∑

i,j=1

βiβjfjifji +

n∑

i,j=1

βiβjfjfjii]dv (3.4)

Considering (2.12), (2.23) and (2.19) in (3.4), respectively, we get

d ∗ w = [ Hessf.Hessf +
n∑

i,j=1

Ri
jijfjfj +

n∑

i,j=1

βiβj ]dv (3.5)
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Using (2.14) and (2.15) in the second term of (3.5) and using (2.10), (2.11) and
(2.7) in the last term of (3.5), we obtain

d ∗ w = [ Hessf.Hessf + Ric(gradf, gradf) + 〈gradf, grad∆f〉]dv (3.6)

Consequently, considering (3.3) and (3.6) in (3.1), we have

∫

M

[Ric(gradf, gradf) + 〈gradf, grad∆f〉 + Hessf.Hessf ]dv (3.7)

= −

∫

∂M+

n∑

i,j=1

βj(fjfji)(−1)i−1
√
|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

ii) Suppose that wǫ ∧1 (M)

w =
n∑

i,j=1

εj(fjfji)dxi

Here, considering the property of Hodge-star operator, we have

∗ w =
n∑

i,j=1

εj(fjfji)(−1)i−1
√
|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn (3.8)

Using exterior differential for (3.8) and using (2.16) and (2.8), we have

d ∗ w = [
n∑

i,j=1

εiεjfjifji +
n∑

i,j=1

εiεjfjfjii]dv (3.9)

Writing (2.12) in the first term on the right hand of (3.9), we get

d ∗ w = [ Hessf.Hessf +
n∑

i,j=1

εiεjfjfjii]dv

Using (2.23) and (2.19) in the second term of the above equality, we have

d ∗ w = [ Hessf.Hessf +

n∑

i,j=1

Ri
jijfjfj +

n∑

i,j=1

εiεjfjfiij ]dv (3.10)

Considering (2.14) and (2.15) in the second term of (3.10) and (2.10), (2.11) and
(2.7) in the last term of (3.10), we obtain

d ∗ w = [ Hessf.Hessf + Ric(gradf, gradf) + 〈gradf, grad∆f〉]dv

Consequently, substituting the above equality and (3.8) in (3.1), we get
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∫

M

[Ric(gradf, gradf) + 〈gradf, grad∆f〉 + Hessf.Hessf ]dv (3.11)

= −

∫

∂M−

n∑

i,j=1

εj(fjfji)(−1)i−1
√
|g|giidx1 ∧ ... ∧ d̂xi ∧ ... ∧ dxn

Because of the fact that ∂M = ∂M+ ∪ ∂M−, considering (3.7) and (3.11)
together, we have (3.2). This completes the proof of theorem. 2

Theorem 3.2. Let M be an n-dimensional compact orientable semi-
Riemannian manifold with nondegenerate boundary ∂M ′(∂M ′ = ∂M+ ∪ ∂M−).
Let f be a differentiable function on semi-Riemannian manifold M and dv, w∂M+

,

w∂M−
be the volume elements of M, ∂M+, ∂M− respectively. Then,

∫

M

[Ric(gradf, gradf) + 〈gradf, grad∆f〉 + Hessf.Hessf ]dv

=

∫

∂M+

n∑

j=1

βj(fjfjn)w∂M+
−

∫

∂M−

n∑

j=1

εj(fjfjn)w∂M−
(3.12)

Proof: i) Using the first term on the right hand of (3.2) in Theorem 3.1, for
i = 1, 2, ..., n, we have

∗ w =
n∑

j=1

βj(fjfj1)(−1)1−1g11
√
|g|d̂x1 ∧ dx2 ∧ ... ∧ dxn

+
n∑

j=1

βj(fjfj2)(−1)2−1g22
√
|g|dx1 ∧ d̂x2 ∧ ... ∧ dxn

.

.

.

(3.13)

+

n∑

j=1

βj(fjfjn)(−1)n−1gnn
√

|g|dx1 ∧ dx2 ∧ ... ∧ d̂xn

Considering (2.45) and (2.46) in (3.13), we get

∗ w =

n∑

j=1

βj(fjfjn)gnn
√
|g|w∂M+

(3.14)

From (2.46), considering
√
|g| = 1 and gnn = −1, we obtain

∗ w = −
n∑

j=1

βj(fjfjn)w∂M+
(3.15)
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ii) Using the second term on the right hand of (3.2) in Theorem 3.1, for i =
1, 2, ..., n we get

∗ w =
n∑

j=1

εj(fjfj1)(−1)1−1g11
√
|g|d̂x1 ∧ dx2 ∧ ... ∧ dxn

+
n∑

j=1

εj(fjfj2)(−1)2−1g22
√
|g|dx1 ∧ d̂x2 ∧ ... ∧ dxn

.

.

.

(3.16)

+

n∑

j=1

εj(fjfjn)(−1)n−1gnn
√
|g|dx1 ∧ dx2 ∧ ... ∧ d̂xn

Substituting (2.48) in (3.16), we have

∗ w =

n∑

j=1

εj(fjfjn)gnn
√

|g|w∂M−
(3.17)

Here, considering
√
|g| = 1 and gnn = 1, we obtain

∗ w =

n∑

j=1

εj(fjfjn)w∂M−
(3.18)

Substituting (3.15) and (3.18) on the right hand of (3.2), we get (3.12).

This completes the proof of theorem. 2

Theorem 3.3. (Reilly’s Formula) Let M be an n-dimensional compact ori-
entable semi-Riemannian manifold with nondegenerate boundary ∂M ′(∂M ′ =
∂M+∪∂M−). Let f be a differentiable function on semi-Riemannian manifold M .
We define the following:

z1 = f |∂M+
, u1 = fn, H1 =

1

n − 1

n−1∑

i=1

βiIIii (3.19)

and

z2 = f |∂M−
, u2 = fn, H2 =

1

n − 1

n−1∑

i=1

εiIIii (3.20)
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Hence
∫

M

[(∆f)2 − Ric(gradf, gradf) − Hessf.Hessf ]dv

= {

∫

∂M+

[(∆1z)u − (n − 1)Hu2 − 〈gradz, gradu〉
1

+II(gradz, gradz)]w∂M+
}

−{

∫

∂M−

[(∆2z)u + (n − 1)Hu2 − 〈gradz, gradu〉
2

+II(gradz, gradz)]w∂M−
}

where w∂M+
, w∂M−

, dv are the volume elements of ∂M+, ∂M− and M, respectively.

Proof: Considering (2.50) in (3.12) and making routine calculations, we have
∫

M

[(∆f)2 − Ric(gradf, gradf) − Hessf.Hessf ]dv

=

∫

∂M+

[fn

n−1∑

i=1

βifii −

n−1∑

i=1

βififin]w∂M+
(3.21)

−

∫

∂M−

[fn

n−1∑

i=1

εifii −

n−1∑

i=1

εififin]w∂M−

Writing the value of fii from (2.38), we have

fii = zii − uIIii

Summing up the last equality over i = 1, 2, ..., n− 1 and multiplying it with βi and
fn, we obtain

fn

n−1∑

i=1

βifii = (

n−1∑

i=1

βizii − u

n−1∑

i=1

βiIIii)fn (3.22)

Considering (2.11) and (3.19) in (3.22), we have

fn

n−1∑

i=1

βifii = (∆1z − (n − 1)Hu)u (3.23)

Now, let’s compute the second term on the right hand of (3.21). Multiplying (2.39)
with βifi and summing up it for i = 1, 2, ..., n − 1, we get

n−1∑

i=1

βififni =
n−1∑

i=1

βiuifi −
n−1∑

i,j=1

βiβjIIijzjfi
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or
n−1∑

i=1

fifni = 〈gradz, gradu〉
1
− II(gradz, gradz) (3.24)

Also, in the third term on the right hand of (3.21), the value of fii can be written
as the following from (2.43),

fii = zii + uIIii (3.25)

Multiplying (3.25) with εi and summing up it over i = 1, 2, ..., n − 1, we have

n−1∑

i=1

εifii =

n−1∑

i=1

εizii + u

n−1∑

i=1

εiIIii

Here, considering (2.11) and (3.20), we get

fn

n−1∑

i=1

εifii = (∆2z + (n − 1)Hu)u (3.26)

Finally, the fourth term on the right hand of (3.21) can be written as the
following from (2.44),

fni = ui −
n−1∑

j=1

εjzjIIij

Multiplying the last equality with εifi and summing up it over i = 1, 2, ..., n−1,

we obtain

n−1∑

i=1

εififni =
n−1∑

i=1

εifiui − u

n−1∑

i,j=1

εiεjfizjIIij

or
n−1∑

i=1

εififni = 〈gradz, gradu〉
2
− II(gradz, gradz) (3.27)
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Thus, substituting (3.23), (3.24), (3.27) and (3.26) in (3.21), we obtain
∫

M

[(∆f)2 − Ric(gradf, gradf) − Hessf.Hessf ]dv

= {

∫

∂M+

[(∆1z)u − (n − 1)Hu2 − 〈gradz, gradu〉
1

+II(gradz, gradz)]w∂M+
}

−{

∫

∂M−

[(∆2z)u + (n − 1)Hu2 − 〈gradz, gradu〉
2

+II(gradz, gradz)]w∂M−
}

This completes the proof of theorem. 2
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