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Existence of solutions for a Steklov problem involving the

p(x)-Laplacian

Aomar Anane, Omar Chakrone, Abdellah Zerouali and Belhadj Karim

abstract: By applying two versions of Mountain Pass Theorem, we prove two
different situations of the existence of solutions for the following Steklov problem
∆p(x)u = |u|p(x)−2u in Ω, |∇u|p(x)−2 ∂u

∂ν
= λ|u|q(x)−2u on ∂Ω, where Ω is a

bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω and p(.), q(.) : Ω̄ →
(1,+∞) are continuous functions.
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1. Introduction and Main Results

The purpose of this paper is to study the existence of solutions for the fol-
lowing nonlinear boundary value problem involving the p(x)-Laplacian

{

∆p(x)u = |u|p(x)−2u in Ω,
|∇u|p(x)−2 ∂u

∂ν
= λ|u|q(x)−2u on ∂Ω,

(1.1)

where Ω is a bounded domain in R
N (N ≥ 2) with smooth boundary ∂Ω, ν is

the unit outward normal to ∂Ω, λ is a positive number and p(.), q(.) ∈ C+(Ω̄) :=
{

h ∈ C(Ω̄);min
x∈Ω̄

h(x) > 1

}

. The operator ∆p(x) := div(|∇u|p(x)−2∇u) is the p(x)-

Laplacian, which becomes p-Laplacian when p(x) ≡ p (a constant).
Nonlinear boundary value problems with variable exponent has been received

considerable attention in recent years. This is partly due to their frequent ap-
pearance in applications such as the modeling of electro-rheological fluids [1,16]
and image processing [3], but these problems are very interesting from a purely
mathematical point of view as well. Many results have been obtained on this kind
of problems; see for example [4,5,6,17,18]. In [4], the authors have studied the
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case p(x) = q(x) for all x ∈ Ω̄, they proved that the existence of infinitely many
eigenvalue sequences. Unlike the p-Laplacian case, for a variable exponent p(x) (6≡
constant), there does not exist a principal eigenvalue and the set of all eigenval-
ues is not closed under some assumptions. Finally, they presented some sufficient
conditions for the infimum of all eigenvalues is zero and positive, respectively.

Throughout this paper, we denote by h+ := max
x∈Ω̄

h(x), h− := min
x∈Ω̄

h(x) for any

h ∈ C+(Ω̄) and

p∗(x) =

{

Np(x)
N−p(x) , if p(x) < N

∞, if p(x) ≥ N

p∗∂(x) =

{

(N−1)p(x)
N−p(x) , if p(x) < N

∞, if p(x) ≥ N

Our main results in this paper are the proofs of the two following theorems, which
are based on the Mountain Pass Theorem.

Theorem 1.1. Let p, q ∈ C+(Ω̄), such that q+ < p−. Then for any λ > 0 there
exists a sequence (uk) of non trivial weak solutions for the problem (1.1). Moreover
uk → 0, as k → ∞.

Theorem 1.2. Let p, q ∈ C+(Ω̄), such that p+ < q− ≤ q+ < p∗∂(x) for all x ∈ Ω̄,
where p∗∂(x) is defined above. Then for any λ > 0 the problem (1.1) possesses a
nontrivial weak solutions.

This paper consists of four sections. Section 1 contains an introduction and
the main results. In Section 2, we state some elementary properties concerning
the generalized Lebesgue-Sobolev spaces and an embedding results. The proofs of
Theorem 1.1 and Theorem 1.2 are given respectively in Section 3 and Section 4.

2. Preliminaries

We first recall some basic facts about the variable exponent Lebesgue-
Sobolev.
For p ∈ C+(Ω̄), we introduce the variable exponent Lebesgue space

Lp(x)(Ω) :=

{

u;u : Ω → R is a measurable and

∫

Ω

|u|p(x)dx < +∞

}

,

endowed with the Luxemburg norm

|u|p(x) := inf

{

α > 0;

∫

Ω

∣

∣

∣

∣

u(x)

α

∣

∣

∣

∣

p(x)

dx ≤ 1

}

,

which is separable and reflexive Banach space (see [15]).
Let us define the space

W 1,p(x)(Ω) := {u ∈ Lp(x)(Ω); |∇u| ∈ Lp(x)(Ω)},
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equipped with the norm

‖u‖ = inf

{

α > 0;

∫

Ω

∣

∣

∣

∣

∇u(x)

α

∣

∣

∣

∣

p(x)

dx+

∣

∣

∣

∣

u(x)

α

∣

∣

∣

∣

p(x)

dx ≤ 1

}

; ∀u ∈ W 1,p(x)(Ω).

Let W
1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in W 1,p(x)(Ω).

Proposition 2.1. [7,12,13,15]

(1) W
1,p(x)
0 (Ω) is separable reflexive Banach space;

(2) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω̄, then the embedding from
W 1,p(x)(Ω) to Lq(x)(Ω) is compact and continuous;

(3) If q ∈ C+(Ω̄) and q(x) < p∗∂(x) for any x ∈ Ω̄, then the embedding from
W 1,p(x)(Ω) to Lq(x)(∂Ω) is compact and continuous;

(4) (Poincaré) There is a constant C > 0, such that

|u|p(x) ≤ C|∇u|p(x) ∀u ∈ W
1,p(x)
0 (Ω).

An important role in manipulating the generalized Lebesgue-Sobolev spaces is
played by the mapping ρ defined by

ρ(u) :=

∫

Ω

[

|∇u|p(x) + |u|p(x)
]

dx, ∀u ∈ W 1,p(x)(Ω).

Proposition 2.2. [10] For u, uk ∈ W 1,p(x)(Ω); k = 1, 2, ..., we have

(1) ‖u‖ ≥ 1 implies ‖u‖p
−

≤ ρ(u) ≤ ‖u‖p
+

;

(2) ‖u‖ ≤ 1 implies ‖u‖p
−

≥ ρ(u) ≥ ‖u‖p
+

;

(3) ‖uk‖ → 0 if and only if ρ(uk) → 0;

(4) ‖uk‖ → ∞ if and only if ρ(uk) → ∞;

3. Proof of Theorem 1.1

The key argument in the proof of Theorem 1.1 is the following version of
the Symmetric Mountain Pass Theorem (see [14]).

Theorem 3.1. Let E be an infinite dimensional Banach space and I ∈ C1(E,R)
satisfy the following two assumptions

(A1). I(u) is even, bounded below; I(0) = 0 and I(u) satisfies the Palais-Smale
condition (PS);
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(A1). For each k ∈ N, there exists an Ak ∈ Γk such that sup
u∈Ak

I(u) < 0.

Then I(u) admits a sequence of critical points uk such that I(uk) < 0; uk 6= 0
and uk → 0, as k → ∞.

Where Γk denote the family of closed symmetric subsets A of E such that
0 6∈ A and γ(A) ≥ k with

γ(A) := inf{k ∈ N; ∃h : A → R
k\{0} such that h is continuous and odd}

is the genus of A.

The energy functional corresponding to problem (1.1) is defined as φλ : W 1,p(x)

(Ω) → R

φλ(u) :=

∫

Ω

1

p(x)
|∇u|p(x)dx +

∫

Ω

1

p(x)
|u|p(x)dx− λ

∫

∂Ω

1

q(x)
|u|q(x)dσ,

where dσ is the N − 1 dimensional Hausdorff measure. Standard arguments imply
that φλ ∈ C1(W 1,p(x)(Ω),R) and

〈φ′
λ(u), v〉 =

∫

Ω

|∇u|p(x)−2∇u∇vdx +

∫

Ω

|u|p(x)−2uvdx− λ

∫

∂Ω

|u|q(x)−2uvdσ,

for any u, v ∈ W 1,p(x)(Ω). Thus the weak solutions of problem (1.1) are exactly the
critical points of φλ.

We show now that the Symmetric Mountain Pass Theorem can be applied in
this case.

Lemma 3.2. Let p, q ∈ C+(Ω̄). Assume that q+ < p−. Then the functional φλ is
even, bounded from below, satisfies the Palais-Smale (PS) condition and φλ(0) = 0.

Proof: It is clear that φλ is even and φλ(0) = 0.
According to the fact that

|u(x)|q
+

+ |u(x)|q
−

≥ |u(x)|q(x), ∀x ∈ Ω̄,

we deduce that for all u ∈ W 1,p(x)(Ω), we have

φλ(u) ≥
1

p+
ρ(u)−

λ

q−

(
∫

∂Ω

|u|q
+

dσ +

∫

∂Ω

|u|q
−

dσ

)

(3.1)

Since q+ < p− < p∗∂(x) for any x ∈ Ω̄, then by Proposition 2.1, W 1,p(x)(Ω) is

continuously embedded in Lq+(∂Ω) and in Lq−(∂Ω). It follows that there exist two
positive constants C1 and C2 such that

∫

∂Ω

|u|q
+

dσ ≤ C1‖u‖
q+ ,

∫

∂Ω

|u|q
−

dσ ≤ C2‖u‖
q− , ∀u ∈ W 1,p(x)(Ω). (3.2)
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Relations (3.1) and (3.2) imply

φλ(u) ≥
1

p+
ρ(u)−

λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

. (3.3)

Using (3.3) and Proposition 2.2, we have

φλ(u) ≥
1

p+
‖u‖p

−

−
λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

if ‖u‖ ≥ 1

and

φλ(u) ≥
1

p+
‖u‖p

+

−
λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

if ‖u‖ ≤ 1.

As q+ < p−, φλ is bounded from below and coercive. It remains to show that the
functional φλ satisfies the (PS) condition to complete the proof.
Let (uk) ⊂ W 1,p(x)(Ω) be (PS) sequence of φλ in W 1,p(x)(Ω), that is φλ(uk) is
bounded and φ′

λ(uk) → 0. By the coercivity of φλ, the sequence (uk) is bounded
in W 1,p(x)(Ω). As W 1,p(x)(Ω) is reflexive (Proposition 2.1), for a subsequence still
denoted (uk), we have uk ⇀ u in W 1,p(x)(Ω), uk → u in Lp(x)(Ω) and uk → u in
Lq(x)(∂Ω). Therefore

〈φ′
λ(uk), uk − u〉 → 0 and

∫

∂Ω

|uk|
q(x)−2uk(uk − u) → 0.

Thus 〈A(uk), uk−u〉 :=
∫

Ω
|∇uk|p(x)−2∇uk(∇uk−∇u)+

∫

Ω
|uk|p(x)−2uk(uk−u) →

0. According to the fact that the operator A satisfies condition (S+)(see [8,9,11]),
we deduce that uk → u in W 1,p(x)(Ω), this completes the proof. ✷

Lemma 3.3. Let p, q ∈ C+(Ω̄). Assume that q+ < p−. Then for each k ∈ N
∗, there

exists an Hk ∈ Γk such that sup
u∈Hk

φλ(u) < 0.

Proof: Let v1, v2, ..., vk ∈ C∞(RN ) such that {x ∈ ∂Ω; vi(x) 6= 0}∩
{x ∈ ∂Ω; vj(x) 6= 0} = ∅ if i 6= j and |{x ∈ ∂Ω; vi(x) 6= 0}| > 0 ∀i, j ∈ {1, 2, ..., k}.
Take Fk = span{v1, v2, ..., vk}; we have dimFk = k. Denote S = {v ∈ W 1,p(x)(Ω);
‖v‖ = 1} and for 0 < t ≤ 1, Hk(t) = t(Fk ∩ S). For all t ∈]0, 1], γ(Hk(t)) = k. We
show now that for any k ∈ N

∗, there exists tk ∈]0, 1] such that sup
u∈Hk(tk)

φλ(u) < 0.

Indeed, for 0 < t ≤ 1, we have

sup
u∈Hk(t)

φλ(u) ≤ sup
v∈Fk∩S

φλ(tv)

= sup
v∈Fk∩S

{
∫

Ω

tp(x)

p(x)
|∇v|p(x)dx+

∫

Ω

tp(x)

p(x)
|v|p(x)dx−λ

∫

∂Ω

tq(x)

q(x)
|v|q(x)dσ

}

≤ sup
v∈Fk∩S

{

tp
−

p−
ρ(v)− λ

tq
+

q+

∫

∂Ω

|v|q(x)dσ

}

= sup
v∈Fk∩S

{

tp
−

(

1

p−
− λ

tq
+

q+tp
−

∫

∂Ω

|v|q(x)dσ

)}

.
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Let c = min
v∈Fk∩S

∫

∂Ω |v|q(x)dσ > 0, we may choose tk ∈]0, 1] which is small enough

such that
1

p−
−

cλ

q+tp
−−q+

< 0.

✷

Proof: [Proof of Theorem 1.1] By Lemmas 3.2, 3.3 and Theorem 3.1 the problem
(1.1) admits a sequence of non trivial weak solutions (uk), such that φλ(uk) < 0
and lim uk = 0. ✷

4. Proof of Theorem 1.2

For the proof of Theorem 1.2, we want to construct a mountain geometry.

Lemma 4.1. Let p, q ∈ C+(Ω̄). Assume that p+ < q− ≤ q+ < p∗∂(x) for all x ∈ Ω̄.
Then there exist η, b > 0 such that φλ(u) ≥ b for u ∈ W 1,p(x)(Ω) with ‖u‖ = η.

Proof: Since q+ < p∗∂(x) for all Ω̄, similar arguments as those used in the proof of
Lemma 3.2 give the following inequalities

φλ(u) ≥
1

p+
‖u‖p

−

−
λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

if ‖u‖ ≥ 1

and

φλ(u) ≥
1

p+
‖u‖p

+

−
λ

q−

(

C1‖u‖
q+ + C2‖u‖

q−
)

if ‖u‖ ≤ 1.

Thus

φλ(u) ≥ ‖u‖p
−

(

1

p+
−

λ

q−

(

C1‖u‖
q+−p−

+ C2‖u‖
q−−p−

)

)

if ‖u‖ ≥ 1

and

φλ(u) ≥ ‖u‖p
+

(

1

p+
−

λ

q−

(

C1‖u‖
q+−p+

+ C2‖u‖
q−−p+

)

)

if ‖u‖ ≤ 1.

As p+ < q− ≤ q+, the functional h : [0, 1] → R defined by

h(t) =
1

p+
−

λC1

q−
tq

+−p+

−
λC2

q−
tq

−−p+

is positive on neighborhood of the origin. So the Lemma 4.2 is proved. ✷

Lemma 4.2. Let p, q ∈ C+(Ω̄). Assume that p+ < q− ≤ q+ < p∗∂(x) for all x ∈ Ω̄.
Then there exists e ∈ W 1,p(x)(Ω) with ‖e‖ > η such that φλ(e) < 0; where η is
given in Lemma 4.1.
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Proof: Choose ϕ ∈ C∞
0 (Ω̄), ϕ ≥ 0 and ϕ 6≡ 0. For t > 1, we have

φλ(tϕ) ≤
tp

+

p−
ρ(ϕ)−

λtq
−

q+

∫

∂Ω

|ϕ|q(x)dσ.

Since p+ < q−, we deduce that lim
t→+∞

φλ(tϕ) = −∞. Therefore for all ε > 0 there

exists α > 0 such that |t| > α φλ(tϕ) < −ε < 0. This completes the proof. ✷

Lemma 4.3. Let p, q ∈ C+(Ω̄). Assume that p+ < q−. Then the functional φλ

satisfies the Palais-Smale (PS) condition.

Proof: Let (uk) ⊂ W 1,p(x)(Ω) be a sequence such that C = sup
k∈N∗

φλ(uk) and

φ′
λ(uk) → 0. Suppose by contradiction that ‖uk‖ → ∞, there exists k0 ∈ N

∗ such
that ‖uk‖ > 1 for any k ≥ k0. Thus

C + ‖uk‖ ≥ φλ(uk)−
1

q−
〈φ′

λ(uk), uk〉

≥

∫

Ω

1

p(x)
|∇uk|

p(x)dx+

∫

Ω

1

p(x)
|uk|

p(x)dx− λ

∫

∂Ω

1

q(x)
|uk|

q(x)dσ−

1

q−
ρ(uk) +

λ

q−

∫

∂Ω

|uk|
q(x)dσ

≥

(

1

p+
−

1

q−

)

ρ(uk) + λ

∫

∂Ω

(

1

q−
−

1

q(x)

)

|uk|
q(x)dσ

≥

(

1

p+
−

1

q−

)

ρ(uk)

≥

(

1

p+
−

1

q−

)

‖uk‖
p−

.

Since p+ < q−, this contradicts the fact that p− > 1. So, the sequence (uk) is
bounded in W 1,p(x)(Ω) and similar arguments as those used in the proof of Lemma
3.2 completes the proof. ✷

Proof: [Proof of Theorem 1.2] Using the Lemmas 4.1 and 4.2, we obtain

max(φλ(0), φλ(e)) = φλ(0) < inf
‖u‖=η

φλ(u) =: β.

By Lemma 4.3 and the Mountain Pass Theorem [2], we deduce the existence of
critical points of φλ associated of the critical value given by

c := inf
γ∈Γ

sup
t∈[0,1]

φλ(γ(t)) ≥ β,

where
Γ = {γ ∈ C([0, 1],W 1,p(x)(Ω)); γ(0) = 0 and γ(1) = e}.

This completes the proof. ✷
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