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Global and Local Controllability ∗

Maria Hermínia de Paula Leite Mello and Lucianna Helene Silva dos Santos

abstract: We discuss three concepts of controllability for open loop systems,
namely, complete, local and global controllability, emphasizing that for nonlinear
systems, the fact that the system is completely controllable does not mean that it
is locally controllable.
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1. Introduction

In general, mathematical global properties imply local ones. That is the case of
a minimum or a maximum global (or absolute) point of a real function which is in
particular a local extremum point. Also, in some situations a local property can be
used to determine a global property of a mathematical object. Thus, usually there is
a connection between the two concepts. Dealing with controllability of dynamical
systems, meaning a system of autonomous ordinary differential equations with
control, a certain notion of a system being “globally” controllable does not always
imply that it is locally controllable. We present with details the example suggested
in [2] where for a nonlinear control system it is possible to drive arbitrary states into
a state x0 using large excursions, but if the intention is to control any state closed
to the desired x0, using a path that does not leave a neighborhood of x0, it can not
be done. In this sense, what we mean for the moment by “global” controllability is
the concept known in literature as complete controllability and it does not imply
local controllability for nonlinear systems, although for linear systems both notions
are equivalent [2], [1]. Thus, to define the concept of global controllability for
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nonlinear systems, both completely and local controllability notions must be taken
in consideration.

2. Preliminaries Notions on Controllability

Definition 2.1. By an open-loop control system we mean an autonomous system
of the form

dx

dt
= f(x, u) (1)

where f : D × U ⊂ R
n×m → R

n. x = x(t) = (x1(t), x2(t), . . . , xn(t)) is the output
or state variable vector, u = u(t) = (u1(t), u2(t), . . . , um(t)) is the input or control
variable vector. We assume that f is a continuous function and locally Lipschitz
with respect to variable x, defined in an open and connected subset D ⊂ R

n, called
state space. We observe that if f ∈ C1, then f is locally Lipschitz. The subset U ⊂
R

m is a nonempty set and it is called the set of the admissible controls or control
space. We assume that the control functions are piecewise continuous functions, but
in a more general context, the controls are considered as being Lebesgue integrable
functions. Also, if the control space U is a one-element set, we consider the system
as a classical dynamical one, for if it is possible to control the system, there is only
one way to do it so.

The state x = x(t) and the control u = u(t) variables are defined on a finite
time interval I = [0, T ], T > 0, or on I = [0,+∞), depending on the system we
are interested in controlling. For the purpose of the definitions of this article, we
consider these functions defined only on a finite interval.

Considering the above hypotheses, for every fixed control u, the autonomous
system satisfies the Uniqueness and Existence Theorem for Ordinary Differential
Equation for any given initial condition x(0) = x0. Let us denote by xu = xu(t)

the unique solution of
dx

dt
= f(x, u), such that xu(0) = x0. We call this solution

the trajectory or path associated to the fixed control u.

Definition 2.2 (Admissible process). An admissible process is a pair (xu, u), where
u is a control variable that was fixed and xu = xu(t) is the unique solution of the

autonomous system
dx

dt
= f(x, u) associated to the fixed control u, satisfying a

given initial condition xu(0) = x0.

Figure 1: Admissible process (xu, u) with initial state x0.
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Definition 2.3 (Controllable state in a finite time). Let x0, x1 ∈ D. The state
x0 is U -controllable to the state x1 in time T , T > 0, if there exists an admissible
process (xu, u) where u ∈ U , and xu = xu(t) is the trajectory associated to the
control u, both defined on the interval [0, T ], such that xu(0) = x0 and xu(T ) = x1.
That is, the state x0 can be driven into the state x1 through the application of a
suitable control.

Definition 2.4 (Controllability in a neighborhood). Let x0, x1 ∈ D and W an
open neighborhood of D such that x0, x1 ∈ W . We say that x0 can be controlled
to x1 without leaving W (or inside W ), if there exists a time T , T > 0, and an
admissible process (xu, u), where u ∈ U , and xu = xu(t) is the trajectory associated
to the control u, both defined in the interval [0, T ], such that xu(0) = x0 and
xu(T ) = x1 and xu(t) ∈ W , ∀ t ∈ [0, T ].

3. Local and Global Controllability

The idea of local controllability related to a state x̄ is that it is possible to drive
any two states closed to the desired state x̄ changing one into the other trough the
application of a suitable control, in such a way that the trajectory remains close
to the state x̄, i.e., without deviating far from it.

Definition 3.1 (Local controllability related to a state). Let x̄ ∈ D. The system
(1) is locally controllable at the state x̄ (or related to the state x̄, or around x̄), if
for each neighborhood W of x̄, there exists a neighborhood V , with x̄ ∈ V ⊂ W ,
such that for any pair of states x0, x1 ∈ W , the state x0 can be controlled to the
state x1 without leaving W in the sense of definition 1.4.
This concept of local controllability is also called strong local controllability around
the state x̄ [2].

In the next definition, the property of a system being completely controllable
is somehow a “global” notion, for it allows us to control the entire system, al-
though, during the process, the trajectoty taking one state into the other can leave
a neighborhood or subset W ⊂ D that was fixed for some purpose.

Definition 3.2 (Complete Controllability). Let D be the state space and U the
set of admissible controls. The system (1) is said to be completely U -controllable
in D if for any two arbitrary states x0, x1 ∈ D, there exists an admissible process
(xu, u), where u ∈ U , and xu = xu(t) is the trajectory associated to the control
u, both defined on an interval [0, T ], for some T > 0, such that xu(0) = x0 and
xu(T ) = x1.

The following example [2] shows that a nonlinear system can be completely
controllable without being locally controllable related to a state.

Example 3.1. Let us consider the open-loop control system










dx

dt
= −y + xu

dy

dt
= x+ yu

⇔

(

dx
dt
dy
dt

)

=

[(

0 −1
1 0

)

+ u

(

1 0
0 1

)](

x

y

)

, (2)
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onde u ∈ R.

Introducing polar coordinates

{

x(t) = ρ cos θ

y(t) = ρ sin θ
,where ρ = ρ(t) > 0 and θ = θ(t),

and differentiating using the chain rule, we obtain the equivalent system in R
2 −

{(0, 0)}


















dρ

dt
= ρu

dθ

dt
= 1

(3)

The trajectory of the system (3) associated to the control u is of the form ξu(t) =
(θu(t), ρu(t)) = (t+ θ0, e

utρ0), where θ0 = θ(0), ρ0 = ρ(0).

(i) The system is completely controllable when defined in R
2 − {(0, 0)}. Let us

consider any two states in R
2−{(0, 0)} with polar coordinates given by (θ0, ρ0),

(θ1, ρ1), where ρ0, ρ1 > 0, the angles are chosen with positive orientation and
(θ0, ρ0) is a polar representation of the initial state.

(i. 1) If ρ0 6= ρ1, it is always possible to take θ1 > θ0.

In fact, if the two states are in the same radius but their distance from the origin
are not the same (ρ0 6= ρ1), we take θ1 = θ0 + 2Kπ, for some K ∈ N , noticing
that we can choose θ1 = θ0 + 2π. Similarly, if the states lay in different radii and
θ1 < θ0, we take θ̌1 = θ1+2Kπ, for some K ∈ N , in other to have θ0 < θ̌1. Taking

T = θ1 − θ0 and the control u =
1

θ1 − θ0
Ln

(

ρ1
ρ0

)

(4)

where ρ0, ρ1 > 0 and θ1 > θ0, the associated trajectory ξu(t) = (θu(t), ρu(t))
satisfies ξu(0) = (θu(0), ρu(0)) = (θ0, ρ0) and

ξu(T ) = (θu(T ), ρu(T )) = (θ1, e
u(θ1−θ0)ρ0) =

(

θ1,
[

e
Ln(

ρ1
ρ0

)
]

ρ0

)

= (θ1, ρ1).

(i. 2) If ρ0 = ρ1, we choose the null control. For if u = 0, the system (2) turns
out to be a linear system without control, whose matrix has pure imaginary
eigenvalues. So, one state is driven to the other one by using the own closed
orbit (a circle) of the linear system that passes by these two states.
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(a) ρ0 6= ρ1 (b) ρ0 = ρ1 = ρ

Figure 2

(ii) The system is not locally controllable related to the state with cartesian
coordinates (x0, y0) = (1, 0).

Consider a neighborhood of (x0, y0) = (1, 0) of radius ε = 1. For any δ, such that
0 < δ < 1, take (x1, y1) = (1 + δ

2 , 0). We notice that

‖ (x1, y1)− (x0, y0) ‖=
δ

2
< δ < 1.

In other to drive the state (x0, y0) to the state (x1, y1), it is necessary to consider a
finite time at least equal to 2π and a control u given in (4). Using polar coordinates,

the trajectory associated to the control u is (θu(t), ρu(t)) =
(

t,
[

(1 + δ
2 )

t
2π

])

. It

satisfies (θu(0), ρu(0)) = (0, 1), and (θu(2π), ρu(2π)) = (2π, 1+ δ
2 ), which are polar

representations of the states whose cartesian coordinates are (x0, y0) = (1, 0) and
(x1, y1) = (1 + δ

2 , 0), respectively. Furthermore, by the expression of ρu(t), the
trajectory leaves the neighborhood of radius ε = 1 and center in the point with
cartesian coordinates (x0, y0) = (1, 0).

Figure 3

Definition 3.3 (Global controllability related to a state). Let D be the space state
and x̄ ∈ D. The system (1) is globally controllable to the state x̄, if
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(i) The system is locally controllable related to the state x̄;

(ii) Every x ∈ D can be U -controllable to the state x̄ for some time T , T > 0.

Definition 3.4 (Global controllability). Let D be the space state. The system (1)
is globally controllable in D, if

(i) For each x ∈ D, the system is locally controllable related to the state x̄;

(ii) The system is completely controllable in D.

In the definitions above, if all pairs of given states x0 and x1 can be controlled
in a very same finite interval of time [0, T ], T > 0, then we say that the system is
locally controllable at time T , completely controllable at time T and so on.

4. Equivalence between local and global controllability for autonomous

linear systems

An autonomous linear control system is a system of the form

dx

dt
= Ax +Bu,

where A and B are matrices, A ∈ R
n,n, B ∈ R

n,m, x = x(t) ∈ R
n and u =

u(t) ∈ R
m. We denote it by (A,B). We suppose detA 6= 0 in other to have the

origin as the only equilibrium point of the linear system with no controls
dx

dt
= Ax.

Also we consider the control set U with no constrains, which means that we do
not impose restrictions on the images of the controls. So we can consider any
piecewise continuous function, u : I → R

m, as a control input, where I = [0, T ] or
I = [0,+∞), depending on whether we are interested in controlling the system in
a finite time T or not.

Theorem 4.1. Let (A,B) be an autonomous linear control system. The following
properties are equivalent:

(i) The system is locally controllable at the state x̄ = 0.

(ii) The system is controllable to x̄ = 0 in R
n.

Proof:

(i) Suppose that the linear system (A,B) is locally controllable at the state x̄ = 0.
For any ε > 0, there exists δ = δ(ε) > 0, such that if x is a state satisfying
‖x‖ < δ, then there is an admissible process (xu, u), where xu = xu(t) and
u = u(t) are defined on an interval [0, T ], for some T > 0, such that xu(0) = x,
xu(T ) = 0 and ‖xu(t)‖ < ε, ∀ t ∈ [0, T ].
Let y ∈ R

n, y 6= 0. We claim that the state y is controllable to the origin in
time T . In fact, let us take x = δ

2‖y‖y. We notice that ‖x‖ = δ
2‖y‖‖y‖ = δ

2 < δ.

Let (xu, u) be a process given above and consider the control w(t) = 2‖y‖
δ

u(t).



Global and Local Controllability 33

By linear property of the transition map of a linear control system ( [2], p.

26), the solution associated to the control w = w(t) is xw(t) = 2‖y‖
δ

xu(t).

x(0) =
2‖y‖

δ
xu(0) =

2‖y‖

δ
x =

2‖y‖

δ
.

δ

2‖y‖
y = y

and

xw(T ) =
2‖y‖

δ
xu(T ) =

2‖y‖

δ
0 = 0

Thus the control w = w(t) take the state y to the origin. By definition 2.3
the system is globally controllable to the origin.

(ii) Assume now that (A,B) is controllable to the origin.
It means that given a state x ∈ R

n, there exists a process (xu, u), defined
on some interval [0, T ], T > 0, such that xu(0) = x and xu(T ) = 0. We
observe that for the equilibrium state x = 0, we take u(t) = 0, t ≥ 0 and the
stationary solution x0(t) = 0 defined for all t ≥ 0. Indeed, (x̄, ū) = (0, 0) is
an equilibrium pair of the autonomous control linear system. Considering
the fact that the system is a linear one and any solution xu = xu(t) achieves
the origin after a certain time T , using a suitable control u = u(t) defined
for t ∈ [0, T ], we can consider any admissible process defined for t ≥ 0. In
fact, if we take the control ũ = ũ(t) defined by ũ(t) = u(t), if 0 ≤ t ≤ T and
ũ(t) = 0, if t > T , then the solution associated to control ũ is xũ(t) = xu(t),
if 0 ≤ t ≤ T and xũ(t) = 0, if t > T . In that way all solutions converge
to the origin and the origin is an attractor. So all eigenvalues of matrix A

have negative real part and there are constants K > 0 and λ > 0 such that
‖xũ(t)‖ ≤ Ke−λt|xũ(0)‖, ∀ t ≥ 0. As for λ > 0, we have e−λt < 1, ∀ t ≥ 0
and xũ(0) = xu(0), then |xũ(t)‖ ≤ K|xu(0)‖, ∀ t ≥ 0.
Given ε > 0, take δ = ε

K
. If ‖x‖ = ‖xu(0)‖ < δ, then ‖xũ(t)‖ < ε, ∀ t ≥ 0.

We conclude the system is locally controllable at the origin.

✷

Remark 4.1. For an autonomous linear control system (A,B), if the state x1 ∈ R
n

is driven to the state x2 ∈ R
n using the control u = u(t) during a period of time T ,

then x2 = etA

(

x1 +

∫ T

0

e−sABu(s)ds

)

. By this formula and considering controls

with no constrains, it is not difficult to prove that the system (A,B) is completely
controllable in time T if and only if every state x is controlled to the origin in
time T ( [3], p. 41). Also the fact that an autonomous linear system is completely
controllable for some time T is equivalent to it being completely controllable for
every time T . Indeed, if the state x0 is controlled to the state x1 in time T1, using
a control u(t), we can take one state to the other in a time T2, for T2 > T1, using
a control ũ(t) = u(t), if 0 ≤ t ≤ T1 and ũ(t) = 0, if T1 < t ≤ T2.
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Remark 4.2. If a state x is controlled to the origin when t → +∞, we have the
analogous definition of a state being asymptotically controllable to the origin. Just
like in the theorem above, for autonomous linear control systems, the concepts of
global and local asymptotic controllability to the origin coincide ( [2], p. 213).

5. Conclusion

For autonomous linear control systems (A,B), local and global controllability
are equivalent. But the same is not true for nonlinear systems. Thus, for nonlinear
systems the definition of global controllability must include the property of the
system being locally controllable as a first condition plus an extra one, which is
the complete controllability condition. When the admissible processes are defined
for t ≥ 0, similar results are valid for local and global asymptotic controllability
notions.
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