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An extension of Banach fixed point theorem in fuzzy metric space

Debashis Dey and Mantu Saha

abstract: In the present paper, we establish the existence of fixed point of
mapping satisfying a general contractive condition depended on another function in
a complete fuzzy metric space. In particular, this result is an analogue of T -Banach
contraction principle by Beiranvand et al. [2] in fuzzy metric space.
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1. Introduction

Banach contraction principle by S.Banach [1] in 1922 has the pivotal role in
the research of fixed point theory. In the general setting of complete metric space,
this theorem runs as follows ( see Theorem 2.1, [4] or, Theorem 1.2.2, [12])).

Theorem 1.1. (Banach contraction principle) Let (X, d) be a complete metric
space, α ∈ (0, 1) and S : X → X be a mapping such that for each x, y ∈ X,

d(Sx, Sy) ≤ αd(x, y) (1.1)

then S has a unique fixed point in X, and for each x0 ∈ X the sequence of iterates
{Snx0} converges to this fixed point.

Since the Banach contraction principle, several type of contraction mappings
on metric space have appeared. One can see for details the survey articles by
Rhoades ( [9], [10], [11]). Recently, Beiranvand et al. [2] addressed a new classes of
T -Contraction functions, which are depending on another function and extended
the Banach contraction principle successfully.

Definition 1.2. Let (X, d) be a metric space and T, S : X → X be two functions.
A mapping S is said to be a T -contraction if there exists α ∈ (0, 1) such that for

d(TSx, TSy) ≤ αd(Tx, T y)for all x, y ∈ X. (1.2)
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Note 1. By taking Tx = x (T is identity function) T -contraction and contrac-
tion are equivalent.
The following example [2] shows that T -contraction function may not be a con-
traction.

Example 1.3. Let X = [1,+∞) with metric induced by ℜ : d(x, y) = |x− y|. We
consider two mappings T, S : X → X by Tx = 1

x
+ 1 and Sx = 2x. Obviously S is

not contraction but S is T -contraction, because:
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2. Fuzzy metric space

On the otherhand, the evolution of fuzzy mathematics commenced with the
introduction of the notion of fuzzy sets by Zadeh [14] in 1965, as a new way to
represent the vagueness in every day life. Since its initiation, several mathemati-
cians have worked with fuzzy sets in different branches of mathematics. In 1975,
Kramosil and Michalek [8] introduced the concept of fuzzy metric space which
opened an avenue for further development of analysis in such spaces. In 1994,
George and Veeramani [3] revised the notion of fuzzy metric space with the help
of continuous t-norm. Actually, the study of fuzzy metric evolved in two different
perspectives. One group of mathematicians following Hu [6], consider a fuzzy met-
ric to be a non-negative real-valued function on the collection of all fuzzy points
on a set X , satisfying a list of axioms similar to those of a general metric; while
another group imposes the fuzziness on the metric itself rather than the points of
the space. In the present paper, we study the existence of fixed point for mapping
satisfying a general contractive condition dependent on another function in fuzzy
metric space. Our approach of proving results in fuzzy metric space along the first
line of development, initiated by George and Veeramani [3].

Definition 2.1. [13] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a continuous
t-norms if ∗ is satisfying conditions:
(i) ∗ is an commutative and associative;
(ii) ∗ is continuous;
(iii) a ∗ 1 = a for all a ∈ [0, 1];
(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norms are a ∗ b = min {a, b} (minimum t-norm), a ∗ b = ab

(product t-norm), and a ∗ b = max {a+ b− 1, 0} (Lukasiewicz t-norm).

Definition 2.2. [3] A 3-tuple (X,M, ∗) is said to be a fuzzy metric space (or,
briefly FMS) if X is an arbitrary set, ∗ is a continuous t-norm and M is a fuzzy
set on X ×X × [0,∞) satisfying the following conditions, for all x, y, z ∈ X, such
that t, s > 0,
(FM 1) M(x, y, t) > 0;
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(FM 2) M(x, y, t) = 1 if and only if x = y;
(FM 3) M(x, y, t) = M(y, x, t);
(FM 4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s);
(FM 5) M(x, y, ∗) : (0,∞) → (0, 1] is continuous.

Then M is called a fuzzy metric on X and M(x, y, t) denotes the degree of
nearness between x and y with respect to t. In the following example, we know
that every metric induces a fuzzy metric.

Example 2.3. Let X be a non-empty set and d is a metric on X. Denote a∗b = a.b

for all a, b ∈ [0, 1]. For each t > 0, define

M(x, y, t) =
t

t+ d(x, y)
. (2.1)

Then (X,M, ∗) is a fuzzy metric space (see [3]). We call this fuzzy metric M

induced by the metric d the standard fuzzy metric.

In the present section, we invite some more useful definitions and concepts in
this space.

Definition 2.4. (see [8]) Let (X,M, ∗) be a fuzzy metric space:
(1) A sequence {xn} in X is said to be convergent to a point x ∈ X, (denoted by
lim
n→∞

xn = x), if lim
n→∞

M(xn, x, t) = 1 for all t > 0.

(2) A sequence {xn} in X is called a Cauchy sequence if lim
n→∞

M(xn+p, xn, t) = 1

for all t > 0 and p > 0.
(3) A fuzzy metric space in which every Cauchy sequence is convergent is said to
be complete.

Definition 2.5. (see [8]) The fuzzy metric space (X,M, ∗) is called complete if
every Cauchy sequence in X is convergent.

Definition 2.6. (see [8]) The fuzzy metric space (X,M, ∗) is called compact if
every sequence contains a convergent subsequence.

Lemma 2.7. (Grabiec [5]) M (x, y, .) is non-decreasing for all x, y ∈ X.

Lemma 2.8. (Grabiec [5]) Let {yn} be a sequence in an FM-space X. If there
exists a positive number k < 1 such that M(yn+2, yn+1, kt) ≥ M(Yn+1, yn, t), t > 0,
n ∈ N then {yn} is a Cauchy sequence in X.

Lemma 2.9. (see [7]) If for two points x, y in X and a positive number k < 1,

M(x, y, kt) ≥ M(x, y, t), then x = y.

Remark 2.10. (see [5]) Since ∗ is continuous, it follows from (FM-4) that the
limit of the sequence in fuzzy metric space is uniquely determined.
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3. T -Banach contraction principle in fuzzy metric space

In this section, we first formulate the idea of a fuzzy T -contraction map and
then prove T -Banach contraction theorem in fuzzy metric space. Finally, the the-
orem has been validated by proper examples. For this purpose, we introduce some
necessary definitions and a proposition in this space.

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X is
said to be sequentially convergent, if we have, for every sequence {yn}, if {Tyn} is
convergent, then {yn} is also convergent.

Definition 3.2. Let (X,M, ∗) be a fuzzy metric space. A mapping T : X → X is
said to be subsequentially convergent, if we have, for every sequence {yn}, if {Tyn}
is convergent, then {yn} has a convergent subsequence.

Proposition 3.3. Let (X,M, ∗) be a compact fuzzy metric space, then every func-
tion T : X → X is subsequentially convergent and every continuous function
T : X → X is sequentially convergent.

Definition 3.4. (Fuzzy T -contraction ) Let (X,M, ∗) be a fuzzy metric space and
T, S : X → X be two mappings. A mapping S is said to be a Fuzzy T -contraction
if there exists k ∈ (0, 1) such that

M(TSx, TSy, kt) ≥ M(Tx, T y, t) (3.1)

for all x, y ∈ X and t > 0.

Now following is the Fuzzy T -Banach fixed point theorem which is our main
result of this paper .

Theorem 3.5. Let (X,M, ∗) be a complete fuzzy metric space and T : X → X

be one to one, continuous and subsequentially convergent mapping. Also let for all
x, y ∈ X, M(x, y, t) → 1 as t → ∞. Then for every Fuzzy T -contraction mapping,
a continuous function S : X → X, S has a unique fixed point. Also if T is a
sequentially convergent, then for each x0 ∈ X, the sequence of iterates {Snx0}
converges to this fixed point.

Proof: Define an iterative sequence {xn} by xn+1 = Sxn, (or, xn = Snx0), n =
1, 2, 3,..., starting from x0 ∈ X. Then for any integer n ∈ N and t > 0, by simple
induction we get,

M(Txn, T xn+1, kt) = M(TSxn−1, TSxn, kt) ≥ M(Tx0, T x1,
t

kn−1
) (3.2)

Thus for any positive integer p, we have by (3.2)

M(Txn, T xn+p, t) ≥ M(Txn, T xn+1,
t

p
) ∗ ... ∗M(Txn+p−1, T xn+p,

t

p
)

≥ M(Tx0, T x1,
t

pkn
) ∗ ... ∗M(Tx0, T x1,

t

pkn
) (3.3)
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Since M(x, y, t) → 1 as t → ∞, (3.3) gives

lim
n

M(Txn, T xn+p, t) ≥ 1 ∗ ... ∗ 1 = 1

Then {Txn} or, {TSnx0} is a Cauchy sequence and hence is convergent. So there
exists a ∈ X such that

lim
n→∞

TSnx0 = a (3.4)

Since T is a subsequentially convergent, {Snx0} has a convergent subsequence. So
there exists b ∈ X and {nk}

∞
k=1

such that lim
k→∞

Snkx0 = b. Hence lim
k→∞

TSnkx0 = Tb.

Then by (3.4) we conclude that

Tb = a. (3.5)

Since S is continuous and lim
k→∞

Snkx0 = b, then lim
k→∞

Snk+1x0 = Sb and so

lim
k→∞

TSnk+1x0 = TSb.Again by (3.4), lim
k→∞

TSnk+1x0 = a, and therefore TSb = a.

Since T is one to one and by (3.5) Sb = b. So, S has a fixed point.
Uniqueness: Let c ∈ X be another fixed point of S. Then

1 ≥ M(Tb, T c, kt) = M(TSb, TSc, kt) ≥ M(Tb, T c,
t

k
) = M(TSb, TSc,

t

k
)

≥ M(Tb, T c,
t

k2
) ≥ ... ≥ M(Tb, T c,

t

kn
) → 1 as n → ∞

Then by (FM-2), Tb = Tc, and since T is one to one, this implies that b = c. So S

has a unique fixed point. ✷

Remark 3.6. (I) Taking Tx = x (T is identity function) in the above theorem, we
have the fuzzy version of Theorem 1.1.
(II) Theorem 3.5 is an important extension and generalization of Theorem 2.6 of
Beiranvand et al. [2] in complete fuzzy metric space.

We now give an example to illustrate the Theorem 3.5.

Example 3.7. Let X = [1, 500] with product t-norm. Let M be the standard fuzzy
metric induced by d, where d(x, y) = |x− y| for x, y ∈ X. Then (X,M, ∗) is a
complete fuzzy metric space. Define S : X → X by Sx = x2 and T : X → X by
Tx = 1 + 1

x
, then T , S satisfy (3.1) with k = 1

200
∈ (0, 1). Also S has a unique

fixed point x = 1.

Remark 3.8. It is also to be noted in the above example that S is not a contraction
mapping but a T -contraction mapping.

The following example clearly shows that the condition of subsequential con-
vergence of T in Theorem 3.5 can not be dropped.
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Example 3.9. Let X = [0,∞) and M be the standard fuzzy metric induced by d,
where d(x, y) = |x− y| for x, y ∈ X. Then (X,M, ∗) is a complete fuzzy metric
space. Define S : X → X by Sx = x+ 1 and T : X → X by Tx = exp(−x). Then
one can easily check that T is one-to-one and S is T -contraction with k = 2

e
∈ (0, 1).

But T is not subsequentially convergent (since Tn → 0 as n → ∞, but {n}∞
1

has
no convergent subsequence) and also S has no fixed point.
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