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Existence of solution for a class of biharmonic equations

Najib Tsouli, Omar Chakrone, Omar Darhouche and Mostafa Rahmani

Abstract: In this paper, We prove the solvability of the biharmonic problem
{

∆2u = f(x, u) + h in Ω,

u = ∆u = 0 on ∂Ω,

for a given function h ∈ L2(Ω), if the limits at infinity of the quotients f(x, s)/s and
2F (x, s)/s2 for a.e. x ∈ Ω lie between two consecutive eigenvalues of the biharmonic
operator ∆2, where F (x, s) denotes the primitive F (x, s) =

∫

s

0
f(x, t)dt.
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1. Introduction

In this paper, we study a class of biharmonic problem of the form
{

∆2u = f(x, u) + h in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ∈ R
N (N > 4) is a bounded smooth domain, ∆2 denotes the biharmonic

operator defined by ∆2u = ∆(∆u). Let further f : Ω× R → R be a carathéodory
function such that

(R) mr(x) := max
|s|≤r

|f(x, s)| ∈ L2(Ω) for each r > 0, (1.2)

and h ∈ L2(Ω). We will also assume the conditions :

(f) λi ≤ l(x) := lim inf
|s|→∞

f(x, s)

s
≤ lim sup

|s|→∞

f(x, s)

s
:= k(x) ≤ λi+1

uniformly for a.e. x ∈ Ω, and

(F) λi ≤ L(x) := lim inf
|s|→∞

2F (x, s)

s2
≤ lim sup

|s|→∞

2F (x, s)

s2
:= K(x) ≤ λi+1
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uniformly for a.e. x ∈ Ω, with strict inequalities λi < L(x), K(x) < λi+1 holding
on subsets of positive measure where F (x, s) =

∫ s

0 f(x, t)dt and λi < λi+1 are two
consecutive eigenvalues of the problem ∆2u = λu in Ω, u = ∆u = 0 on ∂Ω.
The conditions imposed on f are usually classified as non-resonant or resonant,
according as they yield the solvability of problem (1.1) for every h or not.
Many papers have been devoted to the obtention of resonant conditions of the
second order problem

{

−∆u = f(x, u) + h in Ω,

u = 0 on ∂Ω,
(1.3)

where h ∈ Lp(Ω), for some suitable p ≥ 2 is given.
See for instance [6], [1] and the references given there.
To the best of our knowledge, the solvability of boundary value problem (1.1) has
not been studied till now. The main purpose of this paper is to extend some of
the results known in [1], concerning the Dirichlet problem (1.3) to the biharmonic
problem (1.1) with Navier boundary condition.
Our main result is the following :

Theorem 1.1. Under hypothesis (f) and (F), problem (1.1) is solvable for any
given function h ∈ L2(Ω)

The proof is based on variational method, we will use the well-known Rabi-
nowitz saddle point theorem [3].
The plan of this paper is the following : in section 2, we prove some preliminary
lemmas. In section 3 we give the proof of our main result.

2. Preliminary lemmas

From the conditions (R) and (f), it follows that there exist constants a, A > 0
and functions b ∈ L2(Ω), B ∈ L1(Ω) such that :

(1) |f(x, s)| ≤ a|s|+ b(x), x ∈ Ω, s ∈ R,

(2) |F (x, s)| ≤ As2 +B(x), x ∈ Ω, s ∈ R,

hence the functional

I(u) =
1

2

∫

Ω

(∆u)2dx−

∫

Ω

F (x, u)dx −

∫

Ω

hu dx

is well-defined and of class C1 on the space H := H1
0 (Ω) ∩H2(Ω) with norm

‖u‖ = ‖∆u‖L2 =
(

∫

Ω

|∆u|2dx
)1/2

,

where ‖.‖L2 denote the usual norm in L2(Ω).
The derivative I ′(u) ∈ H∗ is given by

< I ′(u), w >=

∫

Ω

∆u∆w dx−

∫

Ω

f(x, u)w dx−

∫

Ω

hw dx
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for all u,w ∈ H .
Thus the critical points of I are precisely the weak solutions u ∈ H of (1.1).
Let (un) ⊂ H be an unbounded sequence. Then, defining vn by

vn :=
un

‖un‖
,

we have ‖vn‖ = 1 and , passing if necessary to a subsequence (still denoted by
(vn)), we may assume

vn → v weakly in H,

vn → v strongly in L2(Ω), (2.1)

vn(x) → v(x) a.e. in Ω,

and |vn(x)| ≤ z(x) a.e., where z ∈ L2(Ω).

Now, assuming (f), we obtain that the sequence ( f(.,un)
‖un‖

) is bounded in L2(Ω).

Thus for a subsequence

f(., un)

‖un‖
⇀ f̃ weakly in L2(Ω) (2.2)

Lemma 2.1. The function f̃ above satisfies

l(x) ≤
f̃(x)

v(x)
≤ k(x) if v(x) 6= 0, (2.3)

f̃(x) = 0 if v(x) = 0, (2.4)

where v and l, k are given in (2.1) and (f), respectively.

Proof: see [2, Lemma 4]. ✷

Lemma 2.2. Let Ψn(x) =
2F (x,un(x))

‖un‖2 . If ‖un‖ → +∞ then

L(x)v(x)2 ≤ lim inf Ψn(x) ≤ lim supΨn(x) ≤ K(x)v(x)2 (2.5)

for a.e. x ∈ Ω, where v and K, L are given in (2.1) and (F), respectively.

Proof: see [1, Lemma 2]. ✷

The next result is a consequence of the equivalence between the unique contin-
uation and the strict monotonicity of the biharmonic operator.

Lemma 2.3. (see [4]) Let m : Ω → R be a L∞(Ω) function satisfying λi ≤ m(x) ≤
λi+1, with λi < m(x) and m(x) < λi+1 on subsets of positive measure. If v ∈ H is
a weak solution of

{

∆2v = m(x)v in Ω,
v = ∆v = 0 on ∂Ω,

(2.6)

then v ≡ 0.
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3. Proof of the theorem 1.1

First we need to study the functional I : H → R defined in the introduction.
Throughout this section we will assume that conditions (f) and (F) hold.

Proposition 3.1. The functional I satisfies the Palais-Smale condition (PS).

Proof: : Let (un) ∈ H be such that

|I(un)| ≤ C (3.1)

| < I ′(un), v > | =
∣

∣

∣

∫

Ω

∆un∆v dx−

∫

Ω

f(x, un)v dx−

∫

Ω

hv dx
∣

∣

∣
≤ εn‖v‖ (3.2)

for all v ∈ H , where C is a constant and εn → 0 as n → +∞. In order to show that
(un) has a convergent subsequence, it suffices to show that (un) remains bounded
in H.
Suppose by contradiction that ‖un‖ → +∞ as n → +∞. Then , as we observed in
the previous section, (a subsequence of) vn = un

‖un‖
is such that

vn → v weakly in H,

vn → v strongly in L2(Ω),

vn(x) → v(x) a.e. in Ω,

and |vn(x)| ≤ z(x) a.e , where z ∈ L2(Ω).
Moreover, we have

f(., un)

‖un‖
⇀ f̃ weakly in L2(Ω) (3.3)

where f̃ satisfies

l(x) ≤
f̃(x)

v(x)
≤ k(x) if v(x) 6= 0, (3.4)

f̃(x) = 0 if v(x) = 0 (3.5)

Let us define

m(x) =











f̃(x)
v(x) , if v(x) 6= 0,

λ = 1
2 (λi + λi+1) , if v(x) = 0.

Then f̃ = m(x)v(x) and, by (3.4) and (3.5) we have

l(x) ≤ m(x) ≤ k(x) if v(x) 6= 0 (3.6)

m(x) = λ if v(x) = 0, (3.7)
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so that λi ≤ m(x) ≤ λi+1 in view of (f).
Now, we use (3.2) with v = un and we divide by ‖un‖

2 to obtain at the limit
∫

Ω

f(x, un)

‖un‖
vn dx → 1

Consequently
∫

Ω

f̃ v dx = 1 (3.8)

so that v 6≡ 0, necessarily.
On the other hand, for any w ∈ H , we have that

| < I ′(un), w > |

‖un‖
=

∣

∣

∣

∫

Ω

∆vn∆w −

∫

Ω

f(x, un)

‖un‖
w −

1

‖un‖

∫

Ω

hw

∣

∣

∣
≤ εn

‖w‖

‖un‖
→ 0

from which using (3.3) and the fact that vn ⇀ v weakly in H , we obtain
∫

Ω

∆v∆w =

∫

Ω

f̃w, for all w ∈ H.

Using Lemma 2.1, we see that v ∈ H is a weak solution of the problem
{

∆2v = f̃ = mv in Ω,
v = ∆v = 0 on ∂Ω.

(3.9)

Now, we will distinguish three cases : (i) m(x) ≡ λi (ii) m(x) ≡ λi+1 and (iii)
λi ≤ m(x) ≤ λi+1 with λi < m(x) and m(x) < λi+1 on subsets of positive mea-
sure. We will see that each case leads to a contradiction.

case(i) : If m(x) ≡ λi, then by multiplying (3.9) by v, integrating, and using
(3.8) we obtain :

∫

Ω

(∆v)2 = λi

∫

Ω

v2 = 1 (3.10)

On the other hand, from (3.1) we obtain

2I(un)

‖un‖2
= 1−

∫

Ω

2F (x, un)

‖un‖2
−

2

‖un‖

∫

Ω

hvn → 0.

So that
∫

Ω

2F (x, un)

‖un‖2
→ 1 (3.11)

Therefore, combining (3.10), (3.11) and Fatou’s lemma yields

λi

∫

Ω

v2 = lim

∫

Ω

2F (x, un)

‖un‖2
≥

∫

Ω

lim inf
2F (x, un)

‖un‖2
(3.12)

Using Lemma 2.2 we get

λi

∫

Ω

v2 ≥

∫

Ω

L(x)v2.
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But then, since L(x) ≥ λi, we obtain L(x) = λi a.e. in Ω which contradicts (F).

Case(ii) : Similarly to the case (i), if m(x) ≡ λi+1 we obtain

1 = λi+1

∫

Ω

v2

and

λi+1

∫

Ω

v2 = lim

∫

Ω

2F (x, un)

‖un‖2
≤

∫

Ω

lim sup
2F (x, un)

‖un‖2

so that

λi+1

∫

Ω

v2 ≤

∫

Ω

K(x)v2

by Lemma 2.2 , and as K(x) ≤ λi+1, we conclude that K(x) = λi+1 a.e. in Ω
which again contradicts (F).

Case (iii) : Since v 6≡ 0, this case can not occur in view of Lemma 2.3.

Since neither one of cases (i), (ii), (iii) can occur, this shows that any (PS) sequence
must be bounded, so that the functional I satisfies the Palais-Smale condition. ✷

Now, let us consider the decomposition of the space H as H = V ⊕W where
V is the subspace spanned by the eigenfunctions corresponding to λ1, ..., λi and
W = V ⊥.
We define the two functionals A and B as follow :

A(v) = ‖v‖2 −

∫

Ω

L(x)v2, ∀v ∈ V,

B(w) = ‖w‖2 −

∫

Ω

K(x)w2, ∀w ∈ W,

We recall the two useful inequalities [5]:

∫

Ω

(∆v)2 ≤ λi

∫

Ω

v2, ∀v ∈ V.

∫

Ω

(∆w)2 ≥ λi+1

∫

Ω

w2, ∀w ∈ W

and the characterization of the first eigenvalue λ1 of ∆2 on H defined by

λ1 = inf
{

∫

Ω

|∆u|2dx : u ∈ H and

∫

Ω

|u|2dx = 1
}

.

They will be used in the proof of the the next proposition following the same ideas
as in [1].

Proposition 3.2. There exists δ > 0 such that :
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(a) B(w) ≥ δ‖w‖2, ∀w ∈ W ;

(b) I(w) → +∞ as ‖w‖ → +∞, w ∈ W ;

(c) A(v) ≤ −δ‖v‖2, ∀v ∈ V ;

(d) I(v) → −∞ as ‖v‖ → +∞, v ∈ V .

Proof: (a) First, since ‖w‖2 ≥ λi+1‖w‖
2
L2 , for all w ∈ W , we have

B(w) ≥

∫

Ω

(λi+1 −K(x))w2 ≥ 0, ∀w ∈ W. (3.13)

By contradiction if (a) does not hold, then there exists a sequence wn ∈ W such
that ‖wn‖ = 1, B(wn) → 0, and for further subsequence wn ⇀ w ∈ W weakly and
wn → w strongly in L2(Ω), so that

B(w) ≤ lim inf B(wn) = 0

by the weak lower semicontinuity of the convex functional B on W. Therefore, we
get B(w) = 0. We claim that w ≡ 0. Indeed , since B(w) = 0 , by (3.13) we get
w = 0 on the set

ΩK = {x ∈ Ω : K(x) < λi+1}.

On the other hand

0 = B(w) = ‖w‖2 −

∫

Ω

K(x)w2 ≥ ‖w‖2 − λi+1‖w‖
2
L2 ≥ 0

hence ‖w‖2 = λi+1‖w‖
2
L2 which shows that w is an eigenfunction associated to

λi+1. Therefore, since w = 0 on the set ΩK of positive measure, using the unique
continuation principle we get w ≡ 0.
But, then we have wn ⇀ w = 0 in L2(Ω), hence

B(wn) = 1−

∫

Ω

K(x)w2
n → 1

which contradict B(wn) → 0. ✷

(b) Let 0 < ε < δλi+1 where δ is given above. By (F) there exists bε ∈ L1(Ω) such
that

2F (x, s) ≤ (K(x) + ε)s2 + bε(x)
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for a.e. x ∈ Ω and all s ∈ R. Therefore, we obtain for all w ∈ W ,

2I(w) = ‖w‖2 − 2

∫

Ω

F (x,w) − 2

∫

Ω

hw

≥ ‖w‖2 −

∫

Ω

(K(x) + ε)w2 − 2

∫

Ω

hw −

∫

Ω

bε

= B(w) − ε

∫

Ω

w2 − 2

∫

Ω

hw −

∫

Ω

bε

≥ δ‖w‖2 − ε‖w‖2L2 − 2‖h‖L2‖w‖L2 − ‖bε‖L1

≥ δ‖w‖2 −
ε

λi+1
‖w‖2 − C1‖w‖ − C2

≥ (δ −
ε

λi+1
)‖w‖2 − C1‖w‖ − C2

where δ − ε
λi+1

> 0 and ‖.‖L1 denote the usual norm in L1(Ω). It follows that

I(w) → +∞ as ‖w‖ → +∞, w ∈ W . ✷

(c) Since ‖v‖2 ≤ λi‖v‖
2
L2 for all v ∈ V , we have

A(v) ≤

∫

Ω

(λi − L(x))v2 ≤ 0, ∀v ∈ V.

Similarly to (a), we prove that A(v) = 0 implies v ≡ 0, by showing first that v = 0
on the set ΩL = {x ∈ Ω : λi < L(x)} of positive measure and that v is an
eigenfunction associated to λi. Then by contradiction, we obtain vn ∈ V such that
‖vn‖ = 1 and A(vn) → 0, where we may assume that vn → v ∈ V in H since V is
of finite dimension. Therefore we obtain A(v) = 0 so that v = 0 and consequently
∫

Ω
L(x)v2n → 0 , but then , it follows that

A(vn) = 1−

∫

Ω

L(x)v2n → 1

which contradict A(vn) → 0. ✷

(d) Let 0 < ε < δλ1, fixed. By the assumption (F) we get

2F (x, s) ≥ (L(x)− ε)s2 − bε(x)

for all a.e. x ∈ Ω and all s ∈ R, which implies

2I(v) ≤ A(v) + ε‖v‖2L2 + 2‖h‖L2‖v‖L2 + ‖bε‖L1

≤ −(δ −
ε

λ1
)‖v‖2 + C1‖v‖+ C2

for all v ∈ V . Since δ − ε
λ1

> 0 it follows that I(v) → −∞ as ‖v‖ → +∞, v ∈ V .
✷
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Now we are in position to prove our main result.

Proof of Theorem 1.1.
We write the functional I as :

I(u) =
1

2
‖u‖2 −

∫

Ω

(F (x, u) + hu)dx

=
1

2
‖u‖2 +N(u), u ∈ H,

where N(u) = −
∫

Ω (F (x, u) + hu)dx

Note that I is weakly lower semicontinuous, as the sum of the weakly lower
semicontinuous functional 1

2‖.‖
2 and the weakly continuous functional N . There-

fore, since I is coercive on W by Proposition 2(b), the infimum β := inf
W

I > −∞

is attained. Now, let α < β, by Proposition 2(d), there exists R > 0 such that
I(v) ≤ α for all v ∈ V with ‖v‖ ≥ R.
Finally, since I satisfies the Palais-Smale condition by Proposition 3.1, we can use
the saddle point theorem of P. Rabinowitz [3] to conclude the existence of a critical
point ũ ∈ H of I with I(ũ) ≥ β. ✷
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