
Bol. Soc. Paran. Mat. (3s.) v. 31 2 (2013): 83–99.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v31i2.15938

Review article on χ2 sequence spaces defined by modulus and fuzzy

numbers

N. Subramanian and K. Balasubramanian

Key Words: analytic sequence, modulus function, double sequences, Cesàro
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1. Introduction to single χ sequence spaces

A complex sequence, whose kth term is xk is denoted by {xk} or simply x. Let
w be the set of all sequences x = (xk) and φ be the set of all finite sequences.
Let ℓ∞, c, c0 be the sequence spaces of bounded, convergent and null sequences
x = (xk) respectively. In respect of ℓ∞, c, c0 we have

‖x‖ =
sup

k |xk| , where x = (xk) ∈ c0 ⊂ c ⊂ ℓ∞. A sequence x = {xk} is said to

be analytic if supk |xk|
1/k

< ∞. The vector space of all analytic sequences will be

denoted by Λ. A sequence x is called entire sequence if limk→∞ |xk|
1/k

= 0. The
vector space of all entire sequences will be denoted by Γ.χ was discussed in Kamthan
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. Matrix transformations involving χ were characterized by Sridhar and Sirajiudeen

. Let χ be the set of all those sequences x = (xk) such that (k! |xk|)
1/k

→ 0 as
k → ∞. Then χ is a metric space with the metric

d (x, y) = supk

{

(k! |xk − yk|)
1/k

: k = 1, 2, 3, · · ·
}

Given a sequence x = {xk} its nth section is the sequence x(n) = {x1, x2, ..., xn, 0, 0,

...} δ(n) = (0, 0, ..., 1, 0, 0, ...) , 1 in the nth place and zero’s else where; and s(n) =
(0, 0, ..., 1,−1, 0, ...) , 1 in the nth place,-1 in the (n + 1)thplace and zero’s else
where. An FK-space (Frechet coordinate space) is a Frechet space which is made
up of numerical sequences and has the property that the coordinate functionals
pk (x) = xk (k = 1, 2, 3, . . .) are continuous. We recall the following definitions .

An FK-space is a locally convex Frechet space which is made up of sequences
and has the property that coordinate projections are continuous. An metric-space
(X, d) is said to have AK (or sectional convergence) if and only if d

(

x(n), x
)

→ 0
as n → ∞. The space is said to have AD (or) be an AD space if φ is dense in X.

We note that AK implies AD.
If X is a sequence space, we define
(i)X

′

= the continuous dual of X.
(ii)Xα = {a = (ak) :

∑∞
k=1 |akxk| <∞, foreachx ∈ X} ;

(iii)Xβ = {a = (ak) :
∑∞
k=1 akxk is convergent, foreachx ∈ X} ;

(iv)Xγ =
{

a = (ak) :
sup
n |

∑n
k=1 akxk| <∞, foreachx ∈ X

}

;

(v)Let X be an FK-space⊃ φ. Then Xf =
{

f(δ(n)) : f ∈ X
′

}

.

Xα,Xβ ,Xγ are called the α−(or Kö the-T öeplitz)dual of X, β− (or generalized
Kö the-T öeplitz)dual of X, γ−dual of X. Note that Xα ⊂ Xβ ⊂ Xγ . If X ⊂ Y

then Y µ ⊂ Xµ, for µ = α, β, or γ.

Theorem 1.1. The dual space of χM is Λ. Inother words (χM )
∗

= Λ

Theorem 1.2. Let Y be any FK-space⊃ φ. Then Y ⊃ χM if and only if the
sequence sk is weakly analytic

Theorem 1.3. χM is a complete metric space under the metric

d (x, y) = supk

{

M
(

(k!|xk−yk|)
1/k

ρ

)

: k = 1, 2, 3, · · ·
}

where x = (xk) ∈ χM and

y = (yk) ∈ χM .

2. Introduction to matrix transformation on single χ sequence spaces

Let χ denote the space of all gai sequences and Λ the space of all analytic se-
quences. First we show that the set E =

{

s(k) : k = 1, 2, 3, · · ·
}

is a determining set
for χM . The set of all finite matrices transforming χM into FK-space Y denoted by
(χM : Y ) .We characterize the classes (χM : Y ) when Y = (c0)π , cπ, χM , ℓπ, ℓs, Λπ, hπ.

In summary we have the following table:
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ր (c0)π cπ χM ℓπ ℓs Λπ hπ
χM Necessary and sufficient condition on the matrix are obtained

But the approach to obtain these result in the present paper is by determining
set for χM . First, we investigate a determining set for χM and then we character-
ize the classes of matrix transformations involving χM and other known sequence
spaces.

Theorem 2.1. Let
{

s(k) : k = 1, 2, 3, · · ·
}

be the set of all sequences in φ each of

whose non-zero terms ±1. Let E =
{

s(k) : k = 1, 2, 3, · · ·
}

then E is a determining
set for the space χM .

Theorem 2.2. An infinite matrix A = (ank) is in the class

A ∈ (χM : (c0)π) ⇔ limn→∞

(

ank

πn

)

= 0 (2.1)

⇔ supnk

∣

∣

∣

∣

an1 + · · · + ank

πn

∣

∣

∣

∣

<∞. (2.2)

3. Introduction to single χ difference sequence spaces

The notion of difference sequences was introduced by H. Kizmaz [Canad. Math.
Bull., 24(2) (1984), 215-229]. This was generalized in two different ways by M. Et
and R. Colak [Soochow J. Math., 21 (4) (1995), 377-386] and B.C. Tripathy and
A. Esi [International J. Sci. Tech, 1(1) (2006) 11-14]. B.C. Tripathy; A. Esi and
B.K. Tripathy [Soochow J. Math. 31(3)(2005),333-340] introduced a new type of
generalized difference operator, which generalizes and unifies the above two notions
of generalized difference operator.

The notion of difference spaces of single sequences was introduced by Kizmaz as
follows:

Z (∆) = {x = (xk) : ∆x ∈ Z}

for Z = ℓ∞, c, c0, where ∆x = (∆x)
∞
k=1 = (xk − xk+1)

∞
k=1 and showed that these

are Banach spaces with norm ‖x‖ = |x1| + ‖∆x‖∞ . Later on Et and Colak gener-
alized the notion as follows :
Let m ∈ N, Z (∆m) = {x = (xk) : ∆mx ∈ Z} for Z = ℓ∞, c, c0 where m ∈

N, ∆0x = (xk) , ∆x = (xk − xk+1) , ∆mx = (∆mxk)∞k=1 =
(

∆m−1xk − ∆m−1xk+1

)∞

k=1
.

The generalized difference has the following binomial representation:

∆mxk =
∑m
γ=0 (−1)

γ

(

m

γ

)

xk+γ ,

They proved that these are Banach spaces with the norm

‖x‖∆ =
∑m
i=1 |xi| + ‖∆mx‖∞
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The difference space bvp of the classical space ℓp is introduced and studied in the
case 1 ≤ p ≤ ∞ by Baar and Altay in [42] and in the case 0 < p < 1 by Altay and
Baar in [43]. The spaces c (∆) , c0 (∆) , ℓ∞ (∆) and bvp are Banach spaces normed
by

‖x‖ = |x1| + supk≥1 |∆xk| and ‖x‖bvp
= (

∑∞
k=1 |xk|

p
)
1/p

, (1 ≤ p <∞) .

Theorem 3.1. χM (∆) is a r convex for all r > 0, where 0 ≤ r ≤ infpk. Moreover
if pk = p ≤ 1 for all k ∈ N, then χM (∆, p) is p− convex.

Theorem 3.2. (χM (∆))
β

= Λ

4. Introduction to χ2 sequence spaces

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar valued
single sequences, respectively.
We write w2 for the set of all complex sequences (xmn), where m,n ∈ N, the set
of positive integers. Then, w2 is a linear space under the coordinate wise addition
and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4]. Later
on, they were investigated by Hardy [5], Moricz [9], Moricz and Rhoades [10],
Basarir and Solankan [2], Tripathy [17], Turkmenoglu [19], and many others.

Let us define the following sets of double sequences:

Mu (t) :=
{

(xmn) ∈ w2 : supm,n∈N |xmn|
tmn <∞

}

,

Cp (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn − |
tmn = 1for some ∈ C

}

,

C0p (t) :=
{

(xmn) ∈ w2 : p− limm,n→∞ |xmn|
tmn = 1

}

,

Lu (t) :=
{

(xmn) ∈ w2 :
∑∞
m=1

∑∞
n=1 |xmn|

tmn <∞
}

,

Cbp (t) := Cp (t)
⋂

Mu (t) and C0bp (t) = C0p (t)
⋂

Mu (t);

where t = (tmn) is the sequence of strictly positive reals tmn for all m,n ∈ N and
p− limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case tmn = 1 for
all m,n ∈ N;Mu (t) ,Cp (t) ,C0p (t) ,Lu (t) ,Cbp (t) and C0bp (t) reduce to the sets
Mu,Cp,C0p,Lu,Cbp and C0bp, respectively. Now, we may summarize the knowl-
edge given in some document related to the double sequence spaces. Gökhan and
Colak [21,22] have proved that Mu (t) and Cp (t) ,Cbp (t) are complete paranormed
spaces of double sequences and gave the α−, β−, γ− duals of the spaces Mu (t) and
Cbp (t) . Quite recently, in her PhD thesis, Zelter [23] has essentially studied both
the theory of topological double sequence spaces and the theory of summability of
double sequences. Mursaleen and Edely [24] have recently introduced the statisti-
cal convergence and Cauchy for double sequences and given the relation between



Review article on χ2
sequence spaces 87

statistical convergent and strongly Cesàro summable double sequences. Nextly,
Mursaleen [25] and Mursaleen and Edely [26] have defined the almost strong regu-
larity of matrices for double sequences and applied these matrices to establish a core
theorem and introduced the M−core for double sequences and determined those
four dimensional matrices transforming every bounded double sequences x = (xjk)
into one whose core is a subset of the M−core of x. More recently, Altay and Basar
[27] have defined the spaces BS,BS (t) ,CSp,CSbp,CSr and BV of double sequences
consisting of all double series whose sequence of partial sums are in the spaces
Mu,Mu (t) ,Cp,Cbp,Cr and Lu, respectively, and also examined some properties of
those sequence spaces and determined the α− duals of the spaces BS,BV,CSbp

and the β (ϑ)− duals of the spaces CSbp and CSr of double series. Quite recently
Basar and Sever [28] have introduced the Banach space Lq of double sequences
corresponding to the well-known space ℓq of single sequences and examined some
properties of the space Lq. Quite recently Subramanian and Misra [29] have stud-
ied the space χ2

M (p, q, u) of double sequences and gave some inclusion relations.
Spaces are strongly summable sequences were discussed by Kuttner [31], Mad-

dox [32], and others. The class of sequences which are strongly Cesàro summable
with respect to a modulus was introduced by Maddox [8] as an extension of the
definition of strongly Cesàro summable sequences. Connor [33] further extended
this definition to a definition of strong A− summability with respect to a modulus
where A = (an,k) is a nonnegative regular matrix and established some connections
between strong A− summability, strong A− summability with respect to a mod-
ulus, and A− statistical convergence. In [34] the notion of convergence of double
sequences was presented by A. Pringsheim. Also, in [35]- [38], and [39] the four
dimensional matrix transformation (Ax)k,ℓ =

∑∞
m=1

∑∞
n=1 a

mn
kℓ xmn was studied

extensively by Robison and Hamilton.
We need the following inequality in the sequel of the paper. For a, b,≥ 0 and

0 < p < 1, we have

(a+ b)p ≤ ap + bp (4.1)

The double series
∑∞
m,n=1 xmn is called convergent if and only if the double se-

quence (smn) is convergent, where smn =
∑m,n
i,j=1 xij(m,n ∈ N) (see [1]).

A sequence x = (xmn)is said to be double analytic if supmn |xmn|
1/m+n

<∞. The
vector space of all double analytic sequences will be denoted by Λ2. A sequence

x = (xmn) is called double gai sequence if ((m+ n)! |xmn|)
1/m+n

→ 0 asm,n→ ∞.

The double gai sequences will be denoted by χ2. Let φ = {allfinitesequences} .

Consider a double sequence x = (xij). The (m,n)th section x[m,n] of the sequence
is defined by x[m,n] =

∑m,n
i,j=0xijℑij for all m,n ∈ N ; where ℑij denotes the double

sequence whose only non zero term is a 1
(i+j)! in the (i, j)

th
place for each i, j ∈ N.

An FK-space(or a metric space)X is said to have AK property if (ℑmn) is
a Schauder basis for X. Or equivalently x[m,n] → x.
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An FDK-space is a double sequence space endowed with a complete metriz-
able; locally convex topology under which the coordinate mappings x = (xk) →
(xmn)(m,n ∈ N) are also continuous.
If X is a sequence space, we give the following definitions:

(i)X
′

= the continuous dual of X;

(ii)Xα =
{

a = (amn) :
∑

∞
m,n=1 |amnxmn| <∞, for eachx ∈ X

}

;

(iii)Xβ =
{

a = (amn) :
∑

∞
m,n=1amnxmn is convegent, foreachx ∈ X

}

;

(iv)Xγ =
{

a = (amn) : supmn ≥ 1
∣

∣

∣

∑M,N
m,n=1 amnxmn

∣

∣

∣
<∞, foreachx ∈ X

}

;

(v)letX beanFK − space ⊃ φ; thenXf =
{

f(ℑmn) : f ∈ X
′

}

;

(vi)Xδ =
{

a = (amn) : supmn |amnxmn|
1/m+n

<∞, foreachx ∈ X
}

;

Xα.Xβ ,Xγ are called α − (orKöthe − Toeplitz)dual of X,β − (or generalized −
Köthe − Toeplitz)dual ofX, γ − dual of X, δ − dual ofX respectively.Xα is de-
fined by Gupta and Kamptan [20]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ , but
Xβ ⊂ Xγ does not hold, since the sequence of partial sums of a double convergent
series need not to be bounded.

Definition 4.1. A modulus function was introduced by Nakano [12]. We recall
that a modulus f is a function from [0,∞) → [0,∞) , such that
(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is continuous from the right at 0. Since |f (x) − f (y)| ≤ f (|x− y|) , it follows
from here that f is continuous on [0,∞) .

Definition 4.2. Let A =
(

amnk,ℓ

)

denote a four dimensional summability method

that maps the complex double sequences x into the double sequence Ax where the
k, ℓ− th term to Ax is as follows:

(Ax)kℓ =
∑∞
m=1

∑∞
n=1 a

mn
kℓ xmn

such transformation is said to be nonnegative if amnkℓ is nonnegative.

The notion of regularity for two dimensional matrix transformations was pre-
sented by Silverman [40] and Toeplitz [41]. Following Silverman and Toeplitz,
Robison and Hamilton presented the following four dimensional analog of regular-
ity for double sequences in which they both added an adiditional assumption of
boundedness. This assumption was made because a double sequence which is P−
convergent is not necessarily bounded.
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Throughout the present paper we assume that ℑ = (λmn) is the sequence of
non-zero complex numbers. Then for a sequence space E, the multiplier sequence
space E (ℑ) associated with the multiplier sequence ℑ is defined by

E (ℑ) =
{

x = (xmn) ∈ w2 : ℑx = (λmnxmn) ∈ E
}

.

A multiplier sequence can be used to accelarate the convergece of the sequence in
some spaces.

Let A =
(

akℓmn
)

be the cesàro four dimensional matrix defined by

(

akℓmn
)

=

{ 1
(m+1)(k+1) if 0 ≤ n, ℓ ≤ m, k;

0 ifk, ℓ > m,n
(4.2)

for all m,n, k, ℓ ∈ N.

Definition 4.3. Let f be any modulus function. Then, we define the sets χ̃2
f (A,ℑ)

and χ̃2
f , by

χ̃2
f (A,ℑ) =

∑

m

∑

n f

(

|
∑ m

i=0

∑ n
j=0 λij ((i+j)! xij)

1/i+j|
(m+1)(n+1)

)

→ 0asm, n→ ∞. and

χ̃2
f =

∑

m

∑

n f
(

((m+ n)! |xmn|)
1/m+n

)

→ 0asm, n→ ∞.

Definition 4.4. Let f and Φ be mutually complementary functions. Then, we
define the set χ2

f (A,ℑ) by

χ2
f (A,ℑ) =

∑

m

∑

n f

((

|
∑ m

i=0

∑ n
j=0 λij ((i+j)! xij)

1/i+j|
(m+1)(n+1)

)

((m+ n)!ymn)
1/m+n

)

→

0asm, n → ∞, for all y = (ymn) ∈ χ2
Φ, which is called as modulus sequence space

associated with the multiplier sequence ℑ = (λmn) and generated by cesàro four
dimensional matrix.

Theorem 4.5. For any modulus function f, the inclusion χ̃2
f (A,ℑ) ⊂ χ2

f (A,ℑ)
holds.

Theorem 4.6. For each x = (xmn) ∈ χ2
f (A,ℑ)

sup

{
∣

∣

∣

∣

∑

m

∑

n

((

∑m
i=0

∑n
j=0 λij ((i+j)! xij)

1/i+j

(m+1)(n+1)

)

((m + n)!ymn)1/m+n

)
∣

∣

∣

∣

: δ (Φ, ymn) ≤ 1

}

→

0asm, n → ∞.

5. Introduction to χ2 difference sequence spaces

We now introduce the following difference double sequence spaces defined by

Z (∆) =
{

x = (xmn) ∈ w2 : (∆xmn) ∈ Z
}

where Z = Λ2, χ2 and ∆xmn = (xmn − xmn+1) − (xm+1n − xm+1n+1) = xmn −
xmn+1 − xm+1n + xm+1n+1 for all m,n ∈ N

The generalized difference double notion has the following binomial representation:

∆kxmn =

k
∑

i=0

k
∑

j=0

(−1)
i+j

(

k

i

)(

m

j

)

xm+i,n+j ,
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Theorem 5.1. i) If 0 < pmn ≤ 1 for each m,n ∈ N, then χ2 (∆m, f, p, q) ⊆
χ2 (∆m, f, q) ;

Theorem 5.2. If pmn ≥ 1 for all m,n ∈ N, then χ2 (∆m, f, q) ⊆ χ2 (∆m, f, p, q)

Theorem 5.3. χ2 (∆m, f, p, q, s) is not solid for m > 0

Theorem 5.4. χ2 (∆m, f, p, q, s) is not sequence algebra

6. Introduction to Modulus function

Orlicz [13] used the idea of Orlicz function to construct the space
(

LM
)

. Lin-
denstrauss and Tzafriri [7] investigated Orlicz sequence spaces in more detail, and
they proved that every Orlicz sequence space ℓM contains a subspace isomorphic
to ℓp (1 ≤ p <∞) . subsequently, different classes of sequence spaces were defined
by Parashar and Choudhary [14], Mursaleen et al. [11], Bektas and Altin [3],
Tripathy et al. [18], Rao and Subramanian [15], and many others. The Orlicz
sequence spaces are the special cases of Orlicz spaces studied in [6].

Recalling [13] and [6], an Orlicz function is a function M : [0,∞) → [0,∞)
which is continuous, non-decreasing, and convex with M (0) = 0, M (x) > 0, for
x > 0 and M (x) → ∞ as x → ∞. If convexity of Orlicz function M is replaced
by subadditivity of M, then this function is called modulus function, defined by
Nakano [12] and further discussed by Ruckle [16] and Maddox [8], and many others.

An modulus function M is said to satisfy the ∆2− condition for small u or
at 0 if for each k ∈ N, there exist Rk > 0 and uk > 0 such that M (ku) ≤ RkM (u)
for all u ∈ (0, uk] . Moreover, an modulus function M is said to satisfy the ∆2−
condition if and only if

limu→0+sup
M(2u)
M(u) <∞

Two Modulus functions M1 and M2 are said to be equivalent if there are positive
constants α, β and b such that

M1 (αu) ≤M2 (u) ≤M1 (βu) for all u ∈ [0, b] .

An modulus function M can always be represented in the following integral form

M (u) =
∫ u

0
η (t) dt,

where η, the kernel of M, is right differentiable for t ≥ 0, η (0) = 0, η (t) > 0 for

t > 0, η is non-decreasing and η (t) → ∞ as t→ ∞ whenever M(u)
u ↑ ∞ as u ↑ ∞.

Consider the kernel η associated with the modulus functionM and let

µ (s) = sup {t : η (t) ≤ s} .

Then µ possesses the same properties as the function η. Suppose now

Φ =
∫ x

0
µ (s) ds.
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Then, Φ is an modulus function. The functions M and Φ are called mutually
complementary Orlicz functions.

Now, we give the following well-known results.
Let M and Φ are mutually complementary modulus functions. Then, we have:

(i) For all u, y ≥ 0,

uy ≤M (u) + Φ (y) , (Y oung′s inequality) (6.1)

(ii) For all u ≥ 0,
uη (u) = M (u) + Φ (η (u)) . (6.2)

(iii) For all u ≥ 0, and 0 < λ < 1,

M (λu) ≤ λM (u) (6.3)

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz
sequence space

ℓM =
{

x ∈ w :
∑∞
k=1M

(

|xk|
ρ

)

<∞, for someρ > 0
}

,

The space ℓM with the norm

‖x‖ = inf
{

ρ > 0 :
∑∞
k=1M

(

|xk|
ρ

)

≤ 1
}

,

becomes a Banach space which is called an Orlicz sequence space. For M (t) =
tp (1 ≤ p <∞) , the spaces ℓM coincide with the classical sequence space ℓp.

7. Introduction to single χ sequence space of fuzzy numbers

Since the introduction of fuzzy set by L.A.Zadeh in 1965, the concept of fuzzi-
ness has been applied in various fields of science like Expert System, Pattern Recog-
nition, Fuzzy Control, Decision Making, Image Processing, Cybernetics, Artificial
Intelligence, Operation Research, Path Tracking Application, Projectile, Texture
Analysis, E-Business, Agriculture System etc. In mathematics the application of
fuzzy is found in all the branches.

Several authors introduced and investigated different classes of sequences of
fuzzy real numbers and established many important results. S. Nanda, B.K. Tri-
pathy, N.R. Das, B. Choudhary, P.V. Subrahmanyam, M. Mursaleen, F. Nuray, E.
Savas, M. Basari, R. Colak, M. Et, A. Esi, Y. Altin, J. Fang, H. Hung are a few to
be named and subsequently several authors have discussed various aspects of the
theory and applications of fuzzy sets such as fuzzy topological spaces, similarity
relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming.
Let C (Rn) = {A ⊂ Rn : Acompactandconvex} . The space C (Rn) has linear
structure induced by the operations A + B = {a+ b : a ∈ A, b ∈ B} and λA =
{λa : a ∈ A} for A,B ∈ C (Rn) and λ ∈ R. The Hausdorff distance between A and
B of C (Rn) is defined as
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δ∞ (A,B) = max {supa∈Ainfb∈B ‖a− b‖ , supb∈Binfa∈A ‖a− b‖}

It is well known that (C (Rn) , δ∞) is a complete metric space.
The fuzzy number is a function X from Rn to [0,1] which is normal, fuzzy convex,
upper semi-continuous and the closure of {x ∈ Rn : X(x) > 0} is compact. These
properties imply that for each 0 < α ≤ 1, the α−level set [X]α = {x ∈ Rn : X(x) ≥ α}

is a nonempty compact convex subset ofRn, with support Xc = {x ∈ Rn : X(x) > 0} .

Let L (Rn) denote the set of all fuzzy numbers. The linear structure of L (Rn) in-
duces the addition X+Y and scalar multiplication λX, λ ∈ R, in terms of α− level
sets, by |X + Y |

α
= |X|

α
+ |Y |

α
, |λX|

α
= λ |X|

α
for each 0 ≤ α ≤ 1. Define, for

each 1 ≤ q <∞,

dq (X,Y ) =
(

∫ 1

0
δ∞ (Xα, Y α)

q
dα

)1/q

, andd∞ = sup0≤α≤1δ∞ (Xα, Y α) ,

where δ∞ is the Hausdorff metric. Clearly d∞ (X,Y ) = limq→∞dq (X,Y ) with
dq ≤ dr, if q ≤ r [27]. Throughout the paper, d will denote dq with 1 ≤ q ≤ ∞.

The additive identity in L (Rn) is denoted by 0̄.

A metric on L (Rn) is said to be translation invariant if d (X + Z, Y + Z) =
d (X,Y ) for all X,Y,Z ∈ L (Rn)

A sequence X = (Xk) of fuzzy numbers is a function X from the set N of
natural numbers into L (Rn) . The fuzzy number Xk denotes the value of the func-
tion at k ∈ N. We denotes by W (F ) the set of all sequences X = (Xk) of fuzzy
numbers. Let Ps denote the class of subsets of N, the natural numbers, which do
not contain more than s elements. Throughout (φn) represents a non-decreasing
sequence of real numbers such that nφn+1 ≤ (n+ 1)φn for all n ∈ N.

The sequence χ (φ) for real numbers is defined as follows:

Γ (φ) =
{

(Xk) : 1
φs

(|Xk|)
1/k

→ 0ask, s→ ∞for k ∈ σ ∈ Ps

}

The generalized sequence space Γ (∆n, φ) of the sequence space Γ (φ) for real num-
bers is defined as follows

Γ (∆n, φ) =
{

(Xk) : 1
φs

(|∆Xk|)
1/k

→ 0ask, s→ ∞for k ∈ σ ∈ Ps

}

where ∆nXk = Xk −Xk+n for k ∈ N and fixed n ∈ N.

In this article we introduce the following classes of sequences of fuzzy numbers:
Let M be an Orlicz function. Then write

ΛF
M (∆m) =

{

(Xk) ∈ W (F ) : supkM

(

d((|∆mXk|1/k), 0̄)
ρ

)

< ∞ for someρ > 0

}

χF
M (∆m) =

{

(Xk) ∈ W (F ) : M

(

d((k!|∆mXk|)1/k, 0̄)
ρ

)

→ 0as k → ∞, for someρ > 0

}

ΓF
M (∆m) =

{

(Xk) ∈ W (F ) : M

(

d((|∆mXk|1/k), 0̄)
ρ

)

→ 0as k → ∞, for someρ > 0

}
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χF
M (∆m, φ)=

{

(Xk)∈ W (F ) : 1
φs

M

(

d((k!|∆mXk|)1/k, 0̄)
ρ

)

→ 0as k, s→ ∞, for k ∈ σ ∈ Ps

}

ΓF
M (∆m, φ)=

{

(Xk)∈ W (F ) : 1
φs

M

(

d((|∆mXk|)1/k, 0̄)
ρ

)

→ 0as k, s→ ∞, for k ∈ σ ∈ Ps

}

Theorem 7.1. If d is a translation invariant metric, the n ΓFM (∆m, φ) is closed
under the operations of addition and scalar multiplication.

Theorem 7.2. The space ΛFM (∆m) is a complete metric space with the metric by

h (X,Y ) = inf

{

ρ > 0 : supk

(

M

(

d(|∆mXk−∆mYk|
1/k)

ρ

))

≤ 1

}

Theorem 7.3. If
(

φs

ψs

)

→ 0ass→ ∞ then ΓFM (∆m, φ) ⊂ ΓFM (∆m, ψ)

8. Introduction to χ2 sequence space of fuzzy numbers

Throughout a double sequence is denoted by 〈Xmn〉 , a double infinite array of
fuzzy real numbers.

Let D denote the set of all closed and bounded intervals X = [a1, a2] on the
real line R. For X = [a1, a2] ∈ D and Y = [b1, b2] ∈ D, define

d (X,Y ) = max (|a1 − b1| , |a2 − b2|)

It is known that (D, d) is a complete metric space.
A fuzzy real number X is a fuzzy set on R, that is, a mapping X : R →

I (= [0, 1]) associating each real number t with its grade of membership X (t) .
The α− level set [X]

α
, of the fuzzy real number X, for 0 < α ≤ 1, defined by

[X]
α

= {t ∈ R : X (t) ≥ α} .

The 0− level set is th closure of the strong 0− cut that is, cl {t ∈ R : X (t) > 0} .
A fuzzy real numberX is called convex if X(t) ≥ X(s)∧X(r) = min {X(s) , X(r)} ,

where s < t < r. If there exists t0 ∈ R such that X (t0) = 1 then, the fuzzy real
number X is called normal.

A fuzzy real number X is said to be upper-semi continuous if, for each ǫ >

0,X−1 ([0, a+ ǫ)) is open in the usual topology of R for all a ∈ I.

The set of all upper-semi continuous, normal, convex fuzzy real numbers is
denoted by L (R) .

The absolute value, |X| of X ∈ L (R) is defined by

|X| (t) =

{

max {X (t) ,X (−t)} , if t ≥ 0;

0, if t < 0

Let d̄ : L (R) × L (R) → R be defined by

d̄ (X,Y ) = sup0≤α≤1d ([X]
α
, [Y ]

α
) .
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Then, d̄ defines a metric on L (R) and it is well-known that
(

L (R) , d̄
)

is a complete
metric space.
A metric d on L (R) is said to be translation invariant metric if

d (X + Z, Y + Z) = d (X,Y ) for X,Y,Z ∈ L (R) .

A sequence 〈Xm〉 ⊂ L (R) of fuzzy real numbers is said to be null to the fuzzy real
number 0, such that d̄ (Xm, 0̄) = 0.

A double sequence 〈Xmn〉 of fuzzy real numbers is said to be chi in Pringsheim’s

sense to a fuzzy number 0 if limm,n→∞ ((m+ n)!Xmn)
1/m+n

= 0.
A double sequence 〈Xmn〉 is said to chi regularly if it converges in the Prin-

sheim’s sense and the following limts zero:

limm→∞ ((m+ n)!Xmn)
1/m+n

= 0 for each n ∈ N,

and

limn→∞ ((m+ n)!Xmn)
1/m+n

= 0 for each m ∈ N.

A fuzzy real-valued double sequence space EF is said to be solid if 〈Ymn〉 ∈ EF

whenever 〈Xmn〉 ∈ EF and |Ymn| ≤ |Xmn| for all m,n ∈ N.

Let K = {(mi, ni) : i ∈ N;m1 < m2 < m3 · · · andn1 < n2 < n3 < · · · } ⊆ N×N

and EF be a double sequence space. A K−step space of EF is a sequence space
λEK =

{

〈Xmini
〉 ∈ w2F : 〈Xmn〉 ∈ EF

}

.

A canonical pre-image of a sequence 〈Xmini
〉 ∈ EF is a sequence 〈Ymn〉 defined

as follows:

Ymn =

{

Xmn, if (m,n) ∈ K,

0̄, otherwise .

A canonical pre-image of a step space λEK is a set of canonical pre-images of all
elements in λEK .

A sequence set EF is said to be monotone if EF contains the canonical pre-
images of all its step spaces.

A sequence set EF is said to be symmetric if
〈

Xπ(m),π(n)

〉

∈ EF whenever

〈Xmn〉 ∈ EF , where π is a permutation of N.

A fuzzy real-valued sequence set EF is said to be convergent free if 〈Ymn〉 ∈ EF

whenever 〈Xmn〉 ∈ EF and Xmn = 0̄ implies Ymn = 0̄.
We define the following classes of sequences:

Λ2F
f =

{

〈Xmn〉 : supmnf
(

d̄
(

X
1/m+n
mn , 0̄

))

<∞,Xmn ∈ L (R)
}

.

χ2F
f =

{

〈Xmn〉 : limmn→∞f
(

d̄
(

((m+ n)!Xmn)
1/m+n

, 0̄
))

= 0
}

.

Also, we define the classes of sequences χ2FR

f as follows :

A sequence 〈Xmn〉 ∈ χ2FR

f if 〈xmn〉 ∈ χ2F
f and the following limits hold

limm→∞f
(

d̄
(

((m+ n)!Xmn)
1/m+n

, 0̄
))

= 0 for each n ∈ N.
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limn→∞f
(

d̄
(

((m+ n)!Xmn)
1/m+n

, 0̄
))

= 0 for each m ∈ N.

Theorem 8.1. Let N1 = min{n0 : supmn≥n0
f(d̄(((m+ n)!(Xmn − Ymn))

1/m+n,

0̄))Pmn <∞}, N2 = min {n0 : supmn≥n0
Pmn <∞} and N = max (N1, N2) .

(i) χ2FR

fp
is not a paranormed space with

g (X) = limN→∞supmn≥Nf
(

d̄
(

((m+ n)! (Xmn − Ymn))
1/m+n

, 0̄
))Pmn/M

(8.1)
if and only if µ > 0, where µ = limN→∞infmn≥NPmn and M = max (1, supmn≥NPmn)

(ii) χ2F R

fp
is complete with the paranorm (3.1).

Theorem 8.2. The class of sequences Λ2F
f is symmetric but the classes of se-

quences χ2F
f and χ2FR

f are not sysmmetric.

9. Difference sequence space related to the space ℓp

W.L.C. Sargent introduced the crisp set sequence space m(φ ) and studied some
properties of this space. Later on it was studied from the sequence space point of
view and some matrix classes were characterized with one member as m(φ ) by D.
Rath, B.C. Tripathy, T. Bilgin, A. Esi, M. Sen and others

10. Statistically convergent difference χ2 sequence spaces

In order to extend the notion of convergence of sequences, statistical conver-
gence of sequences was introduced by H. Fast in 1951, R.C. Buck in 1953 and I.J.
Schoenberg in 1959 independently. It is also found in A. Zygmund. Later on it
was studied from sequence space point of view and linked with summability theory
by J.A. Fridy, T. S̆alát, J.S. Connor, I.J. Maddox, D. Rath, M. Mursaleen, B.C.
Tripathy, M. Et, F. Nuray, R. Colak, A. Esi and many others. The notion of sta-
tistical convergence depends on the notion of asymptotic density of subsets of the
set N of natural numbers (refer to Niven, Zuckerman and Montgomery).

Definition 10.1. A double sequence X = (Xmn) of fuzzy numbers is said to be
χ2
f∆− convergent in the Pringsheim’s sense or Pχ2

f∆
− convergent to a fuzzy number

0 then

limm,n→∞d
(

f ((m+ n)!∆Xmn)
1/m+n

, 0
)

= 0

we denote P − limm,n→∞d
(

f ((m+ n)!∆Xmn)
1/m+n

)

= 0. The number 0 is called

the Pringsheim limit of ∆X. More exactly, we say that a double sequence (∆Xmn)
converges to a finite fuzzy number 0.

Definition 10.2. A double sequence X = (Xmn) of fuzzy numbers is said to be
Λ2

∆− analytic if there exists a positive number K such that if the set
{

|Xmn|
1/m+n

: m,n ∈ N

}
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We denote the set of all double ∆− analytic sequences of fuzzy numbers by Λ2 (∆, F ) .

Definition 10.3. A double sequence X = (Xmn) of fuzzy numbers is said to be
χ2
f∆− statistically convergent to 0 such that

P − limk,ℓ
1
k,ℓ

∣

∣

∣

{

(m,n) : m ≤ k, n ≤ ℓ; d
(

f ((m+ n)!∆Xmn)
1/m+n

, 0
)}∣

∣

∣
= 0

In this case we write S2 − limm,n→∞

(

f ((m+ n)!∆Xmn)
1/m+n

)

= 0. or

f
(

((m+ n)!∆Xmn)
1/m+n

, 0
)

→ 0
(

S2 (∆, F )
)

and we denote the set of all double

∆− statistically convergent sequences of fuzzy numbers by S2 (∆, F ) .

Definition 10.4. Let β = (βm) and µ = (µn) be two nondecreasing sequences of
positive real numbers such that each tend to infinity and βm+1 ≤ βm + 1, β1 = 1
and µn+1 ≤ µn+1, µ1 = 1. A double sequence X = (Xmn) of fuzzy numbers is said

to be strongly λ
(

χ2F
f∆

)

− summable if there is a fuzzy number 0 such that

P − limk,ℓ
1
λkℓ

∑

m∈Ikℓ

∑

n∈Ikℓ
d

(

f ((m+ n)!∆Xmn)
1/m+n

, 0
)

= 0.

where λkℓ = βm · βn and Ikℓ = {(mn) : k − βm + 1 ≤ m ≤ k; ℓ− µℓ + 1 ≤ n ≤ ℓ} .

We denote the set of strongly double λ
(

χ2F
f∆

)

− summable sequences
[

Vλ(χ2F
f∆)

]

.

If λkℓ = kℓ for all k, ℓ ∈ N, then the class of strongly double λ
(

χ2F
f∆

)

− summable

sequences reduce to [C, 1, 1]χ2
f (∆, F ) , the class of strongly double cesàro summable

sequences of fuzzy numbers defined as follows

P − limkℓ
1
kℓ

∑k
m=1

∑ℓ
n=1 d

(

f ((m+ n)!∆Xmn)
1/m+n

, 0
)

= 0.

Definition 10.5. A double sequence X = (Xmn) of fuzzy numbers is said to be

λ
(

χ2F
f∆

)

− statistically convergent or s2
λ(χ2F

f∆)
− convergent to a fuzzy number 0,

P − limkℓ
1
λkℓ

∣

∣

∣

{

(mn) ∈ Ikℓ : d
(

f ((m+ n)!∆Xmn)
1/m+n

, 0
)}

∣

∣

∣
= 0

In this case we write s2
λ(χ2F

f∆)
− limf ((m+ n)!∆Xmn)

1/m+n
= 0 or

((m + n)!∆Xmn)1/m+n → 0

(

s2

λ
(

χ2F
f∆

)

)

and we denote the set of all double λ
(

χ2F
f∆

)

−

statistically convergent sequences of fuzzy numbers by s2

λ
(

χ2F
f∆

) . If λkℓ = kℓ for all k, ℓ ∈ N,

we write s2
χ2

f
− limf ((m + n)!∆Xmn)1/m+n = 0

((m + n)!∆Xmn)1/m+n → 0

(

s2
(

χ2F
f∆

)

)

and the set s2
λ(χ2F

f∆)
− reduces to s2

(χ2F
f∆)

.

Theorem 10.6. A double sequence X = (Xmn) of fuzzy numbers is strongly double

λ
(

χ2F
f∆

)

− summable to the fuzzy number 0, then it is double λ
(

χ2F
f∆

)

− statistically

convergent to 0.
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Theorem 10.7. If a double ∆2− analytic double sequence of fuzzy numbers X =

(Xmn) is double λ
(

χ2F
f∆

)

− statistically convergent to the fuzzy number 0 then it

is strongly λ
(

Λ2F
f∆

)

− summable to 0
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