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Commutativity theorems on prime and semiprime rings with

generalized (σ, τ )-derivations

Basudeb Dhara, Sukhendu Kar and Sachhidananda Mondal

abstract: Let R be an associative ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R. An additive mapping F : R → R is called a generalized (σ, τ)-
derivation of R if there exists a (σ, τ)-derivation d : R → R such that F (xy) =
F (x)σ(y) + τ(x)d(y) holds for all x, y ∈ R.

The objective of the present paper is to study the following situations in prime
and semiprime rings: (i) [F (x), x]σ,τ = 0, (ii) F ([x, y]) = 0, (iii) F (x ◦ y) = 0, (iv)
F ([x, y]) = [x, y]σ,τ , (v) F (x ◦ y) = (x ◦ y)σ,τ , (vi) F (xy) − σ(xy) ∈ Z(R), (vii)
F (x)F (y)− σ(xy) ∈ Z(R) for all x, y ∈ I, when F is a generalized (σ, τ)-derivation
of R.

Key Words: semiprime ring, epimorphism, (σ, τ)-derivation, generalized (σ, τ )-
derivation.
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1. Introduction

Throughout the present paper, R will denote an associative ring with center
Z(R). For any x, y ∈ R the symbol [x, y] stands for the commutator xy − yx and
the symbol x ◦ y stands for the anti-commutator xy + yx. Recall that a ring R is
prime if for any a, b ∈ R, aRb = 0 implies either a = 0 or b = 0 and semiprime if for
any a ∈ R, aRa = 0 implies a = 0. Let σ, τ be any two endomorphisms of R. For
any x, y ∈ R, we set [x, y]σ,τ = xσ(y)− τ (y)x and (x ◦ y)σ,τ = xσ(y) + τ(y)x. An
additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds
for all x, y ∈ R. An additive mapping d : R → R is called a (σ, τ)-derivation if
d(xy) = d(x)σ(y)+τ (x)d(y) holds for all x, y ∈ R. Of course every (1, 1)-derivation
is a derivation of R, where 1 denotes the identity map of R.

Let S be a nonempty subset of R. A mapping f : R → R is called commuting
(resp. centralizing) on S, if [f(x), x] = 0 for all x ∈ S (resp. [f(x), x] ∈ Z(R) for all
x ∈ S). Over last few decades, several authors have investigated the relationship
between the commutativity of the ring R and some specific types of derivations of
R. The first result in this view is due to Posner [22] who proved that if a prime
ring R admits a nonzero centralizing derivation d, then R must be commutative. A
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number of authors have proved commutativity theorems for prime and semiprime
rings admitting automorphisms, derivations or (σ, τ )-derivations (we refer to [6],
[7], [8], [10], [12], [21], [22], [27]; where further references can be found) which are
commuting or centralizing in some subsets of R.

An additive mapping F : R → R is called a generalized derivation, if there
exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) holds for all
x, y ∈ R. Then every derivation is a generalized derivation of R. When d = 0,
then F (xy) = F (x)y for all x, y ∈ R, which is called a left multiplier map of R.
Thus generalized derivation covers the concept of derivation as well as the concept
of left multiplier map. It is natural to extend the results concerning derivations to
generalized derivations of R. In this view we refer to [4], [5], [9], [13], [14], [18],
[23], [25], [26]; where further references can be found.

Being inspired by the definition of (σ, τ)-derivation, the notion of generalized
(σ, τ)-derivation was extended as follows: An additive mapping F : R → R is
said to be a generalized (σ, τ )-derivation of R, if there exists a (σ, τ)-derivation
d : R → R such that

F (xy) = F (x)σ(y) + τ (x)d(y) holds for all x, y ∈ R.

Of course every generalized (1, 1)-derivation of R is a generalized derivation of R,
where 1 means an identity map of R. If d = 0, we have F (xy) = F (x)σ(y) for
all x, y ∈ R, which is called a left σ-multiplier mapping of R. Thus, generalized
(σ, τ)-derivation generalizes both the concepts, (σ, τ )-derivation as well as left σ-
multiplier mapping of R. Recently, the authors (see [1], [2], [3], [15], [16], [19], [20],
[24]) have extended the above results to generalized (σ, τ )-derivation. In this line of
investigation, recently Marubayashi et al. [20] have extended many known results
concerning derivations, (σ, τ)-derivation and generalized derivations to generalized
(σ, τ)-derivation of R. More precisely, the authors study the commutativity of
prime ring R admitting a generalized (σ, τ )-derivation F satisfying any one of the
following situations: (i) [F (x), x]σ,τ = 0, (ii) F [x, y] = 0, (iii) F (x ◦ y) = 0, (iv)
F ([x, y]) = [x, y]σ,τ , (v) F (x ◦ y) = (x ◦ y)σ,τ , (vi) F (xy) − σ(xy) ∈ Z(R), (vii)
F (x)F (y) − σ(xy) ∈ Z(R), for all x, y in an appropriate subset of R, where σ, τ

are automorphisms of R. In the present paper, we shall study all the above cases
in semiprime ring, where σ and τ are considered as epimorphisms of R.

2. Preliminaries

Throughout the present paper, we shall use without explicit mention the fol-
lowing basic identities:

[xy, z]σ,τ = x[y, z]σ,τ + [x, τ (z)]y = x[y, σ(z)] + [x, z]σ,τy,

[x, yz]σ,τ = τ(y)[x, z]σ,τ + [x, y]σ,τσ(z),

(x ◦ (yz))σ,τ = (x ◦ y)σ,τσ(z)− τ(y)[x, z]σ,τ = τ(y)(x ◦ z)σ,τ + [x, y]σ,τσ(z),

((xy) ◦ z)σ,τ = x(y ◦ z)σ,τ − [x, τ (z)]y = (x ◦ z)σ,τy + x[y, σ(z)].
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We need the following facts which will be used to prove our Theorems.
Fact-1. If R is prime, I a nonzero ideal of R and a, b ∈ R such that aIb = 0, then
either a = 0 or b = 0.

Fact-2. (a) If R is a semiprime ring, the center of a nonzero one-sided ideal is
contained in the center of R; in particular, any commutative one-sided ideal is
contained in the center of R ( [11, Lemma 2]).

(b) If R is a prime ring with a nonzero central ideal, then R must be commu-
tative.

Fact-3. If R is any ring, I a nonzero ideal of R and σ an epimorphism of R, then
σ(I) is an ideal of R.

Fact-4. Let R be a prime ring, I a nonzero ideal of R and σ, τ two epimorphisms
of R such that σ(I) 6= 0 or τ(I) 6= 0. If d : R → R is a (σ, τ )-derivation of R such
that d(I) = 0, then d(R) = 0.

Proof. By assumption, we have 0 = d(rx) = d(r)σ(x)+ τ (r)d(x) = d(r)σ(x) for
all x ∈ I and r ∈ R, that is d(R)σ(I) = 0. If σ(I) 6= 0, this implies that d(R) = 0.

On the other hand, 0 = d(xr) = d(x)σ(r) + τ (x)d(r) = τ (x)d(r) for all x ∈ I

and r ∈ R, that is τ (I)d(R) = 0. If τ (I) 6= 0, this yields d(R) = 0.

Fact-5. If R is a semiprime ring and I is an ideal of R, then I ∩ annR(I) = 0 (see
[17, Corollary 2]).

Fact-6. Let R be a prime ring, a ∈ R and 0 6= z ∈ Z(R). If az ∈ Z(R), then
a ∈ Z(R).

3. Main Results

Lemma 3.1. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R and d a (σ, τ )-derivation of R such that τ (I)d(I) 6= 0. If for
all x ∈ I, [R, τ(x)]τ (I)d(x) = 0, then R contains a nonzero central ideal.

Proof: By our hypothesis we can write

[R, τ(x)]Rτ (I)d(x) = 0 (3.1)

for all x ∈ I.
Since R is semiprime, it must contain a family P = {Pα|α ∈ Λ} of prime ideals

such that ∩Pα = {0}. If P is a typical member of P and x ∈ I, it follows that

[R, τ(x)] ⊆ P or τ (I)d(x) ⊆ P.

For fixed P , the set of x ∈ I for which these two conditions hold are additive
subgroups of I whose union is I; therefore,

[R, τ (I)] ⊆ P or τ (I)d(I) ⊆ P.
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Thus both the cases together implies [R, τ(I)]τ (I)d(I) ⊆ P for any P ∈ P. There-
fore, [R, τ (I)]τ (I)d(I) ⊆

⋂

α∈Λ

Pα = 0, that is [R, τ (I)]τ (I)d(I) = 0. Thus 0 =

[R, τ (RIR)]τ(RI)d(I) = [R,Rτ(I)R]Rτ(I)d(I) and so 0 = [R,Rτ(I)d(I)R]Rτ(I)d(I)R.

This implies 0 = [R, J ]RJ , where J = Rτ(I)d(I)R is a nonzero ideal of R, since
τ (I)d(I) 6= 0. Then 0 = [R, J ]R[R, J ]. Since R is semiprime, it follows that
0 = [R, J ] that is J ⊆ Z(R). Hence the Lemma is proved. ✷

We begin with our first main result.

Theorem 3.2. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R. Suppose that F is a generalized (σ, τ)-derivation of R associ-
ated with a (σ, τ)-derivation d of R such that τ (I)d(I) 6= 0. If [F (x), x]σ,τ = 0 for
all x, y ∈ I, then R contains a nonzero central ideal.

Proof: By our assumption we have

[F (x), x]σ,τ = 0 (3.2)

for all x, y ∈ I. Linearizing it yields

[F (x), y]σ,τ + [F (y), x]σ,τ = 0 (3.3)

for all x, y ∈ I. Putting y = yx we obtain

[F (x), y]σ,τσ(x) + τ(y)[F (x), x]σ,τ + [F (y), x]σ,τσ(x)

+τ(y)[d(x), x]σ,τ + [τ (y), τ (x)]d(x) = 0 (3.4)

for all x, y ∈ I. Using (3.2) and (3.3), it gives

τ(y)[d(x), x]σ,τ + [τ(y), τ (x)]d(x) = 0 (3.5)

for all x, y ∈ I. Putting y = ry, r ∈ R in (3.5), we get

τ (r)τ (y)[d(x), x]σ,τ + τ (r)[τ (y), τ (x)]d(x) + [τ (r), τ (x)]τ (y)d(x) = 0 (3.6)

for all x, y ∈ I and r ∈ R. Using (3.5), it reduces to

[τ (r), τ (x)]τ (y)d(x) = 0 (3.7)

for all x, y ∈ I and r ∈ R. Since τ is an epimorphism of R, [R, τ(x)]τ (y)d(x) = 0
for all x, y ∈ I. Then by Lemma 3.1, the conclusion is obtained. ✷

Corollary 3.3. Let R be a prime ring, I a nonzero ideal of R and σ, τ two epimor-
phisms of R such that τ (I) 6= 0. Suppose that F is a generalized (σ, τ )-derivation
of R associated with a nonzero (σ, τ )-derivation d of R. If [F (x), x]σ,τ = 0 for all
x, y ∈ I, then R is commutative and σ = τ .
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Proof: By Theorem 3.2, we conclude that if d(I) 6= 0 then R is commutative. Now
if d(I) = 0, then by Fact-4, d(R) = 0, a contradiction. Hence R is commutative.
In this case by our hypothesis, we have (σ(x) − τ(x))F (x) = 0 for all x ∈ I.
Linearizing, this yields

(σ(x)− τ (x))F (y) + (σ(y)− τ (y))F (x) = 0 (3.8)

for all x, y ∈ I. Replacing y with yx, we have

(σ(x)− τ (x))(F (y)σ(x) + τ(y)d(x)) + (σ(y)σ(x)− τ (y)τ (x))F (x) = 0 (3.9)

for all x, y ∈ I. Multiplying (3.8) by σ(x) and then subtracting from (3.9), we have

(σ(x)− τ (x))τ (y)d(x) − τ (y)(τ (x)− σ(x))F (x) = 0 (3.10)

for all x, y ∈ I. Since (σ(x) − τ(x))F (x) = 0 for all x ∈ I, we have (σ(x) −
τ (x))τ (y)d(x) = 0 for all x, y ∈ I. Since τ (I) is a nonzero ideal of R and R is
prime, we have for x ∈ I, either (σ(x) − τ (x)) = 0 or d(x) = 0. Since both of
these two cases form additive subgroups of I whose union is I, we have either
σ(x) − τ(x) = 0 for all x ∈ I or d(I) = 0. By Fact-4, d(I) = 0 leads d(R) = 0, a
contradiction. Hence σ(x)− τ (x) = 0 for all x ∈ I and so σ(rx)− τ (rx) = 0 for all
x ∈ I and r ∈ R. Thus 0 = σ(r)σ(x) − τ(r)τ (x) = (σ(r) − τ(r))τ (x) for all x ∈ I,
since (σ − τ )(I) = 0. Therefore, it follows that σ(r) − τ(r) = 0 for all r ∈ R, that
is σ = τ . ✷

Theorem 3.4. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R. Suppose that F is a generalized (σ, τ)-derivation of R associ-
ated with a (σ, τ )-derivation d of R such that τ(I)d(I) 6= 0. If F ([x, y]) = 0 for all
x, y ∈ I, then R contains a nonzero central ideal.

Proof: By our hypothesis we have

F ([x, y]) = 0 (3.11)

for all x, y ∈ I. Replacing y with yx we obtain that

F ([x, y])σ(x) + τ ([x, y])d(x) = 0 (3.12)

which implies

τ ([x, y])d(x) = 0 (3.13)

for all x, y ∈ I. We replace y with ry, r ∈ R, and obtain

(τ (r)τ ([x, y]) + τ ([x, r])τ (y))d(x) = 0 (3.14)

which implies by using (3.13) that

τ ([x, r])τ (y)d(x) = 0 (3.15)

for all x, y ∈ I and r ∈ R. Therefore, we have [τ (x), R]τ (y)d(x) = 0 for all x, y ∈ I.
Then the result follows from Lemma 3.1. ✷
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Corollary 3.5. Let R be a prime ring, I a nonzero ideal of R and σ, τ two epi-
morphisms of R such that σ(I) 6= 0 and τ(I) 6= 0. Suppose that F is a nonzero
generalized (σ, τ)-derivation of R associated with a (σ, τ)-derivation d of R. If
F ([x, y]) = 0 for all x, y ∈ I, then R is commutative.

Proof: By Theorem 3.4, we conclude that either d(I) = 0 or R is commutative. If
R is commutative, we are done. So, assume that d(I) = 0. Then d(R) = 0 and F

is left σ-multiplier map of R. Thus by our hypothesis,

0 = F (x)σ(y)− F (y)σ(x) (3.16)

for all x, y ∈ I. Replacing y with yz, z ∈ I, we get

0 = F (x)σ(y)σ(z)− F (y)σ(z)σ(x) (3.17)

for all x, y ∈ I. Right multiplying (3.16) by σ(z), and then subtracting from
(3.17), we have 0 = F (y)[σ(z), σ(x)] for all x, y, z ∈ I. Again replacing y with
yr, r ∈ R, it yields 0 = F (I)σ(R)[σ(I), σ(I)]. Since R is prime, either F (I) = 0
or [σ(I), σ(I)] = 0. Now F (I) = 0 implies 0 = F (RI) = F (R)σ(I) implying
F (R) = 0, a contradiction. Hence [σ(I), σ(I)] = 0. This implies by Fact-2 that R

is commutative. ✷

Theorem 3.6. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R. Suppose that F is a nonzero generalized (σ, τ)-derivation of R
associated with a (σ, τ )-derivation d of R such that τ (I)d(I) 6= 0. If F (x ◦ y) = 0
for all x, y ∈ I, then R contains a nonzero central ideal.

Proof: By assumption, we have

F (x ◦ y) = 0 (3.18)

for all x, y ∈ I. Replacing y with yx, above relation yields

F (x ◦ y)σ(x) + τ (x ◦ y)d(x) = 0 (3.19)

for all x, y ∈ I. By (3.18), it yields τ (x◦y)d(x) = 0 for all x, y ∈ I. Now we replace
y with ry, where r ∈ R and obtain 0 = {τ (r)τ (x ◦ y) − [τ (r), τ (x)]τ (y)}d(x) =
−[τ(r), τ (x)]τ (y)d(x) for all x, y ∈ I and r ∈ R. Then by Lemma 3.1, conclusion
is obtained. ✷

Corollary 3.7. Let R be a prime ring, I a nonzero ideal of R and σ, τ two epi-
morphisms of R such that σ(I) 6= 0 and τ(I) 6= 0. Suppose that F is a nonzero
generalized (σ, τ)-derivation of R associated with a (σ, τ)-derivation d of R. If
F (x ◦ y) = 0 for all x, y ∈ I, then char (R) = 2 and R is commutative.
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Proof: By Theorem 3.6, we have either d(I) = 0 or R is commutative. First
we assume that d(I) 6= 0. Then R is commutative. Then by hypothesis, we have
0 = F (x◦y) = 2F (xy) = 2F (xyr) = 2{F (xy)σ(r)+τ (x)τ (y)d(r)} = 2τ(x)τ (y)d(r)
for all x, y ∈ I and r ∈ R. Thus 0 = 2τ(I)τ (I)d(R). Since R is prime and d(R) 6= 0,
char (R) = 2.

Next assume d(I) = 0. In this case by Fact-4, d(R) = 0 and hence F is a left
σ-multiplier map of R. Then F (x ◦ y) = 0 implies

0 = F (xy + yx) = F (x)σ(y) + F (y)σ(x) (3.20)

for all x, y ∈ I. Replacing y with yr, r ∈ R, in (3.20) we have

0 = F (x)σ(y)σ(r) + F (y)σ(r)σ(x) (3.21)

for all x, y ∈ I. Right multiplying (3.20) by σ(r) and then subtracting from (3.21),
we get 0 = F (y)[σ(r), σ(x)] for all x, y ∈ I and r ∈ R. Thus 0 = F (ys)[σ(r), σ(x)] =
F (y)σ(s)[σ(r), σ(x)] for all x, y ∈ I and r, s ∈ R. Since R is prime and σ(R) is a
nonzero ideal of R, it follows that F (I) = 0 or [σ(R), σ(I)] = 0. Now F (I) = 0
implies F (R) = 0, a contradiction and [σ(R), σ(I)] = 0 implies σ(I) ⊆ Z(R)
implying R is commutative by Fact-2(b). Thus by previous argument result follows.

✷

Theorem 3.8. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R. Suppose that F is a generalized (σ, τ)-derivation of R asso-
ciated with a (σ, τ )-derivation d of R such that τ (I)d(I) 6= 0 and Iτ (I) 6= 0. If
F ([x, y]) = [x, y]σ,τ holds for all x, y ∈ I, then R contains a nonzero central ideal.

Proof: First we consider that F 6= 0. Then by our assumption,

F ([x, y]) = [x, y]σ,τ (3.22)

for all x, y ∈ I. Replacing y with yx we obtain that

F ([x, y])σ(x) + τ ([x, y])d(x) = [x, y]σ,τσ(x) + τ (y)[x, x]σ,τ (3.23)

which implies

τ ([x, y])d(x) = τ(y)[x, x]σ,τ (3.24)

for all x, y ∈ I. We replace y with ry, r ∈ R, and then obtain

(τ (r)τ ([x, y]) + τ ([x, r])τ (y))d(x) = τ (r)τ (y)[x, x]σ,τ (3.25)

which implies by using (3.24) that

τ ([x, r])τ (y)d(x) = 0 (3.26)

for all x, y ∈ I and r ∈ R. Therefore, we have ([τ (x), R])τ (y)d(x) = 0 for all
x, y ∈ I. Then the result follows from Lemma 3.1.
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Now we consider that F = 0. Then we get

[x, y]σ,τ = 0 (3.27)

for all x, y ∈ I. Replacing x with rx, r ∈ R we obtain that

r[x, y]σ,τ + [r, τ (y)]x = 0. (3.28)

Then by using (3.27) we get

[r, τ (y)]x = 0 (3.29)

for all x, y ∈ I and r ∈ R. Thus we have [R, τ(y)]I = 0. This yields [I, τ (I)]I = 0.
This implies [I, τ (I)] ⊆ I ∩ annR(I) = 0 by Fact-5. Thus [I, τ(I)] = 0. Let
J = τ (I). Since τ is an epimorphism of R, J must be an ideal of R. Therefore we
have [I, J ] = 0 and hence [IJ, IJ ] = 0. Since IJ is an commutative ideal of R and
R is semiprime ring, it follows that IJ ⊆ Z(R) by Fact-2(a). Thus semiprime ring
contains a nonzero central ideal, provided IJ = Iτ (I) 6= 0. ✷

Corollary 3.9. Let R be a prime ring, I a nonzero ideal of R and σ, τ two epimor-
phisms of R such that τ (I) 6= 0. Suppose that F is a generalized (σ, τ )-derivation
of R associated with a nonzero (σ, τ )-derivation d of R. If F ([x, y]) = [x, y]σ,τ
holds for all x, y ∈ I, then R is commutative and σ = τ .

Proof: By Theorem 3.8, we have either d(I) = 0 or R is commutative. Now
d(I) = 0 leads d(R) = 0 by Fact-4, a contradiction. Hence R is commutative. By
our hypothesis, we have 0 = [x, y]σ,τ for all x, y ∈ I which implies 0 = x(σ(y)−τ (y))
for all x, y ∈ I. Since R is prime, σ(x)−τ (x) = 0 for all x ∈ I. Therefore, for all r ∈
R and x ∈ I we have 0 = σ(xr)− τ (xr) = σ(x)σ(r)− τ (x)τ (r) = τ (x)(σ(r)− τ (r)),
since σ(x) = τ(x). This implies σ(r) − τ(r) = 0 for all r ∈ R, that is σ = τ . ✷

Theorem 3.10. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ

two epimorphisms of R. Suppose that F is a generalized (σ, τ )-derivation of R

associated with a (σ, τ )-derivation d of R such that τ(I)d(I) 6= 0 and Iτ(I) 6= 0. If
F (x ◦ y) = (x ◦ y)σ,τ holds for all x, y ∈ I, then R contains a nonzero central ideal.

Proof: First we assume that F 6= 0. Then by our hypothesis, we have

F (x ◦ y) = (x ◦ y)σ,τ (3.30)

for all x, y ∈ I. Replacing y with yx we obtain that

F (x ◦ y)σ(x) + τ (x ◦ y)d(x) = (x ◦ y)σ,τσ(x) − τ(y)[x, x]σ,τ (3.31)

which implies

τ (x ◦ y)d(x) = −τ(y)[x, x]σ,τ (3.32)
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for all x, y ∈ I. We replace y with ry, r ∈ R, we obtain

(τ (r)τ (x ◦ y) + τ([x, r])τ (y))d(x) = −τ (r)τ (y)[x, x]σ,τ (3.33)

which implies by using (3.32) that

τ ([x, r])τ (y)d(x) = 0 (3.34)

for all x, y ∈ I and r ∈ R. Therefore, we have [τ (x), R])τ (y)d(x) = 0 for all x, y ∈ I.
Then the result follows from Lemma 3.1.

Next we assume that F = 0. Then we get

(x ◦ y)σ,τ = 0 (3.35)

for all x, y ∈ I. Replacing x with rx, r ∈ R we obtain that

r(x ◦ y)σ,τ − [r, τ (y)]x = 0. (3.36)

Then by using (3.35) we get

[r, τ (y)]x = 0 (3.37)

for all x, y ∈ I and r ∈ R. Then we get [R, τ(y)]I = 0. Then by same argument of
Theorem 3.8, we obtain our conclusion. ✷

Corollary 3.11. Let R be a prime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R such that τ(I) 6= 0. Suppose that F is a generalized (σ, τ)-
derivation of R associated with a nonzero (σ, τ )-derivation d of R. If F (x ◦ y) =
(x ◦ y)σ,τ holds for all x, y ∈ I, then R is commutative.

Proof: The result follows by Theorem 3.10. ✷

Theorem 3.12. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R such that σ(I) 6= 0. Suppose that F is a generalized (σ, τ)-
derivation of R associated with a (σ, τ )-derivation d of R such that τ(I)d(I) 6= 0.
If F (xy) ± σ(xy) ∈ Z(R) holds for all x, y ∈ I, then R contains a nonzero central
ideal.

Proof: First we consider that F 6= 0. Then by our assumption we have,

F (xy)± σ(xy) ∈ Z(R) (3.38)

for all x, y ∈ I. Putting y = yr, where r ∈ R, we get

F (xyr) ± σ(xyr) = (F (xy)σ(r) + τ (xy)d(r)) ± σ(xy)σ(r)

= (F (xy) ± σ(xy))σ(r) + τ (xy)d(r) ∈ Z(R) (3.39)
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for all x, y ∈ I. Now commuting both sided with σ(r) and using (3.38), we get

[τ (xy)d(r), σ(r)] = 0 (3.40)

for all x, y ∈ I and r ∈ R. Now replacing x with sx, where s ∈ R, above relation
yields

0 = [τ(s)τ (xy)d(r), σ(r)]

= τ(s)[τ (xy)d(r), σ(r)] + [τ (s), σ(r)]τ (xy)d(r)

= [τ(s), σ(r)]τ (xy)d(r) (3.41)

for all x, y ∈ I and r, s ∈ R. Again replacing x with tx, where t ∈ R, we obtain
that

[τ (s), σ(r)]τ (t)τ (x)τ (y)d(r) = 0 (3.42)

for all x, y ∈ I and r, s, t ∈ R. Since τ is an epimorphism of R, above relation
implies that

[R, σ(r)]Rτ (I)τ (I)d(r) = 0 (3.43)

for all r ∈ R.
Since R is semiprime, it must contain a family P = {Pα|α ∈ Λ} of prime ideals

such that ∩Pα = {0}. If P is a typical member of P and r ∈ R, (3.43) shows that

[R, σ(r)] ⊆ P or τ(I)τ (I)d(r) ⊆ P.

For fixed P , the set of r ∈ R for which these two conditions hold are additive
subgroups of R whose union is R; therefore,

[R, σ(R)] ⊆ P or τ(I)τ (I)d(R) ⊆ P

that is
[R,R] ⊆ P or τ (I)τ (I)d(R) ⊆ P.

Together of these two conditions imply that [R, τ(I)]τ (I)d(R) ⊆ P for any P ∈ P.
Therefore, [R, τ (I)]τ (I)d(R) ⊆ ∩α∈ΛPα = 0, that is [R, τ (I)]τ (I)d(R) = 0. In
particular [R, τ(I)]τ (I)d(I) = 0. Then by Lemma 3.1, we obtain our conclusion.
Next, we take F = 0. Then we get σ(xy) ∈ Z(R) holds for all x, y ∈ I, that is
σ(I)2 ∈ Z(R). Since σ(I)2 is a nonzero ideal of R, we obtain our conclusion. ✷

Corollary 3.13. Let R be a prime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R such that σ(I) 6= 0 and τ (I) 6= 0. Suppose that F is a generalized
(σ, τ)-derivation of R associated with a (σ, τ )-derivation d of R. If F (xy)±σ(xy) ∈
Z(R) holds for all x, y ∈ I, then one of the following holds:

(1) R is commutative;
(2) F (x) = ∓σ(x) + ζ(x) for all x ∈ I, where ζ : I → Z(R) is an additive

σ-multiplier map.
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Proof: By Theorem 3.12, either d(I) = 0 or R is commutative. If R is com-
mutative, we obtain our conclusion (1). Now assume that d(I) = 0. By Fact-4,
d(R) = 0 and hence F is σ-multiplier map. Then by our hypothesis, we have
F (x)σ(y)± σ(x)σ(y) ∈ Z(R) for all x, y ∈ I. This yields

(F (x) ± σ(x))σ(y) ∈ Z(R) (3.44)

for all x, y ∈ I. Commuting both sides of (3.44) with F (x)± σ(x) we have

(F (x) ± σ(x))[F (x) ± σ(x), σ(y)] = 0 (3.45)

for all x, y ∈ I. Replacing y with yr, r ∈ R, we get

0 = (F (x) ± σ(x))[F (x) ± σ(x), σ(y)σ(r)]

= (F (x) ± σ(x)){σ(y)[F (x) ± σ(x), σ(r)] + [F (x)± σ(x), σ(y)]σ(r)}

= (F (x) ± σ(x))σ(y)[F (x) ± σ(x), σ(r)] (3.46)

for all x, y ∈ I and r ∈ R. Since R is prime, for each x ∈ I, either F (x)± σ(x) = 0
or [F (x) ± σ(x), σ(r)] = 0. Both cases implies that [F (x) ± σ(x), σ(r)] = 0 for all
x ∈ I and r ∈ R. This yields that F (x)± σ(x) = ζ(x) ∈ Z(R) for all x ∈ I, that is
F (x) = ∓σ(x) + ζ(x) for all x ∈ I, where ζ : I → Z(R) is an additive map. Since
F is σ-multiplier map, ζ is also σ-multiplier map, which is our conclusion (2). ✷

Theorem 3.14. Let R be a semiprime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R such that σ(I) 6= 0. Suppose that F is a generalized (σ, τ)-
derivation of R associated with a (σ, τ )-derivation d of R such that τ(I)d(I) 6= 0.
If F (x)F (y) ± σ(xy) ∈ Z(R) holds for all x, y ∈ I, then R contains a nonzero
central ideal.

Proof: First we consider that F 6= 0. Then by our hypothesis we have

F (x)F (y) ± σ(xy) ∈ Z(R) (3.47)

for all x, y ∈ I. Substituting yr for y in (3.47), where r ∈ R, we find that

F (x)F (yr) ± σ(xyr) = F (x)(F (y)σ(r) + τ (y)d(r)) ± σ(xyr)

= (F (x)F (y) ± σ(xy))σ(r) + F (x)τ (y)d(r) ∈ Z(R) (3.48)

for all x, y ∈ I and r ∈ R. Commuting both sided with σ(r) and using (3.47) we
get that

[F (x)τ (y)d(r), σ(r)] = 0 (3.49)

for all x, y ∈ I and for all r ∈ R. Replace x by xs, s ∈ R to get

0 = [F (xs)τ (y)d(r), σ(r)] = [(F (x)σ(s) + τ(x)d(s))τ (y)d(r), σ(r)]

= [F (x)σ(s)τ (y)d(r), σ(r)] + [τ(x)d(s)τ (y)d(r), σ(r)] (3.50)
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for all x, y ∈ I and r, s ∈ R. Now in (3.49) replacing y with sy, where s ∈ R, we
find that

[F (x)τ (s)τ (y)d(r), σ(r)] = 0 (3.51)

for all x, y ∈ I and for all r, s ∈ R. Since τ is an epimorphism of R, we have
[F (x)Rτ (y)d(r), σ(r)] = 0 for all x, y ∈ I and r ∈ R. In particular we can write
[F (x)σ(s)τ (y)d(r), σ(r)] = 0 for all x, y ∈ I and r, s ∈ R. Using this fact, (3.50)
gives

0 = [τ (x)d(s)τ (y)d(r), σ(r)] (3.52)

for all x, y ∈ I and r, s ∈ R. In above relation we put x = tx, t ∈ R, and obtain
that

0 = [τ(t)τ (x)d(s)τ (y)d(r), σ(r)]

= τ(t)[τ (x)d(s)τ (y)d(r), σ(r)] + [τ (t), σ(r)]τ (x)d(s)τ (y)d(r)

= [τ(t), σ(r)]τ (x)d(s)τ (y)d(r) (3.53)

for all x, y ∈ I and r, s, t ∈ R. Since τ is an epimorphism of R, from above we
have [R, σ(r)]τ (I)d(R)τ (I)d(r) = 0 and hence [R, σ(r)]Rτ (I)d(R)τ (I)d(r) = 0 for
all r ∈ R.

Since R is semiprime, it must contain a family P = {Pα|α ∈ Λ} of prime ideals
such that ∩Pα = {0}. If P is a typical member of P and r ∈ R, we have from
above that

[R, σ(r)] ⊆ P or τ (I)d(R)τ (I)d(r) ⊆ P.

For fixed P , the set of r ∈ R for which these two conditions hold are additive
subgroups of R whose union is R; therefore,

[R, σ(R)] ⊆ P or τ(I)d(R)τ (I)d(R) ⊆ P

that is

[R,R] ⊆ P or τ (I)d(R)τ (I)d(R) ⊆ P.

Together of these two conditions imply that [R, τ (I)]τ (I)d(R)τ (I)d(R) ⊆ P for
any P ∈ P. Therefore, [R, τ(I)]τ (I)d(R)τ (I)d(R) ⊆ ∩α∈ΛPα = 0. It follows that

0 = [R, τ(I)]τ (I)d(R)τ (RI)d(R)

= [R, τ(I)]τ (I)d(R)Rτ (I)d(R) (3.54)

and hence we can write [R, τ(I)]τ (I)d(R)R[R, τ (I)]τ (I)d(R) = 0. Since R is
semiprime, it follows that [R, τ (I)]τ (I)d(R) = 0. Particularly, [R, τ(I)]τ (I)d(I) =
0. Then by Lemma 3.1, we obtain our conclusion. Next we take F = 0. Then
we get σ(xy) ∈ Z(R) holds for all x, y ∈ I. Then the result follows by the same
argument of Theorem 3.12. ✷



Commutativity theorems on prime and semiprime rings 121

Corollary 3.15. Let R be a prime ring, I a nonzero ideal of R and σ, τ two
epimorphisms of R such that σ(I) 6= 0 and τ (I) 6= 0 . Suppose that F is a
generalized (σ, τ)-derivation of R associated with a (σ, τ)-derivation d of R. If
F (x)F (y) ± σ(xy) ∈ Z(R) holds for all x, y ∈ I, then one of the following holds:

(1) R is commutative;
(2) F is σ-multiplier map and [F (x), σ(x)] = 0 for all x ∈ I.

Proof: By Theorem 3.14, we have either d(I) = 0 that is d(R) = 0 or R is
commutative. Let d(R) = 0. By assumption, we have

F (x)F (y) ± σ(xy) ∈ Z(R) (3.55)

for all x, y ∈ I. Replacing y with yz, z ∈ I, we get F (x)F (y)σ(z) ± σ(xy)σ(z) ∈
Z(R) that is (F (x)F (y)± σ(xy))σ(z) ∈ Z(R) for all x, y, z ∈ I. Since F (x)F (y)±
σ(xy) ∈ Z(R), by Fact-6 either F (x)F (y) ± σ(xy) = 0 for all x, y ∈ I or σ(I) ⊆
Z(R). Now σ(I) ⊆ Z(R) implies R is commutative. Assume that F (x)F (y) ±
σ(xy) = 0 for all x, y ∈ I. Replacing x with xy and y with y2 respectively, we get
F (x)σ(y)F (y)± σ(xy2) = 0 for all x, y ∈ I and F (x)F (y)σ(y)± σ(xy2) = 0 for all
x, y ∈ I. Subtracting one from another yields F (x)[F (y), σ(y)] = 0 for all x, y ∈ I.
Putting xz for x in the last expression, we have F (x)σ(z)[F (y), σ(y)] = 0 for all
x, y, z ∈ I. This implies that [F (x), σ(x)]σ(z)[F (y), σ(y)] = 0 for all x, y, z ∈ I.
Since R is prime ring, we conclude that [F (x), σ(x)] = 0 for all x ∈ I. ✷
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