
Bol. Soc. Paran. Mat. (3s.) v. 31 2 (2013): 219–230.
c©SPM –ISSN-2175-1188 on line ISSN-00378712 in press

SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v31i2.16603

Topology of Grill Filter Space and Continuity
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abstract: This paper will discuss about a new topology, obtained from a grill and
a filter on the same set. The Characterizations and open base of the new topology
are also aim of this paper. The generalized continuity is also a part of this paper.
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1. Introduction

The notion of grill [7] and filter [21] is already in literature from 1947 and 1937
respectively. The topics - Proximity spaces, Closure spaces, the Theory of Com-
pactifications and similar other extension problems [5,6,7,20] have been enriched
by the study of grill. The filter is an important part in topological space for the
discussion of the separation axioms, compactness, continuity etc. Recently math-
ematicians: Roy and Mukherjee [19], Noiri and Al-Omiri [1,2,3] have used grill on
topological space as like ideal topological space [4,8,10,11,17,22] and have obtained
many new topologies. Further Noiri and Al-Omiri and Modak et al [13,14,15,16]
have considered ideal or grill on generalized spaces and discussed different types of
topological space.
In this paper, we shall use grill and filter in different aspect something different
from traditional uses of the same. Actually we shall define a space with grill and
filter together on a set. From this space we define a topology via two operators. We
also give a standard form of base, and characterize the topology. We also discuss a
new type of generalized continuity on the new topological space. At last we shall
obtain the relations of this continuity with usual continuity.
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2. Preliminaries

In this section we shall give some definitions and prove some results, which are
the preliminaries for the paper. At first we shall give the formal definition of filter.
A subcollection F (not containing the empty set) of ℘(X) is called a filter [21] on
X if F satisfies the following conditions:

1. A ∈ F and A ⊆ B implies B ∈ F;

2. A, B ∈ F implies A ∩B ∈ F.

In this paper we shall try to obtain a topology with the help of filter, for this we
shall discuss following:

Definition 2.1. A set A ∈ ℘(X) is called an F-open set if A ∈ F. B ∈ ℘(X) is
called a F-closed set if X \B ∈ F. We set F-Int(A) = ∪{U : U ⊆ A, U ∈ F} and
F-Cl(A) = ∩{F : A ⊆ F,X \ F ∈ F}.

Here we shall prove some theorems related to F-Int and F-Cl:

Theorem 2.1. Let F be a filter on X and A ⊆ X. Then x ∈ F-Cl(A) if and only
if every F-open set Ux containing x, Ux ∩ A 6= φ.

Proof: Let x ∈ F-Cl(A). Supposed that Ux ∩ A = φ, where Ux is an F-open
set containing x. Then A ⊆ (X \ Ux) and X \ Ux is a F-closed set containing A.
Therefore x /∈ (X \ Ux), and this is a contradiction. Conversely supposed that
Ux ∩ A 6= φ, for every F-open set Ux containing x. If possible suppose that x /∈ F-
Cl(A), then there exists F subset of X which satisfy A ⊆ F,X \F ∈ F and x /∈ F .
Therefore x ∈ (X \ F ). So A ∩ (X \ F ) = φ for an F-open set X \ F containing x.
It is a contradiction. ✷

Theorem 2.2. Let F be a filter on X and A ⊆ X. Then F-Int(A) = X \ F-
Cl(X \A).

Proof: Let x ∈ F-Int(A). Then there is an U ∈ F, such that x ∈ U ⊆ A. Hence
x /∈ (X \U), i.e., x /∈ F-Cl(X \U), since X \U is a F-closed set containing X \A.
So x /∈ F-Cl(X \A)(from Definition 2.1), and hence x ∈ X \ F-Cl(X \A).
Conversely suppose that x ∈ X \ F-Cl(X \ A). So x /∈ F-Cl(X \A), then there is
an F-open set Ux containing x, such that Ux ∩ (X \A) = φ. So Ux ⊆ A. Therefore
x ∈ F-Int(A)(from Definition 2.1). Hence the result. ✷

Theorem 2.3. Let F be a filter on X and A ⊆ X. Then for G ∈ F, G ∩ F-
Cl(A) ⊆ F-Cl(G ∩ A).

Proof: Let x ∈ G ∩ F-Cl(A). Then x ∈ G and x ∈ F-Cl(A). Implies that x ∈ G
and for every F-open set Ux containing x, Ux ∩A 6= φ. Again G∩Ux is an F-open
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set containing x, then (G ∩ Ux) ∩ A 6= φ. Hence x ∈ F-Cl(G ∩ A). Therefore
G ∩ F-Cl(A) ⊆ F-Cl(G ∩ A). ✷

Following is the concepts of grill [7]:
A subcollection G (not containing the empty set) of ℘(X) is called a grill [7] on X
if G satisfies the following conditions:

1. A ∈ G and A ⊆ B implies B ∈ G;

2. A,B ⊆ X and A ∪B ∈ G implies that A ∈ G or B ∈ G.

Let F and G be the filter and grill respectively on the same set X . Then (X,F,G)
is denoted as grill-filter space.
One of the operator on grill-filter space is:

Definition 2.2. [14]. Let (X,F,G) be a grill-filter space. A mapping ΩG: ℘(X) →
℘(X) is defined as follows ΩG(A) = Ω(A) = {x ∈ X : A∩U ∈ G for all U ∈ F(x)}
for each A ∈ ℘(X), where F(x) = {U ∈ F : x ∈ U}.

Here we shall mention a property on Ω-operator, although so many properties
have been discussed in [14].

Theorem 2.4. Let (X,F,G) be a grill-filter space and A,B ⊆ X. Then Ω(A∩B) ⊆
Ω(A) ∩ Ω(B).

Proof: Since A∩B ⊆ A and A∩B ⊆ B, then Ω(A∩B) ⊆ Ω(A) [14] and Ω(A∩B) ⊆
Ω(B) [14]. Hence Ω(A ∩B) ⊆ Ω(A) ∩ Ω(B). ✷

Following example shows that the reverse inclusion of the above theorem does
not hold in general, however the relation, Ω(A ∪B) = Ω(A) ∪ Ω(B) [14] hold.

Example 2.1. Let X = {a, b, c, d}, F = {X, {a, b, c}} and G = {{a}, {b}, {a, c},
{a, b}, {a, d}, {a, b, c}, {c, b, d}, {a, b, d}, {a, c, d}, {b, c}, {b, d}, X}. Consider A = {a,
d}, and B = {b, d}. Then Ω({a, d}) = {a, b, c, d} and Ω({b, d}) = {a, b, c, d}, and
hence Ω(A) ∩ Ω(B) = {a, b, c, d}. But Ω(A ∩ B) = Ω({d}) = φ. So, Ω(A) ∩ Ω(B)
is not a subset of Ω(A ∩B).

New topology from grill-filter space is:

Remark 2.1. [14]. Let (X,F,G) be a grill-filter space. We define a map CL :
℘(X) → ℘(X) by CL(A) = A ∪ Ω(A), for all A ∈ ℘(X). Then the map ′CL′ is a
Kuratowski closure operator. We will denote τFG, the topology, generated by CL,
that is τFG = {V ⊆ X : CL(X \ V ) = X \ V }.

In this paper we shall denote interior and closure operator of (X, τFG) by IntFG

and ClFG respectively. Again (X, τFG,F,G) will be denoted as grill-filter topological
space.
Following is the representation of an open base for the topology τFG:
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Theorem 2.5. [14]. Let (X,F,G) be a grill-filter space. Then β(F,G) = {V \G:
V ∈ F, G/∈ G} is an open base for the topology τFG.

Another operator on (X,F,G) is defined as follows:

Definition 2.3. [14]. Let (X,F,G) be a grill-filter space. An operator ψΩ :
℘(X) → F is defined as follows for every A ∈ ℘(X), ψΩ(A) = {x ∈ X: there
exists U ∈ F(x) such that U \A /∈ G} and observe that ψ

Ω
(A) = X \ Ω(X \A).

Now we shall prove some characterizations:

Theorem 2.6. Let (X,F,G) be a grill-filter space. Then F ⊆ G if and only if
Ω(X) = X.

Proof: Suppose that F ⊆ G. It is obvious that Ω(X) ⊆ X . For reverse inclusion,
let x ∈ X but x /∈ Ω(X). Then there exists U ∈ F(x), U ∩X /∈ G. Then U /∈ G, a
contradiction to the fact that F ⊆ G. Hence Ω(X) = X .
Conversely suppose that Ω(X) = X . Let φ 6= V ∈ F, then V ∩ X 6= φ. Since
Ω(X) = X , therefore V ∩X ∈ G. Implies that V ∈ G, and hence F ⊆ G. ✷

Corollary 2.1. Let (X,F,G) be a grill-filter space and A ∈ F. Then F ⊆ G if and
only if Ω(A) = F-Cl(A).

Proof: Suppose that F ⊆ G. It is obvious that Ω(A) ⊆ F-Cl(A) [14]. For reverse
inclusion, let α ∈ F-Cl(A), then for every Uα ∈ F(α), Uα ∩ A 6= φ (from Theorem
2.1). Implies that Uα ∩ A ∈ F ⊆ G. So α ∈ Ω(A), and hence Ω(A) = F-Cl(A).
Converse part is obvious from Theorem 2.6. ✷

Joint result of the Theorem 2.6 and the Corollary 2.1 is:

Theorem 2.7. Let (X,F,G) be a grill-filter space. Then following properties are
equivalent:

1. F ⊆ G;

2. X = Ω(X);

3. If A ∈ F, then Ω(A) = F-Cl(A).

Theorem 2.8. Let (X,F,G) be a grill-filter space with F ⊆ G. Then for F-closed
subset A, ψ

Ω
(A) \A = φ.

Proof: ψ
Ω
(A)\A = [X \Ω(X \A]\A = [X \F-Cl(X \A)]\A(from Theorem 2.7)

= F-Int(A) \A(from Theorem 2.2) = φ. ✷

Theorem 2.9. Let (X,F,G) be a grill-filter space and A ⊆ X. Then F ⊆ G if and
only if Ω[ψΩ(A)] = F-Cl[ψΩ(A)].
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Proof: Proof is obvious from the fact that ψΩ(A) is an F-open set [14] and the
Theorem 2.7. ✷

Following theorem is an important part for the next section.

Theorem 2.10. Let (X,F,G) be a grill-filter space, where F ⊆ G. Then for A ⊆ X,
ψΩ(A) ⊆ Ω(A).

Proof: Suppose x ∈ ψΩ(A) but x /∈ Ω(A). Then there exists Ux ∈ F(x) such
that Ux ∩ A /∈ G. Since x ∈ ψ

Ω
(A), therefore there exists Vx ∈ F(x) such that

Vx \ A /∈ G. Now Ux ∩ Vx ∈ F(x) and (Ux ∩ Vx) ∩ A /∈ G(from definition of grill).
Again (Ux ∩Vx) \A /∈ G(from definition of grill). Write Ux ∩Vx = [(Ux ∩Vx)∩A]∪
[(Ux ∩ Vx) \A] /∈ G. That is, Ux ∩ Vx /∈ F, a contradiction. Hence ψΩ(A) ⊆ Ω(A).

✷

Here we shall define some generalized open sets which are already in literature.

Definition 2.4. [12]. A set A in a topological space (X, τ ) is called semi-open
if A ⊆ cl(int(A)). The set of all semi-open sets in a topological space (X, τ) is
denoted as SO(X, τ ).

Definition 2.5. [18]. A set A in a topological space (X, τ ) is called α-set if
A ⊆ int(cl(int(A))). The set of all α-sets in a topological space (X, τ ) is denoted
as τα.

Definition 2.6. [9]. A topological space (X, τ ) is said to be resolvable if there is
a subset D of X such that both D and X \D are dense in (X, τ), otherwise it is
said to be irresolvable.

The space of reals with usual topology provides an example of a resolvable space
while any topological space with an isolated point furnishes for an irresolvable one.

3. ψΩ-C set

This section deals with a new type of set and its properties:

Definition 3.1. Let (X,F,G) be a grill-filter space. A subset A of X is called a
ψΩ-C set if A ⊆ F-Cl[ψΩ(A)].

The collection of all ψ
Ω
-C sets in (X,F,G) is denoted as ψ

Ω
(X,F).

Properties of ψΩ(X,F):
It is obvious that F ⊆ τFG [14]⊆ ψ

Ω
(X,F). But reverse inclusion does not hold in

general, which will be discussed afterwards.

Theorem 3.1. Let {Aα : α ∈ ∆} be a collection of nonempty ψΩ-C sets in a
grill-filter space (X,F,G), then ∪α∈∆Aα ∈ ψΩ(X,F).
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Proof: For each α ∈ ∆, Aα ⊆ F-Cl[ψΩ(Aα)] ⊆ F-Cl[ψΩ(∪α∈∆Aα)] [14]. This
implies that ∪α∈∆Aα ⊆ F-Cl[ψΩ(∪α∈∆Aα)]. Thus ∪α∈∆Aα ∈ ψΩ(X,F). ✷

Intersection of two ψ
Ω
-C sets may not be a ψ

Ω
-C set in general, which will be

discussed by the following:

Observation 3.1. Suppose intersection of two ψ
Ω
-C sets is ψ

Ω
-C set. Then for

A,B ∈ ψΩ(X,F), Then A ∩B ⊆ F-Cl[ψΩ(A ∩B)] = Ω[ψΩ(A ∩B)](from Theorem
2.7)⊆ Ω[Ω(A ∩B)](by Theorem 2.10) ⊆ Ω(A ∩B) [14], when F ⊆ G.

Example 3.1. If intersection of two ψΩ-C sets is also a ψΩ-C set. Then from
above observation, A∩B ⊆ Ω(A∩B). But from Example 2.1, A∩B is not a subset
of Ω(A ∩B). Hence intersection of two ψ

Ω
-C sets may not be a ψ

Ω
-C set again.

Observation 3.2. If possible supposed that every open set of (X, τFG,F,G) is
also a member of ψΩ(X,F). Then intersection of two ψΩ-C sets is again a ψΩ-C
set, which is a contradiction to the Example 3.1. Hence the reverse inclusion of
τFG ⊆ ψ

Ω
(X,F) does not hold. Again the empty set, φ ∈ ℘(X), φ /∈ F but φ ∈ τFG.

Hence the reverse inclusion of F ⊆ τFG fails to hold.

However following hold:

Theorem 3.2. Let (X,F,G) be a grill-filter space and A ∈ ψΩ(X,F). If U ∈ F,
then U ∩ A ∈ ψ

Ω
(X,F).

Proof: Let U ∈ F and A ∈ ψΩ(X,F). Then U ∩ A ⊆ U ∩ F-Cl[ψΩ(A)](since
A ∈ ψΩ(X,F))⊆ F-Cl[U ∩ψΩ(A)](using Theorem 2.3)⊆ F-Cl[ψΩ(U)∩ψΩ(A)] [14]
= F-Cl[ψΩ(U ∩ A)] [14]. Hence the result. ✷

4. τψ
FG

-topology

In this section we shall introduce a new type of set whose collection form a
topology. Although, the collection used in section3 does not form a topology.

Definition 4.1. Let (X,F,G) be a grill-filter space. A subset A of X is called a
ψΩ- set if A ⊆ F-Int[F-Cl(ψΩ(A))].

The collection of all ψΩ sets in (X,F,G) is denoted by τψ
FG

. This collection lying

in between F and ψ
Ω
(X,F) i.e., F ⊆ τψ

FG
⊆ ψ

Ω
(X,F).

Properties of τψ
FG

:

Theorem 4.1. Let (X,F,G) be a grill-filter space, then τψ
FG

= {A ⊆ X : A ⊆ F-
Int[F-Cl(ψΩ(A))]} forms a topology on X, where F ⊆ G.

Proof: (i). ψ
Ω
(φ) = X \ Ω(X \ φ) = φ(from Theorem 2.7). So, φ ∈ τψ

FG
. Now

ψΩ(X) = X \ Ω(X \X) = X \ φ(from Definition 2.1) = X . Hence X ⊆ F-Int[F-

Cl(ψϕ(X))]. Therefore X ∈ τψ
FG

.



Topology of Grill Filter Space and Continuity 225

(ii). Let Ai ∈ τψ
FG

for all i. Now we are to show that ∪iAi ∈ τψ
FG

. Since
Ai ⊆ ∪iAi, ψΩ(Ai) ⊆ ψΩ(∪iAi) [14]. Thus F-Int[F-Cl(ψΩ(Ai))] ⊆ F-Int[F-
Cl(ψ

Ω
(∪iAi))](since ψ

Ω
(Ai) is an F-open set [14]). So Ai ⊆ F-Int[F-Cl(ψ

Ω
(Ai))] ⊆

F-Int[F-Cl(ψΩ(∪iAi))] for all i. Therefore ∪iAi ∈ τψ
FG

.

(iii). Let A1, A2 ∈ τψ
FG

. We are to show that A1 ∩ A2 ∈ τψ
FG

. If A1 ∩ A2 = φ, we
are done. Let A1 ∩ A2 6= φ. Let x ∈ A1 ∩ A2. Now A1 ⊆ F-Int[F-Cl(ψΩ(A1))]
and A2 ⊆ F-Int[F-Cl(ψ

Ω
(A2))], implies that x ∈ F-Int[F-Cl(ψ

Ω
(A1))] ∩ F-Int[F-

Cl(ψΩ(A2))]. So x ∈ F-Int[F-Cl(ψΩ(A1)) ∩ F-Cl(ψΩ(A2))] (from Definition 2.1).
Therefore there exists an F-open set Vx containing x such that Vx ⊆ F-Cl(ψΩ(A1))∩
F-Cl(ψΩ(A2)). Let Ux be any F-open set containing x. Then φ 6= Vx ∩ Ux ⊆ F-
Cl(ψΩ(A1)) and Vx ∩ Ux ⊆ F-Cl(ψΩ(A2)). Let y ∈ Vx ∩ Ux. Consider any F-open
set Gy containing y. Without loss of generality we may suppose that Gy ⊆ Vx∩Ux.
So Gy ∩ (ψΩ(A1)) 6= φ. From the definition of ψΩ(A1), there exists a U ∈ F(x)
such that U ⊆ Gy and U \ A1 /∈ G. Again U ⊆ F-Cl(ψΩ(A2)), so there exists
a nonempty F-open set U/ ⊆ U such that U/ \ A2 /∈ G. Now U/ \ (A1 ∩ A2) =
(U/ \ A1) ∪ (U/ \ A2) ⊆ (U \ A1) ∪ (U/ \ A2) /∈ G(from definition of grill). Hence
from definition of ψΩ, U/ ⊆ ψΩ(A1 ∩A2). Since U/ ⊆ Gy, Gy ∩ ψΩ(A1 ∩A2) 6= φ,
therefore y ∈ F-Cl(ψΩ(A1 ∩A2)). Since y was any point of Vx ∩Ux, it follows that
Vx ∩ Ux ⊆ F-Cl(ψΩ(A1 ∩ A2)), implies that x ∈ F-Int[F-Cl(ψΩ(A1 ∩ A2))]. Thus

A1 ∩ A2 ⊆ F-Int[F-Cl(ψΩ(A1 ∩ A2))]. Hence A1 ∩ A2 ∈ τψ
FG

.

From (i), (ii) and (iii) τψ
FG

forms a topology. ✷

Proposition 4.1. Let (X,F,G) be a grill-filter space with F ⊆ G. Then ψΩ(A) 6= φ
if and only if A contains a nonempty τFG-interior.

Proof: Let ψΩ(A) 6= φ. Then from definition of ψΩ(A), there exists a nonempty
set U ∈ F such that U \ A = P , where P /∈ G. Now U \ P ⊆ A. By the Theorem
2.5, U \ P ∈ τFG and A contains a nonempty τFG-interior.
Conversely suppose that A contains a nonempty τFG-interior. Hence there exists
a U ∈ F and P /∈ G such that U \P ⊆ A. So U \A ⊆ P . Let H = U \A ⊆ P , then
H /∈ G. Thus ψΩ(A) 6= φ. ✷

Two topologies τψ
FG

and τFG have been obtained from (X,F,G) space. Now we

shall discuss the resolvability of τψ
FG

vis-a-vis resolvability of τFG.

Theorem 4.2. If F ⊆ G in (X,F,G) then D(X, τFG) = D(X, τψ
FG

)(D(X, τ ) de-
notes the collection of all dense subsets in the topological space (X, τ)).

Proof: Since τFG ⊆ τψ
FG

then

D(X, τψ
FG

) ⊆ D(X, τFG)————(i).

Next let D ∈ D(X, τFG). We are to show that D ∈ D(X, τψ
FG

). Let φ 6= A ∈

τψ
FG

, so ψ
Ω
(A) 6= φ. By Proposition 4.1, A has a nonempty τFG-interior. Thus

IntFG(A) 6= φ. Now IntFG(A) ∩ D ⊆ A ∩ D, where IntFG(A) ∩ D 6= φ, since

D ∈ (X, τFG). Thus A ∩D 6= φ so that D ∈ D(X, τψ
FG

). Therefore
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D(X, τFG) ⊆ D(X, τψ
FG

) ————(ii).

From (i) and (ii) we have D(X, τFG) = D(X, τψ
FG

). ✷

Theorem 4.3. Let (X,F,G) be a grill-filter space, with F ⊆ G. Then (X, τψ
FG

) is
resolvable if and only if (X, τFG) is resolvable.

Proof: Since D(X, τFG) = D(X, τψ
FG

), it follows from definition of resolvability

that (X, τψ
FG

) is resolvable if and only if (X, τFG) is resolvable. ✷

Now we shall give an representation of α-topology of τFG with the help of
ψΩ-operator in the following way:

Theorem 4.4. Let x ∈ X. Then {x} ∈ ψ
Ω
(X,F) if and only if {x} is open in

(X, τFG).

Proof: Let {x} ∈ ψΩ(X,F) then ψΩ({x}) 6= φ. By Proposition 4.1, {x} contain
a nonempty τFG-interior. Therefore {x} is open in (X, τFG). Conversely suppose
that {x} is open in (X, τFG), implies that {x} ⊆ ψ

Ω
({x}) [14]. Therefore {x} ⊆ F-

Cl(ψΩ({x})), that is {x} ∈ ψΩ(X,F). ✷

Theorem 4.5. Let x ∈ X. Then {x} ∈ ψΩ(X,F) if and only if {x} ∈ τψ
FG

.

Proof: Let {x} ∈ ψ
Ω
(X,F). Therefore {x} is open in (X, τFG) (by above the-

orem). So {x} ⊆ ψΩ({x}) [14] implies that {x} ⊆ F-Int[F-Cl(ψΩ({x}))], since

ψ
Ω
({x}) is an F-open set. Thus {x} ∈ τψ

FG
. Conversely suppose that {x} ∈ τψ

FG
,

then {x} ⊆ F-Int[F-Cl(ψΩ({x}))], implying that {x} ⊆ F-Cl(ψΩ({x})), hence
{x} ∈ ψΩ(X,F). ✷

From the above two theorems we get the following corollary:

Corollary 4.1. τψ
FG

is exactly the collection such that A belongs to τψ
FG

and B
belongs to ψ

Ω
(X,F) implies A ∩B belongs to ψ

Ω
(X,F), where F ⊆ G.

Proof: Let A ∈ τψ
FG

and B ∈ ψ
Ω
(X,F). Now we are to show that A ∩ B ∈

ψΩ(X,F). If A ∩ B = φ, we are done. Let A ∩ B 6= φ. Let x ∈ A ∩ B. This
implies that x ∈ F-Int[F-Cl(ψΩ(A))], therefore x ∈ F-Cl(ψΩ(A)). So for every
F-open set Ux containing x, Ux ∩ ψΩ(A) 6= φ. Again x ∈ B ⊆ F-Cl(ψΩ(B)),
then for every F-open set Vx containing x, Vx ∩ ψΩ(B) 6= φ. Therefore for F-open
set Wx = Ux ∩ Vx containing x, Wx ∩ ψ

Ω
(A) 6= φ and Wx ∩ ψ

Ω
(B) 6= φ. Again

Wx∩ψΩ(A) ⊆Wx and Wx∩ψΩ(B) ⊆Wx. Therefore Wx∩ψΩ(A)∩ψΩ(B) 6= φ. So
x ∈ F-Cl[ψΩ(A)∩ψΩ(B)], that is x ∈ F-Cl[ψΩ(A∩B)], therefore A∩B ∈ ψΩ(X,F).
Next we consider a subset A of X such that A ∩ B ∈ ψ

Ω
(X,F) for each B ∈

ψΩ(X,F). We have to show that A ∈ τψ
FG

, that is A ⊆ F-Int[F-Cl(ψΩ(A))],
that is A ⊆ F-Int[Ω(ψΩ(A))](by Theorem 2.7). If possible suppose that x ∈ A
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but x /∈ F-Int[Ω(ψΩ(A))]. Therefore x ∈ A ∩ [X \ F-Int(Ω(ψΩ(A)))] = A ∩ F-
Cl[X \Ω(ψΩ(A))](from Theorem 2.2) = A ∩ F-ClC, where C = X \Ω(ψΩ(A)). It
is obvious that C is an nonempty F-open set in (X,F), since Ω(ψ

Ω
(A)) is a F-closed

set [14]. Since x ∈ F-ClC then for all F-open set Vx containing x, Vx ∩ C 6= φ.
Therefore Vx ∩ ψΩ(C) 6= φ, since C ⊆ ψΩ(C) [14]. This implies that

x ∈ F-Cl(ψΩ(C)) ⊆ F-Cl[ψΩ({x} ∪ C)]—————-(i).
Again C ⊆ F-Cl(ψΩ(C)) ⊆ F-Cl[ψΩ({x} ∪ C)]————-(ii).

From (i) and (ii) {x} ∪ C ⊆ F-Cl[ψ
Ω
({x} ∪ C)]. Therefore {x} ∪ C ∈ ψ

Ω
(X,F).

Now by hypothesis A ∩ ({x} ∪ C) is a ψΩ-C set. We show that A ∩ ({x} ∪ C)
= {x}. If possible suppose that y ∈ X and x 6= y such that y ∈ A ∩ ({x} ∪ C).
So y ∈ A and y ∈ C. Now A = A ∩ X and X ∈ ψ

Ω
(X,F), again by hypothesis

A ∈ ψΩ(X,F). Since y ∈ A, y ∈ F-Cl(ψΩ(A)), a contradiction to the fact that
y ∈ C = [X \ Ω(ψΩ(A))] = [X \ F-Cl(ψΩ(A))]. Thus A ∩ ({x} ∪ C) = {x}.

Since {x} ∈ ψΩ(X,F), then {x} ∈ τψ
FG

(by Theorem 4.5). So {x} ⊆ F-Int[F-
Cl(ψ

Ω
({x}))] = F-Int[F-Cl(ψ

Ω
(A ∩ ({x} ∪ C)))] ⊆ F-Int(F-Cl(ψ

Ω
(A))). But

x ∈ F-Int(F-Cl(ψΩ(A))), a contradiction to the fact that x /∈ F-Int[Ω(ψΩ(A))].

Therefore we get A ⊆ F-Int[F-Cl(ψ
Ω
(A))] that is A ∈ τψ

FG
. This complete the

proof of theorem. ✷

Theorem 4.6. Let (X,F,G) be a grill-filter space, where F ⊆ G. Then SO(X, τFG)
= {A ⊆ X : A ⊆ F-Cl(ψ

Ω
(A))} = ψ

Ω
(X,F).

Proof: Let A ∈ SO(X, τFG). Then A ⊆ ClFG[IntFG(A)] = ClFG(A ∩ ψΩ(A))
[14]⊆ ClFG(ψΩ

(A)) = [ψ
Ω
(A) ∪ Ω(ψ

Ω
(A))] = Ω(ψ

Ω
(A)), since ψ

Ω
(A) ∈ F. This

implies that A ⊆ F-Cl(ψΩ(A)). Hence A ∈ ψΩ(X,F). So
SO(X, τFG) ⊆ ψΩ(X,F)————(i).

Suppose that A ∈ ψ
Ω
(X,F) and we show thatA ∈ SO(X, τFG). Let x /∈ ClFG(IntFG

(A)). Then there exists U ∈ τFG containing x such that U ∩ IntFG(A) = φ.
And also there exists F ∈ F and G /∈ G such that x ∈ F \ G ⊂ U ; hence
(F \G) ∩ IntFG(A) = φ. By Theorem 2.7, φ = ψΩ(φ) = ψΩ((F ∩ IntFG(A)) \G).
Since G /∈ G, φ = ψΩ(F ∩IntFG(A)) = ψΩ(F )∩ψΩ(IntFG(A)). Since F ∈ F ⊆ τFG,
F ⊆ ψ

Ω
(F ). And also ψ

Ω
(IntFG(A)) = ψ

Ω
(A ∩ ψ

Ω
(A)) = ψ

Ω
(A) ∩ ψ

Ω
(ψ

Ω
(A)) =

ψΩ(A). Therefore, we obtain F ∩ ψΩ(A) = φ. Since x ∈ F ∈ F, x /∈ F-Cl(ψΩ(A))
and by hypothesis x /∈ A. Consequently, we obtain A ⊂ ClFG(IntFG(A)) and hence
A ∈ SO(X, τFG).

ψΩ(X,F) ⊆ SO(X, τFG)————(ii).
From (i) and (ii), ψ

Ω
(X,F) = SO(X, τFG). ✷

Remark 4.1. Let x ∈ X, then {x} ∈ SO(X, τFG) if and only if {x} ∈ τψ
FG

, where
F ⊆ G.

Proof: Proof is obvious from Theorem 4.5 and the Theorem 4.6. ✷

Theorem 4.7. τψ
FG

is exactly the collection such that A belongs to τψ
FG

and B
belongs SO(X, τFG) implies A ∩B belongs to SO(X, τFG), where F ⊆ G.
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Proof: Proof is obvious from Corollary 4.1 and the Theorem 4.6. ✷

Now we shall discuss the relation between (τFG)
α and τψ

FG
. For this we mention

a remarkable theorem owing to O. Njastad.

Theorem 4.8. [18]. Let (X, τ ) be a topological space. τα consists of exactly those
sets A for which A ∩B ∈ SO(X, τ ) for all B ∈ SO(X, τ ).

From Theorem 4.7 and Theorem 4.8 follows;

Corollary 4.2. Let (X,F,G) be a grill-filter space, where F ⊆ G. Then τψ
FG

=
(τFG)

α.

5. Continuity on grill-filter topological spaces

In this last section, we shall define a generalized continuity on grill-filter space
and interrelate it with usual continuity. We also characterize this generalized con-
tinuity.
Definition of generalized continuity is:

Definition 5.1. Let (X, τFG,F,G) and (Y, τF1G1
,F1,G1) be two grill-filter topo-

logical spaces. A map f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) is called F-continuous

if f−1(V ) is F-open in (X, τFG,F,G), for every V ∈ τF1G1
.

Properties of F-continuity:
We know that F ⊆ τFG, then it is obvious that every F-continuous map is al-
ways a continuous map. Again from Observation 3.2, each continuous map is not
necessarily a F-continuous map.

Theorem 5.1. Let (X, τFG,F,G), (Y, τF1G1
,F1,G1) and (Z, τF2G2

,F2,G2) be

three grill-filter topological spaces. If f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) and

g : (Y, τF1G1
,F1,G1) −→ (Z, τF2G2

,F2,G2) are two F-continuous maps, then gof

is a F-continuous map.

Proof: Consider (gof)−1(V ), where V ∈ τF2G2
. Now g−1(V ) is F-open in (Y, τF1G1

,

F1,G1), again it is obvious that g−1(V ) is open in (Y, τF1G1
,F1,G1). So f−1(g−1(V ))

is F-open in (X, τFG,F,G). Hence the result. ✷

Corollary 5.1. Let (X, τFG,F,G), (Y, τF1G1
,F1,G1) and (Z, τF2G2

,F2,G2) be

three grill-filter topological spaces. If f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) is

continuous map and g : (Y, τF1G1
,F1,G1) −→ (Z, τF2G2

,F2,G2) is F-continuous

map, then gof is a continuous map.

Proof: Proof is obvious from the fact that g−1(V ) is open in (Y, τF1G1
,F1,G1),

for every open set V in (Z, τF2G2
,F2,G2). ✷
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Corollary 5.2. Let (X, τFG,F,G), (Y, τF1G1
,F1,G1) and (Z, τF2G2

,F2,G2) be

three grill-filter topological spaces. If f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) is

F-continuous map and g : (Y, τF1G1
,F1,G1) −→ (Z, τF2G2

,F2,G2) is continuous

map, then gof is a F-continuous map.

Proof: Proof is obvious from the fact that g−1(V ) is open in (Y, τF1G1
,F1,G1),

for every open set V in (Z, τF2G2
,F2,G2). ✷

Theorem 5.2. Let f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) be a map then follow-

ing conditions are equivalent:

1. f is F-continuous;

2. f [F-Cl(A)] ⊂ Cl[f(A)];

3. For every closed set B of (Y, τF1G1
,F1,G1), f

−1(B) is F- closed in (X, τFG,F,G).

Proof: 1 =⇒ 2. Let x ∈ F-Cl(A). Let V be an open set containing f(x) in
(Y, τF1G1

,F1,G1). Then f−1(V ) is a F-open set containing x in (X, τFG,F,G)(from

definition of F-continuity). Therefore f−1(V )∩A 6= φ(by Theorem 2.1), and hence
V ∩ f(A) 6= φ. So f(x) ∈ Cl[f(A)], implies that f [F-Cl(A)] ⊂ Cl[f(A)].
2 =⇒ 3. Let B be a closed set of (Y, τF1G1

,F1,G1) and let A = f−1(B). Now we

shall show that A is F-closed set of (X, τFG,F,G). Now f(A) = f(f−1(B)) ⊆ B.
Therefore for x ∈ F-Cl(A), f(x) ∈ f [F-Cl(A)] ⊆ Cl[f(A)] ⊆ Cl(B) = B. This
implies that x ∈ f−1(B) = A. Hence F-Cl(A) = A.
3 =⇒ 1. Let V be an open set in (Y, τF1G1

,F1,G1). Then f−1(Y \ V ) =

X \ f−1(V ) is a F-closed set in (X, τFG,F,G), and hence f−1(V ) is an F-open
set in (X, τFG,F,G). So f is F-continuous map. ✷

Finally we shall give a sufficient condition:

Theorem 5.3. Let f : (X, τFG,F,G) −→ (Y, τF1G1
,F1,G1) be a F-continuous

map. Then f is continuous if G = ℘(X) \ {φ}.

Proof: Let V be an open set in (Y, τF1G1
,F1,G1). Then f−1(V ) is F-open in

(X, τFG,F,G). Again f−1(V ) is open in (X, τFG,F,G)(using Theorem 2.5 and the
condition G = ℘(X) \ {φ}). ✷
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