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1. Introduction

In Riemannian geometry, integral formulas have been studied by many mathe-
maticians [1] and their use many beatiful global results have been obtained. Per-
haps the Reilly’s formula is one of the most well known integral formula in Rieman-
nian geometry as well as a very powerful tool for obtaining global results. Nonethe-
less, a Reilly’s Formula in semi-Riemannian geometry has not been available. The
main difficulty in stating an integral formula for semi-Riemannian manifolds is
that the boundary may become degenerate at some points and hence there exists
no well-defined unit outward normal at such points. Consequently there is no well
defined induced volume form on the boundary.

Duggal was the first one who studied semi-Riemannian manifolds with boundary
in one of his works on integral formulas in semi-Riemannian geometry [2]. In [2],
Duggal defined a semi-Riemannian manifold to be regular if the usual form of
integral formulas remains valid on it. In [3], Unal defined nondegenerate boundary
of a semi-Riemannian manifold and by making use of the volume form on the
nondegenerate boundary, he obtained integral formulas.

In this paper, we define two type semi-Riemannian inner product. Using this
definition we classify the boundaries.We define nondegenerate boundary of a semi-
Riemannian manifold and we get Reilly’s formula on the nondegenerate boundary.
Of course, the validity of the Reilly’s formula depends on some restrictions, namely,
the degenerate part of the boundary must have measure zero. Finally, we obtain
different results from Riemannian geometry.
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2. Basic Notions and

Terminologies

Let R™ be n-dimensional real vector space. Semi-Riemannian inner product for
n-dimensional real vector space R"™ is defined as follows [4]:

(); : R"xR" =R

®F) = (RF) = Sew- Y o
i=1

or

() : R*xXR" =R
X, Y) — <)717>

2

In addition, 3; and €; are defined as follows:

1, if
ﬁi:{—l : if

-1 if
STV 1, if

and

Jj=v+1

v n
= —Z%Z/H- Z T;Y;
i=1

Jj=v+1

1<i<vw
v+1<1<n

1<i<w
v+1<1<n

Considering 8, and ¢; in Eq. (2.1) and Eq. (2.2), respectively, we get

- = n
(X.Y) = > B

and

- — n
X,Y>= iTiYs
< , ;&a?y

Here the functions of (,); and (,), are semi-Riemannian inner product in R
and R} is semi-Riemannian space which is united with the functions of (,); and

()2

(2.1)

(2.3)

(2.5)

(2.6)

For the sake of shortness, let’s unite both of semi-Riemannian inner product
definition and let’s express this definition as follows:

If is written as the following,

o, if
’Yz':{ﬂl

g if

()
()2

then semi-Riemannian inner product is as follows:
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<)_(>7?> = i%xzyz (2.7)
i=1

Throughout this paper, let M denote an n-dimensional semi-Riemannian man-
ifold with metric (,) of index 0 < v < n and boundary OM. Then the open
submanifold M = OM, U OM_ of OM is called the nondegenerate boundary of
(M, {,)). A vector 0 # v € TM is respectively called spacelike, timelike and null
if ;) >0, (,) <0, (,) =0. We will also assume that M is oriented and OM is
oriented by the induced orientation. Also let dv be the semi-Riemannian volume
element on M, that is, dv is an exterior n-form on M with

dv = +/|gldzy A ... A dxy, (2.8)

for semi-Riemannian orthonormal basis {8%1, 8%2, C %}of x({U)onaeUC

M, where g = det(g;;) [5] and let e, be the unit outward normal vector field on

the nondegenerate boundary M’ of (M, (,)).
Let M be an n-dimensional semi-Riemannian manifold, A¥(M) be k-forms set
defined on M and dv be volume element. Hence,

x  AF(M) — AR (M)
If 7 7 isomorphism holds the following equality for Vo, 3 € AF(M),

a0 = (a,f)dv (2.9)

then this transformation is called Hodge-star operator [6].
For n-dimensional semi-Riemannian manifold M, gradf denotes the gradient of
f and we define as [7]

" 9f 0
df = ) 2.10
gradf =3 55 (210)
In addition we define the Laplace operator on M as [7]
A(f) = if (2.11)
i=1

and also we define Hessian form of differentiable function f on M as [7]

Hy(uv) = (Vugrad,v) (2.12)

where Hy(e;, e;) = fij-
In addition, we define the second fundamental form of vector fields U and V of
nondegenerate boundary OM = 0M, U dM_ as follows:

IIU,V) = (Vye,, V)
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Definition 2.1. Let M be an n-dimensional semi-Riemannian manifold and R be
a Riemannian curvature tensor of M. Let {ey,es,...,en}t be a semi-Riemannian
orthonormal basis of T,(M). Thus, one can write the following:

Ric : T,(M)xT,(M)— IR

(U,V)  — Ric(U,V) Z% (e, V)U,e;)  (2.13)

where the curvature tensor field Ric is called Ricci curvature tensor field and also
the value of Ric(U, V') on peM is called Ricci curvature of M [7].

Taking U and V as follows in (2.13)

n o n 9

and defining Rij as follows

ZRZ,W (2.14)

we have

Ric(U,V) Z Riju;v;. (2.15)

7,7=1

Definition 2.2. Let M be an n-dimensional semi-Riemannian manifold and
feC>®(M,R). Hence the differential of f can be defined as follows:

df|p : Tp(M)HIR
X, — dfip(X,) = X,[f]

If {zi,2z2,...,xn} is local coordinate system on  point p, then
{dzy)p, dzapp, ..y dry), b will be basis on T (M). In addition there is the following
relation among the components of the basis {dx1,dxs, ...,dx,}

97 =70y = (dzg, day),  1<ij<mn, (2.16)
where {dx1,dxs, ...,dx,} is the dual basis of {6%1, 022 . oz } and also g% is the

inverse matriz of gi; [7].

Definition 2.3. Let M be an n-dimensional semi- Riemannian manifold with bound-
ary OM . Then the open subset OM is called nondegenerate space-like boundary
where unit outward normal is timelike and index of the induced nondegenerate met-
ricisv—1 on OM,.
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Definition 2.4. Let M be an n-dimensional semi- Riemannian manifold with bound-
ary OM. Then the open subset OM_ is called nondegenerate time-like boundary
where unit outward normal is spacelike and index of the induced nondegenerate
metric is v on OM_.

Remark 1. Note that OM = OMUOM_UOMy and OMy, OM_,0My are pairwise
disjoint subsets of OM. Also notice that OMy and OM_ are open submanifolds of
OM and OM = OMy UOM_ can be considered as the nondegenerate boundary of
M.

Definition 2.5. Let M be an n-dimensional semi- Riemannian manifold with non-
degenerate space-like boundary and time-like unit outward normal. In addition let
{u1, ..., un—1} be an orthonormal basis of T,0My and D = (nq, ...,ny,) be a time-like
unit outward normal of OM . Then

Uy

wanr, (U1, Uz, ..., Up—1) = det ’ = (u1 Aug A ... Nup—1, D),
Up—1
D

the equality defined in the above is called volume element of OM .

Definition 2.6. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate time-like boundary and space-like unit outward normal. In addition let
{u1, ..., un—1} be an orthonormal basis of T,0M_ and D = (nq,...,n,) be a space-
like unit outward normal of OM_. Then

Uy

wonr_ (U1, Uz, .oy up—1) = det ) = (u1 Aug A ... Nup—1, D),

Up—1

D
the equality defined in the above is called volume element of OM_.

Definition 2.7. Let U be an open set of semi-Riemannian manifold M and w1, ws,
ooy Wy be 1-forms on U. In addition, let w; be connection coefficients. E. Cartan
structure equations are defined as follows:

1. E. Cartan Structure Equation;

n
dw; = Z%w; A wj, w; +w! =0, (2.17)
j=1
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and
2. E. Cartan Structure Equation;

n n
. . 1
dws; = Z’kalk A wf + 3 Z VeV Rijriwe A wy (2.18)
k=1 k=1
where R is the component of the Riemannian-Christoffel curvature tensor [8].

Lemma 2.8. (Cartan’s Lemma) Let M be an n-dimensional manifold and w; be
1-forms on M fori=1,2,....n . In addition, let \; be the other 1-forms. Suppose
that \; and w; are linearly independent. Then

Zn:’wi A )\,‘ =0.
=1

Hence, for 1 < i,j <n, a;; = aj; and a;;eC>°(M,R), one can write the following

[6]
)\7; = Zaijwj .
j=1

Theorem 2.9. Let M be an n-dimensional semi-Riemannian manifold and U be
open subset of M. In addition, let wy,ws,...,w, be 1-forms on U C M and f be
any differentiable function. Then

fijk = fikg = Z%%R?ﬂfz (2.19)
1=1
where i, j, k=1,...,n.

Proof: Suppose that, f € C°(M,R), w; € x*(M). The differential of f is as
follows:

af = fiw;
i=1

Here, by using exterior differential, we get

j=1

Considering (2.18) equality here and making routine calculations, we have

n

> \dfi - i’yifjdwg Aw; =0

i=1 j=1
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In addition, from Lemma 2.8, there are f;; functions on an open subset U of M.
Hence, from f;; = fj; , the above equality can be written as follows:

dfi = 3 _ifidw] =3 fisw; (2.20)
j=1 j=1

Using exterior differential for the (2.20) equality, we obtain

D (dfig =Y vifrgdwf = v fndwl) Aw; (2.21)
=1 k=1 k=1
1< "
=3 Z Vi we A wp

Ik,j=1

From Lemma 2.8, there are f;;; functions on an open subset U of M. Then we
have

dfi; — Z'Yifkjwf - Z’Yifikwf = Zfijkwk; (2.22)
k=1 k=1 k=1
On the other hand, let

fije = fjik (2.23)

Here writing the similar equality of Eq. (2.22) for f;; and considering Eq. (2.21),
we get

n
Fise = Fini = > _1ivi R fi
1=1
This completes the proof of theorem. O

Definition 2.10. Let M be an n-dimensional semi-Riemannian manifold and N
be a semi-Riemannian submanifold with index (v —1). Let’s consider the following
isometric immersion

T: N — M.

Owing to this immersion, local semi-Riemannian orthonormal basis
{e1,€a,...,en_1} in the coordinate neighbourhood U of N transforms a local semi-
Riemannian orthonormal basis {e1, ez, ...,e,}. (Here, e, is the time-like unit out-
ward normal of N ). In addition, 1-forms {w1,wa, ..., w, } which are the dual basis
of local semi-Riemannian orthonormal basis {e1, ea, ..., e, } transform dual 1-forms
which are defined as follows of N, under this immersion,

0; = 7" (w;), 1<i<mn, (2.24)
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and connection coefficients w}, 1 <4,j5 <n also transform dual connection coeffi-
cients 9; of N which are defined as follows
0 = 7" (wh), 1<i,j<n. (2.25)

That is, 1-forms w; , 1 < i < n under the transformation of T transform 1-forms
01,05, ....,0,_1 on N, where

0, =0 (2.26)

This 1-forms are shortly called co-frame.

On the other hand, using exterior differential for (2.26), we have df, = 0. In
addition, let I1;; = I1;; that are the components of second fundamental form of N.
This 1-forms are defined as follows [1]:

n—1
07 == II;6; (2.27)
j=1

and

n—1
do; =S p,0in0; 0= —6]. (2.28)
j=1

Definition 2.11. Let M and M be an n-dimensional and (n-1)-dimensional semi-
Riemannian manifold, respectively. Let’s consider the following isometric immer-
ston

7: M — M.

Owing to this isometric immersion, local semi-Riemannian orthonormal basis {ey,
€2, .yen_1} in the coordinate neighbourhood U of M transforms a local semi-
Riemannian orthonormal basis {e1,ea,...,en} of M. (Here, e, is the space-like
unit outward normal of M ). In addition, 1-forms {w1,ws, ..., wy,} which are the
dual basis of local semi-Riemannian orthonormal basis {e1,ea,...,en} transform
dual 1-forms 6; which are defined as follows of M, under this immersion,

— — )

and connection coefficients wj-, 1 <14,5 < n, also transform dual connection coeffi-
cients 9;- of M which are defined as follows

05 = 7" (wj), 1<i,5<n. (2.30)

That is, 1-forms w;, 1 < i < n, under the transformation of T transform 1-forms
01,0s2,....,0,_1 on M, where

0,, =0 (2.31)
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This 1-forms are called semi-Riemannian co-frame.
On the other hand, using exterior differential for (2.31), we have df, = 0. In
addition, let 11;; = I1;; that are the components of second fundamental form of

M. This 1-forms are defined as follows:

0} == II;;0, (2.32)
j=1

and
n—1 ] ) )
Jj=1

Definition 2.12. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate space-like boundary OM,.. Let {e1,...,en—1} be local semi-Riemannian
orthonormal frame of OM, and e, be a time-like unit outward normal of OM, .
Thus {e1, ..., en} is a local semi-Riemannian orthonormal frame of M. Let {wy, ...,
wy } be dual co-frame of this local semi-Riemannian orthonormal frame and f be a
differentiable function on M.

Now, getting OM, instead of N in definition 2.10 let’s study the covariant
derivative of function f. Firstly, let’s compute f;, fi;j, fni on a point of M.
Hence let’s take

z=7(f)

such that 7 is inclusion transformation as follows:

T:OMy - M
Thus, we can write the following:
n—1
dz =7°(df) = > fi lons, 0 (2.34)
i=1
Here, if
2z = fi lom, (2.35)
then
n—1
dz=>_f0; (2.36)
i=1

Using exterior differential for (2.36), we get



134 MAHMUT ERGUT AND MIHRIBAN KULAHCI

n—1 n—1

Zziﬁj = dZ7 — Zﬂjzﬂg
j=1 j=1

n—1

= dfi =B fwl)

j=1

= T =Y B fiwl — faw])

j=1

= T(dfi = Y _Bifiw]) — far (w])

j=1

Here, getting u instead of f,, and using (2.22) and (2.25), we get
j=1

In the last equality, considering (2.24) and (2.27), we have

n—1 n—1 n—1
Yz =D figloar, 05 +ud ILij loat, 9
j=1 j=1 J=1

or

fij lony = zij — ully; (2.38)
Let’s consider (2.34) equality for computing f,; . According to this, we get

n—1 n
S i | o i =7 faiwi)
i=1

i=1

= P (dfu— Y B fwl)

i=1

= 7(dfn) — (DB frw})
=1

n—1
= du— Zzn*(w%)
i=1
K3

n—1
=du—Y 20, 0, = -0}
i=1

n—1
= du+y %6}
i=1
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Using (2.27) in the last equality, we obtain

n—1 n—1
ani |8M+ 0; =du— Z ﬁizilliﬂj

i=1 ij=1

or

n—1
fri lon, = ui — Z/szj-[]ij (2.39)
j=1

Thus, the covariant derivatives of f;, fij, fn: are obtained for semi-
Riemannian manifold with nondegenerate spacelike boundary M, .

Definition 2.13. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate time-like boundary OM_. Let {e1,...,en—1} be local semi-Riemannian
orthonormal frame of OM_ and e, be a space-like unit outward normal of OM_.
Thus {e1, ...,en} is a local semi-Riemannian orthonormal frame of M. Let {w, ...,
wp } be dual co-frame of this local semi-Riemannian orthonormal frame and f be a
differentiable function on M.

Now, getting OM_ instead of M in definition 2.11 let’s study the covariant

derivative of function f. Firstly, let’s compute f;, fi;j, fni on a point of OM_.
Hence let’s take

z=71"(f)

such that 7 is inclusion transformation as follows:

T:OM_ — M
Thus, we can write the following:
n—1
dz=71°(df) = > _fi lons_ 0; (2.40)
i=1
Here, if
zi = fi lom_ (2.41)
then

n—1
dz=>_f:b; (2.42)
i=1
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Using exterior differential for (2.42), we get

n—1 n—1
E zijﬂj = de — E 6‘ij9‘2
j=1 j=1

n—1

= 7T(dfi = ) g fiwl)
j=1

= T =Y e fyw] + faw])

= T(dfi = e fyw]) + fart (])
j=1

Here, getting u instead of f,, and considering (2.22), (2.29) and (2.30), we obtain

n—1
= fij lorr_ 0; + ub}

j=1

and using (2.32), we get

n—1 n—1
= fij lom 05 —uY I1;;0;
j=1 j=1
or
fij |8M_: Zij + UII” (243)
Now, let’s consider (2.40) equality for computing f,;. According to this, we have

n—1 n
S hui | oo 00 =7 faiwi)
=1 =1

T (dfn =Y i fiwl)
i=1

m(dfn) — (O _eifaw))
i=1
n—1

du + 267’210:1
i=1

Using (2.32) in the last equality, we obtain

n—1

=du — Z EiZiIIijej

ij=1
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or
n—1

Tri lon_ = ui — ZEijIIij~ (2.44)

=1

Theorem 2.14. Let M be an n-dimensional semi-Riemannian manifold with non-
degenerate boundary OM' (OM' = M, UOM_). In addition, let D = (nq, ...,ny)
be unit outward normal and {x1, ..., x,} be semi-Riemannian coordinate system of
M [y

i) If M has OM space-like boundary and D time-like unit outward normal,
wanr, volume element of OMy is as follows:

n

Wan, :Z(—l)jflnjdxl/\.../\d/:c\j/\.../\dxn (2.45)
j=1
or
— B,mjawonr, = (=17 Yday Ao Aday Ao Adg, 1< <n (2.46)

where 3; is as (2.3).
i) If M has OM_ time-like boundary and D space-like unit outward normal,
wapr_ volume element of OM_ is as follows:

n

WoM_ = Z(—l)jflnjdxl A A EE A ... ANdx, (2.47)
j=1
or
€5.M5. WaM_ = (fl)jfldxl AN d/:c\j Ao Ndzy, 1<j<n (2.48)

where €5 is as Eq. (2.4).

Theorem 2.15. (Stokes Theorem) Let M be an n-dimensional compact, ori-

entable semi-Riemannian manifold with nondegenerate boundary OM’' (OM' =
OM, UOM_). If ae N"~1 (M), then [/]

/da:f/af/a (2.49)

M oM, oM_

Theorem 2.16. (Green Formula) Let M be an n-dimensional compact, ori-

entable semi-Riemannian manifold with nondegenerate boundary OM' (OM' =
OM, UOM_) and let f and h be two differentiable functions on M. Then [4],

/((gradf, gradh) + fAR)dv = / fhowon, — / fhpwans_ (2.50)

M oM, oM_

where dv, wapr, , wonr_ are the volume elements on M, OM_ ., OM_, respectively.
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3. Reilly’s Formula

Let M be an n-dimensional compact, orientable semi-Riemannian manifold with
nondegenerate boundary OM’(OM’' = My UOM_). Thus, for we A* (M) we can
write the following from Stokes theorem

B / 1w — / *w:/d*w (3.1)

oM OM_ M

where x is the Hodge-star operator. Throughout this paper, A; is the Laplace
operator on dMy and Aj is the Laplace operator on OM_.

Theorem 3.1. Let M be an n-dimensional compact orientable semi-
Riemannian manifold with nondegenerate boundary OM'(OM’' = OM, U IM_).
Let f be a differentiable function on semi-Riemannian manifold M and dv be a
volume element of M. Then

/[Ric(gradf, gradf) + (gradf, gradAf) + Hessf.Hessf]dv (3.2)
M

- _ / Z:gj(fjfﬂ)(—l)i*1 lglgiidmy A ... Adai A ... Aday,
8M+i’j:1

- /Zz—:j(fjfji)(fl)ifl |g|g”d:ﬂ1/\.../\d/:a/\.../\dxn
am_hi=1

Proof: i) Let’s choose 1-form we A! (M) as follows:

w=Y_ B;(fif;i)d;

ij=1

Here, considering the property of Hodge-star operator, we have
sw= Y B;(fifi) (=) lglgdzy A Adag A A day, (3.3)
i,j=1
Using exterior differential for (3.3) and using (2.16) and (2.8), we have
dxw=1[>"B8:8;fiilji+ Y B:B;fifiildv (3.4)
i,j=1 i,j=1
Considering (2.12), (2.23) and (2.19) in (3.4), respectively, we get

dxw = Hessf.Hessf + Z Ré»ijfjfj + Z ﬁlﬂj]dv (3.5)

ij=1 ij=1
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Using (2.14) and (2.15) in the second term of (3.5) and using (2.10), (2.11) and
(2.7) in the last term of (3.5), we obtain

d+w = Hessf.Hessf + Ric(gradf, gradf) + (gradf, gradAf)]dv (3.6)

Consequently, considering (3.3) and (3.6) in (3.1), we have

/[Ric(gradf, gradf) + (gradf, gradAf) + Hessf.Hessf|dv (3.7)
M

_ / S B, £ (=) TglgPiday A oo Adi A .. A da
o, BI=1
ii) Suppose that we Al (M)

n

w =" e;(fi f:)dx;

i,j=1
Here, considering the property of Hodge-star operator, we have

n

sw= Y e;(fi i) (=)W ]glg ey A Adag A A day, (3.8)

ij=1
Using exterior differential for (3.8) and using (2.16) and (2.8), we have
d*w = [ Z Eifjfjifji + Z Eifjfjfjii]dv (39)
i,j=1 i,j=1
Writing (2.12) in the first term on the right hand of (3.9), we get
d*xw = Hessf.Hessf + Z ei€; fi fjisldv
ij=1
Using (2.23) and (2.19) in the second term of the above equality, we have

dxw =] Hessf.Hessf + Z R;‘ijfjfj + Z ei€; fjfiizldv (3.10)

ij=1 ij=1

Considering (2.14) and (2.15) in the second term of (3.10) and (2.10), (2.11) and
(2.7) in the last term of (3.10), we obtain

dxw = [ Hessf.Hessf + Ric(gradf, gradf) + (gradf, gradA f)]dv

Consequently, substituting the above equality and (3.8) in (3.1), we get
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/[Ric(gradf, gradf) + {gradf,gradAf) + Hessf.Hess f|dv (3.11)
M

n

= — / ZEj(fjfji)(fl)iil |g|g“dl‘1 /\/\C?l\’i/\/\dl’n

om_ 4=l
Because of the fact that OM = OM, U OM_, considering (3.7) and (3.11)
together, we have (3.2). This completes the proof of theorem. O

Theorem 3.2. Let M be an n-dimensional compact orientable semi-
Riemannian manifold with nondegenerate boundary OM'(OM’' = OM, U OM_).
Let f be a differentiable function on semi-Riemannian manifold M and dv, wapr, ,
wan_ be the volume elements of M, OM,, OM_ respectively. Then,

/[Ric(gradf, gradf) + {gradf,gradAf) + Hessf.Hessf|dv
M

- /Zﬂj(fjfjn)w@f\@_ /Zgj(fjfjn)waM, (5.12)

oM, I=1 om_J=1

Proof: i) Using the first term on the right hand of (3.2) in Theorem 3.1, for
i=1,2,...,n, we have

n

xw = Zﬁj(fjfﬂ)(—l)l*lgll\/ |g|d/;-n\1 ANdxo A ... Ndxy,

j=1
+3 8, (fif2)(~1)* " g?/lgldwy Aday A . A day,
j=1
(3.13)
+3 8, (fifin) (1) g™ |gldzy Ady A A day,
j=1
Considering (2.45) and (2.46) in (3.13), we get
n
xw=> B;(fifin)g""V|glwonr, (3.14)
j=1
From (2.46), considering 1/|g| = 1 and ¢"™ = —1, we obtain
* W = —Zﬁj(fjfjn)’waMJr (315)

j=1
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ii) Using the second term on the right hand of (3.2) in Theorem 3.1, for i =
1,2,...,n we get

xw = Zé’j(fjfjl)(*l)lilgll\/|g‘d/$\1/\dSCz/\.../\dl‘n
j=1

+3 e (F£i2) (- 1> g?2/lglday A das A

... Ndxy,
j=1

(3.16)
+i€j(fjfjn)(—1)"71g”"\/del ANdxo N ... A c@s\n
j=1
Substituting (2.48) in (3.16), we have
*w = zn:Ej(fjfjn)g"" lglwan (3.17)
j=1
Here, considering \/m =1 and ¢"" = 1, we obtain
* W = iej(fjfjn)waMf (3.18)
j=1
Substituting (3.15) and (3.18) on the right hand of (3.2), we get (3.12).
This completes the proof of theorem. O

Theorem 3.3. (Reilly’s Formula) Let M be an n-dimensional compact ori-

entable semi-Riemannian manifold with nondegenerate boundary OM'(OM’' =

OM{UOM_). Let f be a differentiable function on semi-Riemannian manifold M.
We define the following:

n—1
1
a=flow, w=fu Hi=—2>Fll; (3.19)
i=1

and

(3.20)

n—1
1
2= f lom_, ug = fn, Hy = n_liZ;Ez’IIm‘
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Hence

/[(Af)2 — Ric(gradf, gradf) — Hessf.Hess f]dv

M

=A{ / [(A12)u — (n — 1) Hu? — (gradz, gradu),
oM,
+11(gradz, gradz)|wanr, }

—{ / [(A22)u+ (n — 1)Hu? — (gradz, gradu),
OM_
+11(gradz, gradz)|wenr_}

where wanr, , Won_ , dv are the volume elements of OM ., OM_ and M, respectively.

Proof: Considering (2.50) in (3.12) and making routine calculations, we have

/[(Af)2 — Ric(gradf, gradf) — Hessf.Hess f]dv

M
n—1 n—1
= / [fn Y Bifii = >_Bfifinlwon, (3.21)
oM, =1 1=1
n—1 n—1
- / (fnY eifii = Y _eififimlwons_
OM_ =1 =1

Writing the value of f;; from (2.38), we have
fii = zis — ull

Summing up the last equality over ¢ = 1,2, ...,n — 1 and multiplying it with 5, and
fn, we obtain

n—1 n—1 n—1
fad Bifii = Bizii —uY_Billi) f (3.22)
i=1 i=1 i=1
Considering (2.11) and (3.19) in (3.22), we have
n—1
fnd Bifii = (Arz — (n— 1)Hu)u (3.23)
i=1

Now, let’s compute the second term on the right hand of (3.21). Multiplying (2.39)
with 3, f; and summing up it for i =1,2,...,n — 1, we get

n—1 n—1 n—1
Zﬁififm‘ = Zﬁiuifi - Z BiBi11iz; fi
i=1 i=1

ij=1



THE REILLY’S INTEGRAL FORMULA ON SEMI-RIEMANNIAN MANIFOLDS 143

or

n—1
Zfifm- = (gradz, gradu), — I1(gradz, gradz) (3.24)
i=1

Also, in the third term on the right hand of (3.21), the value of f;; can be written
as the following from (2.43),

fii = ziis +ully (3.25)

Multiplying (3.25) with ; and summing up it over i = 1,2,...,n — 1, we have

n—1 n—1 n—1
E &ifii = g €izz‘i+u§ eilly;
i—1 i=1 i=1

Here, considering (2.11) and (3.20), we get

n—1

fnZ&fm' = (Agz+ (n—1)Hu)u (3.26)

i=1

Finally, the fourth term on the right hand of (3.21) can be written as the
following from (2.44),

n—1
fri=ui — g SRR
J=1

Multiplying the last equality with €; f; and summing up it over i = 1,2, ...,n—1,
we obtain

n—1 n—1 n—1
> eififni =Y eifiui—uy_ eie;fizill
i=1 i=1

i,7=1

or

n—1

Zsififm = (gradz, gradu), — I1(gradz, gradz) (3.27)

i=1
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Thus, substituting (3.23), (3.24), (3.27) and (3.26) in (3.21), we obtain

/[(Af)2 — Ric(gradf, gradf) — Hessf.Hess f]dv

M
= { / [(Arz)u — (n — 1)Hu2 - (gradz,gradu)l
oM,
+I11(gradz, gradz)|wan, }

—{ / [(A22)u+ (n — 1)Hu? — (gradz, gradu),
OM_
+I1(gradz, gradz)|wans_}

This completes the proof of theorem. O
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