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abstract: In this paper, we prove the M
k-type sharp maximal function estimates

for the commutators related to some singular integral operators satisfying a variant
of Hörmander’s condition. As an application, we obtain the weighted boundedness
of the commutators on Lebesgue and Morrey spaces.
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1. Introduction

As the development of singular integral operators(see [14,15]), their commuta-
tors have been well studied(see [4]). In [13], the authors prove that the commuta-
tors generated by the singular integral operators and BMO functions are bounded
on Lp(Rn) for 1 < p < ∞. Chanillo (see [1]) proves a similar result when sin-
gular integral operators are replaced by the fractional integral operators. In [8],
some singular integral operators satisfying a variant of Hörmander’s condition are
introduced, and the boundedness for the operators are obtained(see [8,16]). The
purpose of this paper is to prove the sharp maximal function inequalities for the
the commutators related to some singular integral operators satisfying a variant of
Hörmander’s condition. As an application, we obtain the weighted boundedness of
the commutator on Lebesgue and Morrey space.

2. Preliminaries

First, let us introduce some notations. Throughout this paper, Q will denote a
cube of Rn with sides parallel to the axes. For any locally integrable function f ,
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the sharp maximal function of f is defined by

f#(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)− fQ|dy,

where, and in what follows, fQ = |Q|−1
∫

Q f(x)dx. We say that f belongs to

BMO(Rn) if f# belongs to L∞(Rn) and define ||f ||BMO = ||f#||L∞ .
Let M be the Hardy-Littlewood maximal operator defined by

M(f)(x) = sup
Q∋x

1

|Q|

∫

Q

|f(y)|dy.

For η > 0, let Mη(f) = M(|f |η)1/η. For k ∈ N , we denote by Mk the operator M
iterated k times, i.e., M1(f) = M(f) and

Mk(f) = M(Mk−1(f)) when k ≥ 2.

Let Φ be a Young function and Φ̃ be the complementary associated to Φ, we
denote that the Φ-average by, for a function f ,

||f ||Φ,Q = inf

{

λ > 0 :
1

|Q|

∫

Q

Φ

(

|f(y)|

λ

)

dy ≤ 1

}

and the maximal function associated to Φ by

MΦ(f)(x) = sup
x∈Q

||f ||Φ,Q.

The Young functions to be using in this paper are Φ(t) = t(1 + logt) and Φ̃(t) =
exp(t), the corresponding average and maximal functions denoted by || · ||L(logL),Q,
ML(logL) and || · ||expL,Q, MexpL. Following [13], we know the generalized Hölder’s
inequality and the following inequalities hold:

1

|Q|

∫

Q

|f(y)g(y)|dy ≤ ||f ||Φ,Q||g||Φ̃,Q,

||f ||L(logL),Q ≤ ML(logL)(f) ≤ CM2(f),

||f − fQ||expL,Q ≤ C||f ||BMO

and
||f − fQ||expL,2kQ ≤ Ck||f ||BMO.

The Ap weight is defined by (see [7])

Ap =

{

w ∈ L1
loc(R

n) : sup
Q

(

1

|Q|

∫

Q

w(x)dx

)(

1

|Q|

∫

Q

w(x)−1/(p−1)dx

)p−1

< ∞

}

,

1 < p < ∞,
A1 = {w ∈ Lp

loc(R
n) : M(w)(x) ≤ Cw(x), a.e.}
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and
A∞ =

⋃

p≥1

Ap.

Given a weight function w. For 1 ≤ p < ∞, the weighted Lebesgue space Lp(w)
is the space of functions f such that

||f ||Lp(w) =

(∫

Rn

|f(x)|pw(x)dx

)1/p

< ∞.

Definition 2.1. Let Φ = {φ1, ..., φm} be a finite family of bounded functions in
Rn. For any locally integrable function f , the Φ sharp maximal function of f is
defined by

M#
Φ (f)(x) = sup

Q∋x
inf

{c1,...,cm}

1

|Q|

∫

Q

|f(y)−

m
∑

j=1

cjφj(xQ − y)|dy,

where the infimum is taken over all m-tuples {c1, ..., cm} of complex numbers and
xQ is the center of Q. For η > 0, let

M#
Φ,η(f)(x) = sup

Q∋x
inf

{c1,...,cm}





1

|Q|

∫

Q

|f(y)−

m
∑

j=1

cjφj(xQ − y)|ηdy





1/η

.

Remark 2.2. We note that M#
Φ ≈ f# if m = 1 and φ1 = 1.

Definition 2.3. Given a positive and locally integrable function f in Rn, we say
that f satisfies the reverse Hölder’s condition (write this as f ∈ RH∞(Rn)), if for
any cube Q centered at the origin we have

0 < sup
x∈Q

f(x) ≤ C
1

|Q|

∫

Q

f(y)dy.

In this paper, we will study some singular integral operators as following(see
[16]).

Definition 2.4. Let K ∈ L2(Rn) and satisfy

||K||L∞ ≤ C,

|K(x)| ≤ C|x|−n,

there exist functions B1, ...Bm ∈ L1
loc(R

n − {0}) and Φ = {φ1, ..., φm} ⊂ L∞(Rn)
such that |det[φj(yi)]|

2 ∈ RH∞(Rnm), and for a fixed δ > 0 and any |x| > 2|y| > 0,

|K(x− y)−

m
∑

j=1

Bj(x)φj(y)| ≤ C
|y|δ

|x− y|n+δ
.
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For f ∈ C∞
0 , we define the singular integral operator related to the kernel K by

T (f)(x) =

∫

Rn

K(x− y)f(y)dy.

Let b be a locally integrable function on Rn. The commutator related to T is defined
by

T b(f)(x) =

∫

Rn

(b(x)− b(y))K(x− y)f(y)dy.

Remark 2.5. Note that the classical Calderón-Zygmund singular integral operator
satisfies Definition 2.4(see [14,15]).

Definition 2.6. Let ϕ be a positive, increasing function on R+ and there exists a
constant D > 0 such that

ϕ(2t) ≤ Dϕ(t) for t ≥ 0.

Let w be a weight function and f be a locally integrable function on Rn. Set, for
1 ≤ p < ∞,

||f ||Lp,ϕ(w) = sup
x∈Rn, d>0

(

1

ϕ(d)

∫

Q(x,d)

|f(y)|pw(y)dy

)1/p

,

where Q(x, d) = {y ∈ Rn : |x− y| < d}. The generalized Morrey space is defined by

Lp,ϕ(Rn, w) = {f ∈ L1
loc(R

n) : ||f ||Lp,ϕ(w) < ∞}.

If ϕ(d) = dη, η > 0, then Lp,ϕ(Rn, w) = Lp,η(Rn, w), which is the classical
weighted Morrey spaces (see [11,12]). If ϕ(d) = 1, then Lp,ϕ(Rn, w) = Lp(Rn, w),
which is the weighted Lebesgue spaces (see [7]).

As the Morrey space may be considered as an extension of the Lebesgue space,
it is natural and important to study the boundedness of the operator on the Morrey
spaces (see [2,5,6,9,10]).

3. Theorems and Lemmas

We shall prove the following theorems.

Theorem 3.1. Let T be the singular integral operator as Definition 2.4, 0 <
r < 1 and b ∈ BMO(Rn). Then there exists a constant C > 0 such that, for any
f ∈ C∞

0 (Rn) and x̃ ∈ Rn,

M#
Φ,r(T

b(f))(x̃) ≤ C||b||BMO

(

M2(f)(x̃) +M2(T (f))(x̃)
)

.

Theorem 3.2. Let T be the singular integral operator as Definition 2.4, 1 < p <
∞, w ∈ A1 and b ∈ BMO(Rn). Then T b is bounded on Lp(w).
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Theorem 3.3. Let T be the singular integral operator as Definition 2.4, 0 < D <
2n, 1 < p < ∞, w ∈ A1 and b ∈ BMO(Rn). Then T b is bounded on Lp,ϕ(Rn, w).

To prove the theorems, we need the following lemmas.

Lemma 3.4. ( [7], p.485) Let 0 < p < q < ∞ and for any function f ≥ 0. We
define that, for 1/r = 1/p− 1/q

||f ||WLq = sup
λ>0

λ|{x ∈ Rn : f(x) > λ}|1/q, Np,q(f) = sup
E

||fχE ||Lp/||χE ||Lr ,

where the sup is taken for all measurable sets E with 0 < |E| < ∞. Then

||f ||WLq ≤ Np,q(f) ≤ (q/(q − p))1/p||f ||WLq .

Lemma 3.5. (see [13]) We have

1

|Q|

∫

Q

|f(x)g(x)|dx ≤ ||f ||expL,Q||g||L(logL),Q.

Lemma 3.6. (see [16]) Let T be the singular integral operator as Definition 2.3.
Then T is bounded on Lp(w) for 1 < p < ∞, w ∈ A1 and weak (L1, L1) bounded.

Lemma 3.7. (see [16]). Let 1 < p < ∞, 0 < η < ∞, w ∈ A∞ and Φ =
{φ1, ..., φm} ⊂ L∞(Rn) such that |det[φj(yi)]|

2 ∈ RH∞(Rnm). Then, for any
smooth function f for which the left-hand side is finite,

∫

Rn

Mη(f)(x)
pw(x)dx ≤ C

∫

Rn

M#
Φ,η(f)(x)

pw(x)dx.

Lemma 3.8. (see [2,5]) Let 1 < p < ∞, w ∈ A1 and 0 < D < 2n. Then, for any
smooth function f for which the left-hand side is finite,

||M(f)||Lp,ϕ(w) ≤ C||f ||Lp,ϕ(w).

Lemma 3.9. Let 1 < p < ∞, 0 < η < ∞, w ∈ A1, 0 < D < 2n and Φ =
{φ1, ..., φm} ⊂ L∞(Rn) such that |det[φj(yi)]|

2 ∈ RH∞(Rnm). Then, for any
smooth function f for which the left-hand side is finite,

||Mη(f)||Lp,ϕ(w) ≤ C||M#
Φ,η(f)||Lp,ϕ(w).

Proof: For any cube Q = Q(x0, d) in Rn, we know M(wχQ) ∈ A1 for any cube
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Q = Q(x, d) by [3]. If x ∈ Qc, by Lemma 3.7, we have, for f ∈ Lp,ϕ(Rn, w),
∫

Q

|Mη(f)(y)|
pw(y)dy

=

∫

Rn

|Mη(f)(y)|
pw(y)χQ(y)dy

≤

∫

Rn

|Mη(f)(y)|
pM(wχQ)(y)dy

≤ C

∫

Rn

|M#
Φ,η(f)(y)|

pM(wχQ)(y)dy

= C

(

∫

Q

|M#
Φ,η(f)(y)|

pM(wχQ)(y)dy+

∞
∑

k=0

∫

2k+1Q\2kQ

|M#
Φ,η(f)(y)|

pM(wχQ)(y)dy

)

≤ C

(

∫

Q

|M#
Φ,η(f)(y)|

pw(y)dy +
∞
∑

k=0

∫

2k+1Q\2kQ

|M#
Φ,η(f)(y)|

p w(Q)

|2k+1Q|
dy

)

≤ C

(

∫

Q

|M#
Φ,η(f)(y)|

pw(y)dy +

∞
∑

k=0

∫

2k+1Q

|M#
Φ,η(f)(y)|

pM(w)(y)

2n(k+1)
dy

)

≤ C

(

∫

Q

|M#
Φ,η(f)(y)|

pw(y)dy +

∞
∑

k=0

∫

2k+1Q

|M#
Φ,η(f)(y)|

pw(y)

2nk
dy

)

≤ C||M#
Φ,η(f)||

p
Lp,ϕ(w)

∞
∑

k=0

2−nkϕ(2k+1d)

≤ C||M#
Φ,η(f)||

p
Lp,ϕ(w)

∞
∑

k=0

(2−nD)kϕ(d)

≤ C||M#
Φ,η(f)||

p
Lp,ϕ(w)ϕ(d),

thus

(

1

ϕ(d)

∫

Q

Mη(f)(x)
pw(x)dx

)1/p

≤ C

(

1

ϕ(d)

∫

Q

M#
Φ,η(f)(x)

pw(x)dx

)1/p

and
||Mη(f)||Lp,ϕ(w) ≤ C||M#

Φ,η(f)||Lp,ϕ(w).

This finishes the proof. ✷

Lemma 3.10. Let T be the singular integral operator as Definition 2.4, 1 < p <
∞, w ∈ A1 and 0 < D < 2n. Then

||T (f)||Lp,ϕ(w) ≤ C||f ||Lp,ϕ(w).

The proof of the Lemma is similar to that of Lemma 3.9 by Lemma 3.6, we
omit the details.
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4. Proofs of Theorems

Proof of Theorem 3.1. It suffices to prove for f ∈ C∞
0 (Rn) and some constant

C0, the following inequality holds:

(

1

|Q|

∫

Q

∣

∣T b(f)(x) − C0

∣

∣

r
dx

)1/r

≤ C||b||BMO

(

M2(f)(x̃) +M2(T (f))(x̃)
)

,

where Q is any a cube centered at x0, C0 =
∑m

j=1 gjφj(x0−x) and gj =
∫

Rn Bj(x0−
y)(b(y)− b2Q)f2(y)dy. Let x̃ ∈ Q. Write, for f1 = fχ2Q and f2 = fχ(2Q)c ,

T b(f)(x) = (b(x) − b2Q)T (f)(x)− T ((b− b2Q)f1)(x) − T ((b− b2Q)f2)(x).

Then

(

1

|Q|

∫

Q

|T b(f)(x)−C0|
r
dx

)

1/r

≤ C

(

1

|Q|

∫

Q

|(b(x)− b2Q)T (f)(x)|rdx

)1/r

+ C

(

1

|Q|

∫

Q

|T ((b− b2Q)f1)(x)|
r
dx

)1/r

+C

(

1

|Q|

∫

Q

|T ((b− b2Q)f2)(x)− C0|
r
dx

)

1/r

= I1 + I2 + I3.

For I1, by Hölder’s inequality and Lemma 3.6, we obtain

I1 ≤
C

|Q|

∫

2Q

|b(x)− b2Q||T (f)(x)|dx

≤ C||b− b2Q||expL,2Q||T (f)||L(logL),2Q

≤ C||b||BMOM
2(T (f))(x̃),

For I2, by Lemma 3.4, 3.5 and 3.6, we obtain

I2 ≤ C

(

1

|Q|

∫

Rn

|T ((b− b2Q)f1)(x)|
rχQ(x)dx

)1/r

≤ C|Q|−1 ||T ((b− b2Q)f1)χQ||Lr

|Q|1/r−1

≤ C|Q|−1||T ((b− b2Q)f1)||WL1

≤ C|Q|−1||(b − b2Q)f1||L1

≤
C

|2Q|

∫

2Q

|b(x) − b2Q||f(x)|dx

≤ C||b− b2Q||expL,2Q||f ||L(logL),2Q

≤ C||b||BMOM
2(f)(x̃),
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For I3, we have

I3 ≤
C

|Q|

∫

Q

|T ((b− b2Q)f2)(x) − C0)|dx

≤
C

|Q|

∫

Q

∫

Rn

∣

∣

∣

∣

∣

∣

(K(x− y)−

m
∑

j=1

Bj(x0 − y)φj(x0 − x))(b(y)− b2Q)f2(y)

∣

∣

∣

∣

∣

∣

dydx

≤
C

|Q|

∫

Q

∞
∑

k=1

(

∫

2kd≤|y−x0|<2k+1d

|x− x0|
δ

|y − x0|n+δ
|b(y)− b2Q||f(y)|dy

)

dx

≤ C

∞
∑

k=1

dδ

(2kd)n+δ

∫

2k+1Q

|b(y)− b2Q||f(y)|dy

≤ C

∞
∑

k=1

dδ

(2kd)n+δ
(2kd)n||b− b2Q||expL,2k+1Q||f ||L(logL),2k+1Q

≤ C||b||BMOM
2(f)(x̃)

∞
∑

k=1

k2−kδ

≤ C||b||BMOM
2(f)(x̃).

These complete the proof of Theorem 3.1.
Proof of Theorem 3.2. By Theorem 3.1 and Lemma 3.6-3.7, we have

||T b(f)||Lp(w) ≤ ‖Mr(T
b(f))‖Lp(w) ≤ C‖M#

Φ,r(T
b(f))‖Lp(w)

≤ C||b||BMO

(

‖M2(T (f))‖Lp(w) + ‖M2(f)‖Lp(w)

)

≤ C||b||BMO(‖T (f)‖Lp(w) + ‖f‖Lp(w))

≤ C||b||BMO‖f‖Lp(w).

This completes the proof of the theorem.
Proof of Theorem 3.3. By Theorem 3.1 and Lemma 3.8-3.10, we have

||T b(f)||Lp,ϕ(w) ≤ ‖Mr(T
b(f))‖Lp,ϕ(w) ≤ C‖M#

Φ,r(T
b(f))‖Lp,ϕ(w)

≤ C||b||BMO

(

‖M2(T (f))‖Lp,ϕ(w) + ‖M2(f)‖Lp,ϕ(w)

)

≤ C||b||BMO(‖T (f)‖Lp,ϕ(w) + ‖f‖Lp,ϕ(w))

≤ C||b||BMO‖f‖Lp,ϕ(w).

This completes the proof of the theorem.
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