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On a Class of Generalized Sequences Related to the ℓp Space Defined
by Orlicz Functions
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abstract: In this article, we introduce the sequence space m(M, A, φ, q) on
generalizing the sequence space m(φ) which was defined by Sargent [8], defined by
Orlicz functions and infinite matrices. We study its different properties like solidity,
completeness, etc. Also we obtain some inclusion results involving the sequence
space m(M, A, φ, q).
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1. Introduction

Throughout the article w (X) denotes the space of all sequences with elements
in (X, q) , where (X, q) denote a seminormed space, seminormed by q. The zero
sequence is denoted by θ = (0, 0, 0, ...) , where θ is zero element in (X, q) .

The sequence space m (φ) was introduced by Sargent [8]. He studied some
of its properties and obtained its relationship with the space ℓp. Later on, it was
investigated from sequence space point of view and related with summability theory
by Bilgin [1], Esi [2,3], Rath and Tripathy [7], Tripathy [9], Tripathy and Sen [10],
and many others.

An Orlicz function is a function M : [0,∞) → [0,∞) which is continuous,
nondecreasing and convex with M (0) = 0, M (x) > 0 for x > 0 and M (x) → ∞
as x→ ∞.

An Orlicz function M is said to satisfy ∆2-condition for all values of u, if there
exists a constant T > 0, such that M (2u) ≤ TM (u) (u ≥ 0) .

Remark 1.1. An Orlicz function satisfies the inequality M (λu) ≤ λM (u) for all
λ with 0 < λ < 1.

Lindenstrauss and Tzafriri [5] used the idea of Orlicz functions to construct
Orlicz sequence space,

ℓM =







x = (xk) :
∑

k≥1

M

(

|xk|

ρ

)

<∞, for some ρ > 0







.
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The sequence space ℓM with the norm

‖x‖ = inf







ρ > 0 :
∑

k≥1

M

(

|xk|

ρ

)

≤ 1







becomes a Banach space which is called on Orlicz sequence space. The space ℓM
is closely related to the space ℓp, which is an Orlicz sequence space with M (x) = xp

for 1 ≤ p <∞.
In the later stage different Orlicz sequence spaces were introduced and studied

by Parashar and Choudhary [6], Esi and Et [4], Tripathy and Mahanta [11,12], Tri-
pathy and Sarma [13,14,15], Tripathy and Borgohain [16], Tripathy and Hazarika
[17], Tripathy and Dutta [18], and many others.

Let Ps denotes the class of all subsets on N, the natural numbers, those do
not contain more than s elements. Throughout (φn) represents a non decreasing
sequence of real numbers such that nφn+1 ≤ (n+ 1)φn for all n ∈ N.

The sequence space m (φ) introduced by Sargent [8] is defined as follows:

m (φ) =

{

x = (xk) ∈ w : ‖xk‖ = sup
s≥1, σ∈Ps

1

ϕs

∑

k∈σ

|xk| <∞

}

.

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E, whenever
(xk) ∈ E for all sequences (αk) of scalars such that |αk| ≤ 1 for all k ∈ N.

A sequence space E is said to be symmetric if (xk) ∈ E implies
(

xπ(k)

)

∈ E,
where π (k) is a permutation of the elements of N.

A sequence space E is said to be monotone if E contains the canonical pre
images of all its step spaces.

The following result will be used for establishing the result of this article.

Lemma 1.2. A sequence space E is solid implies E is monotone.

For a given infinite matrix A = (aik)i,k≥1 the operators Ai are defined for any
integer i ≥ 1, by

Ai (x) =

∞
∑

k=1

aikxk

where x = (xk)k≥1 , the series intervening on the right hand being convergent.
In this article we introduce the following sequence spaces.

ℓ∞ (M,A, q) =

{

x = (xk) ∈ w (X) : sup
i≥1

M

(

q

(

Ai (x)

ρ

))

<∞, for some ρ > 0

}

,

ℓ∞ (M,A, q) =

{

x = (xk) ∈ w (X) :

∞
∑

i=1

M

(

q

(

Ai (x)

ρ

))

<∞, for some ρ > 0

}

and

m (M,A, φ, q) =
{

x = (xk) ∈ w (X) : sup
s≥1,σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞, for some ρ > 0

}

.
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2. Main Results

In this section we prove some results involving the sequence spacesm (M,A, φ, q) ,
ℓ∞ (M,A, q) and ℓ1 (M,A, q) .

Theorem 2.1. m (M,A, φ, q) , ℓ∞ (M,A, q) and ℓ1 (M,A, q) are linear spaces over
the complex field C.

Proof: Let (xk) , (yk) ∈ m (M,A, φ, q) and α, β ∈ C. Then there exist positive
numbers ρ1 and ρ2 suh that

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

<∞

and

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

<∞.

Let ρ3 = max (2 |α| ρ1, 2 |β| ρ2) . Since M is non-decreasing convex function and
q is a seminorm, we have

∑

i∈σ

M

(

q

(

Ai (αx+ βy)

ρ3

))

≤
∑

i∈σ

M

(

q

(

Ai (αx)

ρ3

)

+ q

(

Ai (βy)

ρ3

))

≤
∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

+
∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

.

So,

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (αx+ βy)

ρ3

))

≤ sup
s≥1, σ∈P

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

+ sup
s≥1, σ∈P

1

φs

∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

.

Thus, (αxk + βyk) ∈ m (M,A, φ, q) . Hence m (M,A, φ, q) is a linear space.
The proof for the cases ℓ∞ (M,A, q) and ℓ1 (M,A, q) are routine work in view

of the above proof. 2

Theorem 2.2. ℓ1 (M,A, q) ⊂ m (M,A, φ, q) ⊂ ℓ∞ (M,A, q) .

Proof: Let (xk) ∈ ℓ1 (M,A, q) . Then, for some ρ > 0, we have

∞
∑

i=1

M

(

q

(

Ai (x)

ρ

))

<∞.

Since (φn) is monotonic increasing, so we have

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

≤
1

φ
1

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

≤
1

φ
1

∞
∑

i=1

M

(

q

(

Ai (x)

ρ

))

<∞.
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Hence,

sup
s≥1, σ∈P

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞.

Thus (xk) ∈ m (M,A, φ, q) . Therefore ℓ1 (M,A, q) ⊂ m (M,A, φ, q) . Next, let
(xk) ∈ m (M,A, φ, q) . Then, for some ρ > 0, we have

sup
s≥1, σ∈P

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞.

Hence,

sup
s≥1, σ∈P

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞ (on taking cardinality of σ to be 1).

Thus, (xk) ∈ ℓ∞ (M,A, q) . Therefore m (M,A, φ, q) ⊂ ℓ∞ (M,A, q) . This com-
pletes the proof. 2

Theorem 2.3. The space m (M,A, φ, q) is a seminormed space seminormed by

h (x) = inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

≤ 1

}

.

Proof: Clearly h ((xk)) ≥ 0 for all (xk) ∈ m (M,A, φ, q) and h (θ) = 0. Let (xk) ,
(yk) ∈ m (M,A, φ, q) . Then there exist ρ1 > 0 and ρ2 > 0 be such that

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

≤ 1

and

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

≤ 1.

Let ρ = ρ1 + ρ2. Then we have

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x+ y)

ρ

))

≤ sup
s≥1, σ∈Ps

∑

i∈σ

M

(

q

(

Ai (x+ y)

ρ1 + ρ2

))

≤ sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

{

ρ1

ρ1 + ρ2

M

(

q

(

Ai (x)

ρ1

))

+
ρ2

ρ1 + ρ2

M

(

q

(

Ai (y)

ρ2

))}

≤

(

ρ1

ρ1 + ρ2

)

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

+

(

ρ2

ρ1 + ρ2

)

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

≤ 1.
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Since the ρ’s are nonnegative, so we have

h (x+ y) = inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x+ y)

ρ

))

≤ 1

}

≤ inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ1

))

≤ 1

}

+ inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (y)

ρ2

))

≤ 1

}

.

So, h (x+ y) ≤ h (x) + h (y) . Next for λ ∈ C, without loss of generality, λ 6= 0,
then

h (λx) = inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (λx)

ρ

))

≤ 1

}

= inf

{

|λ| r > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

r

))

≤ 1

}

, where r =
ρ

|λ|
.

Thus,

h (λx) = |λ| inf

{

r > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

r

))

≤ 1

}

= |λ|h (x) .

This completes the proof of theorem. 2

The proof of the following results are consequence of the above theorem.

Proposition 2.4. (a) The space ℓ∞ (M,A, q) is a seminormed space, seminormed
by

k (x) = inf

{

ρ > 0 : sup
i≥1,

M

(

q

(

Ai (x)

ρ

))

≤ 1

}

.

(b) The space ℓ1 (M,A, q) is a seminormed space, seminormed by

m (x) = inf

{

ρ > 0 :
∞
∑

i=1

M

(

q

(

Ai (x)

ρ

))

≤ 1

}

.

Theorem 2.5. m (M,A, φ, q) ⊂ m (M,A,ψ, q) if and only if sups≥1
φs

ψs
<∞.

Proof: Let sups≥1
φs

ψs
<∞ and (xk) ∈ m (M,A, φ, q) . Then, for some ρ > 0

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞.
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So,

sup
s≥1, σ∈Ps

1

ψs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

≤

(

sup
s≥1

φs
ψs

)

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

< ∞.

Therefore (xk) ∈ m (M,A,ψ, q) .Hence we havem (M,A, φ, q) ⊂ m (M,A,ψ, q) .

Conversely, let m (M,A, φ, q) ⊂ m (M,A,ψ, q) . Suppose that sups≥1
φs

ψs
= ∞.

Then there exists a sequence of natural numbers (sj) such that limj→

φsj

ψsj

= ∞.

Let (xk) ∈ m (M,A, φ, q) . Then, for some ρ > 0,

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞.

Now we have

sup
s≥1, σ∈Ps

1

ψs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

≥

(

sup
j≥1

φsj

ψsj

)

sup
j≥1, σ∈Psj

1

φsj

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

= ∞.

Therefore (xk) /∈ m (M,A,ψ, q) . This is a constradiction. Hence sups≥1
φs

ψs
<

∞. 2

The following result is a consequence of Theorem 2.5.

Corollary 2.6. m (M,A, φ, q) = m (M,A,ψ, q) if and only if sups≥1
φs

ψs
<∞ and

sups≥1
ψs

φs
<∞.

Theorem 2.7. Let M1 and M2 be Orlicz functions satisfying ∆2−condition. Then

m (M2, A, φ, q) ⊂ m (M1 ◦M2, A, φ, q) .

Proof: Let (xk) ∈ m (M2, A, φ, q) . Then there exists ρ > 0 such that

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M2

(

q

(

Ai (x)

ρ

))

<∞.

Let 0 < ε < 1 and δ with 0 < δ < 1 such that M1 (t) < ε for 0 ≤ t < δ.

Let y1 = M2

(

q
(

Ai(x)
ρ

))

and for any σ ∈ Ps, let

∑

i∈σ

M1 (yi) =
∑

1

M1 (yi) +
∑

2

M1 (yi) ,

where the first summation is over yi ≤ δ and the second is over yi > δ. By the
Remark 1.1, we have

∑

1

M1 (yi) ≤M1 (1)
∑

1

yi ≤M1 (2)
∑

1

yi (1)
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For yi > δ, we can write yi <
yi

δ
≤ 1 + yi

δ
. Since M1 is non-decreasing and

convex, so

M1 (yi) < M1

(

1 +
yi
δ

)

<
1

2
M1 (2) +

1

2
M1

(

2
yi
δ

)

.

Since M1 satisfies ∆2-condition, so

M1 (yi) <
1

2
T
yi
δ
M1 (2) +

1

2
T
yi
δ
M1 (2) = T

yi
δ
M1 (2) .

Hence,
∑

2

M1 (yi) ≤ max
(

1, T δ−1M1 (2)
)

∑

1

yi (2)

By (1) and (2), we have (xk) ∈ m (M1 ◦M2, A, φ, q) . Therefore, m (M2, A, φ, q) ⊂

m (M1 ◦M2, A, φ, q) . This completes the proof. 2

Corollary 2.8. Let M be an Orlicz function satisfying ∆2-condition. Then,

(a) m (A,φ, q) ⊂ m (M,A, φ, q) .

(b) m (A,φ, q) ⊂ m (M,A,ψ, q) if and only if sups≥1
φs

ψs
<∞.

Proof: (a) Taking M2 (x) = x and M1 (x) = M (x) in the Theorem 2.7, we have
the result.

(b) From the Theorem 2.5 and (a), we have the result. 2

Theorem 2.9. (a) m (M,A, φ, q) = ℓ1 (M,A, q) if and only if sups≥1 φs <∞.

(b) m (M,A, φ, q) = ℓ∞ (M,A, q) if and only if sups≥1
s
φs
<∞.

Proof: (a) It is clear that m (M,A,ψ, q) = ℓ1 (M,A, q) when ψs = 1 for all s ∈ N.

By Theorem 2.5, m (M,A, φ, q) ⊂ m (M,A,ψ, q) if and only if sups≥1
φs

ψs
<∞, i.e.

sups≥1 φs <∞. Therefore by Theorem 2.2. if and only if sups≥1 φs <∞.
(b) We have m (M,A,ψ, q) = ℓ∞ (M,A, q) if ψs = 1 for all s ∈ N. By Theorem

2.5 and Theorem 2.2 it follows that m (M,A, φ, q) = ℓ∞ (M,A, q) if and only if
sups≥1

s
φs
<∞. This completes the proof. 2

Theorem 2.10. The space m (M,A, φ, q) is solid and symmetric.

Proof: Let (xk) ∈ m (M,A, φ, q) . Then, for some ρ > 0

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

<∞. (3)

Let (λk) be a sequence of scalars with |λk| ≤ 1 for all k ∈ N. Then the solidity
of the space follows from (3), Remark 1.1 and the following inequality

∑

i∈σ

M

(

q

(

Ai (λx)

ρ

))

≤
∑

i∈σ

|λi|M

(

q

(

Ai (x)

ρ

))

≤
∑

i∈σ

M

(

q

(

Ai (x)

ρ

))

.



120 Ayhan Esi, Mehmet Açikgöz and Ayten Esi

The symmetric of the space follows from the definition of the space and sym-
metric sequence space. This completes the proof. 2

The following result follows from Theorem 2.10 and the Lemma 1.2.

Corollary 2.11. The space m (M,A, φ, q) is monotone.

The proof of the following result is a routine work.

Proposition 2.12. The spaces ℓ1 (M,A, q) and ℓ∞ (M,A, q) are solid and as such
are monotone

The proof of the following result is a routine work.

Proposition 2.13. Let q1 and q2 be seminorms. Then,

(a) m (M,A, φ, q1) ∩m (M,A, φ, q2) ⊂ m (M,A, φ, q1 + q2) .
(b) If q1 is stronger than q2, then m (M,A, φ, q1) ⊂ m (M,A, φ, q2) .
(c) ℓ∞ (M,A, q1) ∩ ℓ∞ (M,A, q2) ⊂ ℓ∞ (M,A, q1 + q2) .
(d) If q1 is stronger than q2, then ℓ∞ (M,A, q1) ⊂ ℓ∞ (M,A, q2) .
(e) ℓ1 (M,A, q1) ∩ ℓ1 (M,A, q2) ⊂ ℓ1 (M,A, q1 + q2) .
(f) If q1 is stronger than q2, then ℓ1 (M,A, q1) ⊂ ℓ1 (M,A, q2) .

Theorem 2.14. Let (X, q) be the complete, then the space m (M,A, φ, q) is also
complete.

Proof: Let (xt)t≥1 be a Cauchy sequence in m (M,A, φ, q) , where xt = (xtk) ∈
m (M,A, φ, q) for each t ∈ N. Let r > 0 and x0 > 0 be a fixed. Then for each
ε
rx0

> 0, there exists a positive integer t0 such that

h
(

xt − xu
)

= inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x
t − xu)

ρ

))

≤ 1

}

<
ε

rx0
,

(4)
for all t, u ≥ t0. So, we have for all t, u ≥ t0, by (4)

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x
t − xu)

h (xt − xu)

))

≤ 1

⇒
1

φ1

M

(

q

(

Ai (x
t − xu)

h (xt − xu)

))

≤ 1

⇒ M

(

q

(

Ai (x
t − xu)

h (xt − xu)

))

≤ φ1, for all t, u ≥ t0.

We can find r > 0 such that rx0

2 η
(

x0

2

)

> φ1, where η is the kernel associated
with Orlicz function M, such that

M

(

q

(

Ai (x
t − xu)

h (xt − xu)

))

≤
rx0

2
η
(x0

2

)
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⇒ q
(

Ai
(

xt − xu
))

<
rx0

2
.
ε

rx0
=
ε

2
.

Hence Ai (x
t)t≥1 is a Cauchy sequence in (X, q), which is complete. Therefore

for each k ∈ N, there exists xk ∈ X and x = (xk) such that q (Ai (x
t − x)) → 0, as

t→ ∞. Using the continuity of M and q is seminorm, so for some ρ > 0, we have

sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

limu→∞Ai (x
t − xu)

ρ

))

≤ 1

⇒ sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x
t − x)

ρ

))

≤ 1.

Now. taking the infimum of such ρ’s, by (4) we get

inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(

q

(

Ai (x
t − x)

ρ

))

≤ 1

}

< ε, for all t ≥ t0.

Sincem (M,A, φ, q) is a linear space and (xt)t≥1 and (x− xt) are inm (M,A, φ, q) ,

so it follows that x = xt + (x− xt) ∈ m (M,A, φ, q) . Hence m (M,A, φ, q) is com-
plete. This completes the proof. 2

3. Conclusion

If one considers a normed linear space (X, ‖.‖) instead of seminormed space
(X, q) , then one will get m (M,A, φ, ‖.‖) , which will be normed linear space,
normed by

‖x‖ = inf

{

ρ > 0 : sup
s≥1, σ∈Ps

1

φs

∑

i∈σ

M

(∥

∥

∥

∥

(

Ai (x)

ρ

)∥

∥

∥

∥

)

≤ 1

}

.

The space m (M,A, φ, ‖.‖) will be a Banach space if (X, ‖.‖) is a Banach space.
The most of the results proved in the previous section will be true for this space
too. Also, giving particular values the matrix A, we obtain some sequences spaces
which were defined earlier some authors. For instance, if we take A = I (identity
matrix), we obtain the spacem (M,φ, q) which was defined and studied by Tripathy
and Mahanta [11].
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