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Multiplicativity of left centralizers forcing additivity

M. S. Tammam El-Sayiad, M. N. Daif and V. De Filippis

abstract: A multiplicative left centralizer for an associative ring R is a map
satisfying T (xy) = T (x) y for all x, y in R. T is not assumed to be additive. In this
paper we deal with the additivity of the multiplicative left centralizers in a ring which
contains an idempotent element. Specially, we study additivity for multiplicative
left centralizers in prime and semiprime rings which contain an idempotent element.
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1. Introduction

Let R be an associative ring. The study of the question of when any mapping
defined on R is additive has become an active research area in ring theory and
operator theory. Of course the starting point of this line of research is the famous
paper of Rickart [8] which is often used and cited in the operator algebra settings.
Rickart proved that any one-to-one multiplicative mapping of a Boolean ring B
onto an arbitrary ring S is necessarily additive (Theorem 1 in [8]). Moreover, if
R is an arbitrary ring containing some non-zero minimal right ideals then, under
certain conditions on R, any one-to-one multiplicative mapping of R onto an arbi-
trary ring S is necessarily additive (Theorem 2 in [8]).
In [7] Martindale asked the following question: When is a multiplicative isomor-
phism defined on R additive? His elegant conclusion assures additivity under the
condition that R possess non-trivial idempotent elements. In [3], the second au-
thor introduced the definition of multiplicative derivation of R to be a mapping
d : R −→ R such that d(xy) = d(x)y + xd(y) and proved that if R contains non-
trivial idempotent elements then any multiplicative derivation is additive.
In [6], Lu and Xie established a condition on R, in the case where R may not
contain any non-zero idempotents, that assures that a multiplicative isomorphism
is additive, which generalizes Martindale’s result. As an application, they showed
that under a mild assumption every multiplicative isomorphism from the radical
of a nest algebra onto an arbitrary ring is additive.
Our research has been motivated by the cited results. We will follow the above
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mentioned line of investigation and focus our attention on the study of left central-
izers in prime and semiprime rings. We recall that an additive mapping T : R → R
is called a left centralizer if T (xy) = T (x)y, for all x, y ∈ R. In ring theory it is more
common to write that T : RR → RR is a homomorphism of the right R-module R
into itself. Let Q be the Martindale right ring of quotient of R, C the extended
centroid of R (we refer to Chapter 2 in [2] for definitions and properties of Q and
C). For a semiprime ring R all such homomorphisms are of the form T (x) = qx
for all x ∈ R, where q ∈ Q. Moreover in case R has the identity element, then T is
a left centralizer if and only if T is the form T (x) = qx for all x ∈ R, where q ∈ R.
Notice that the definition of right centralizer is self-explanatory.
An additive mapping T : R → R is called a two-sided centralizer if T is both a
left and right centralizer. If R is a semiprime ring and T : R → R is a two-sided
centralizer, then T (x) = λx for all x ∈ R, where q ∈ C, the extended centroid of R
(see Theorem 2.3.2 in [1]).
Centralizers have been primarily studied on operator algebras. Therefore any in-
vestigation from the algebraic point of view might be interesting. Recently, several
authors have studied such additive mappings on rings satisfying some identical re-
lations. When treating such relations one usually concludes that the form of the
map involved can be described, unless the ring is very special (see for example [5],
[9], [10], [11], [12]).
In this note, we introduce the notion of the multiplicative left centralizer of a ring
R. It is a mapping T : R → R (not necessarily additive) such that T (xy) = T (x)y,
for all x, y ∈ R. Here we ask the question when a multiplicative left centralizer on
a prime or semiprime ring R is additive, in other words when a multiplicative left
centralizer is a left centralizer. Our aim is to establish a sufficient condition which
forces additivity.
We also would like to point out the relationship between left centralizers and deriva-
tions. In [4], Hvala defined the notion of a generalized derivation as follows: An
additive mapping g : R → R is said to be a generalized derivation if there exists a
derivation d : R → R such that

g (xy) = g(x)y + xd(y) for all x, y ∈ R.

He called the maps of the form x 7→ ax + xb where a, b are fixed elements in R
“inner generalized derivations". Then it seems natural to remark that the concept
of generalized derivation covers both the concepts of derivation and left centralizer.

In light of this, we call multiplicative generalized derivation any mapping g :
R → R such that g(xy) = g(x)y+ xd(y), for all x, y ∈ R, related with a derivation
d. In parallel to the works of Martindale [7] and Daif [3], we ask the following
question for a multiplicative generalized derivation: When is a multiplicative gen-
eralized derivation additive, that is when a multiplicative generalized derivation is
a generalized derivation? Under some conditions, we give an answer also for this
question, as a consequence of the result we obtain for left centralizers.
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2. The Results.

When the ring R has an identity element, it is easy to prove that any multiplica-
tive generalized derivation and also any multiplicative left centralizer is additive
as follows. The same conclusion holds in the case R is a commutative prime (or
semiprime) ring without an identity element. We omit the proof of these facts for
brevity.
Now our aim is to study the case of noncommutative prime and semiprime rings
which need not have an identity element but which contain an idempotent e
(e 6= 0, 1).

For the next lemmas we call this idempotent element e1 and formally set e2 =
1−e1. Then for Rij = eiRej (i, j = 1, 2) we may write R in its Peirce decomposition
R = R11 ⊕R12 ⊕R21 ⊕R22. Moreover we will denote xij any element of §Rij .
We begin with the following useful result:

Lemma 2.1. For any xij ∈ Rij, we have

[T (x11 + x12 + x21 + x22)− T (x11 + x21)− T (x12 + x22)]R = (0).

Proof: Let x1∗ ∈ R1i and ∗ = 1, 2. We get

[T (x11 + x21) + T (x12 + x22)]x1∗ = T (x11 + x21)x1∗ + T (x12 + x22)x1∗

= T [(x11 + x21)x1∗] + T [(x12 + x22)x1∗] = [T (x11 + x21)x1∗]

= T [(x12 + x22)x1∗] = T (x11 + x12 + x21 + x22)x1∗

So we have,

[T (x11 + x12 + x21 + x22)− T (x11 + x21)− T (x12 + x22)]x1∗ = 0 (2.1)

Also, similarly, for any x2∗ where ∗ = 1, 2 we get

[T (x11 + x12 + x21 + x22)− T (x11 + x21)− T (x12 + x22)]x2∗ = 0 (2.2)

Using (2.1) and (2.2) we get,

[T (x11 + x12 + x21 + x22)− T (x11 + x21)− T (x12 + x22)]R = (0) (2.3)

✷

Lemma 2.2. For any xij ∈ Rij, ∗ means any value of 1, 2 can be used, we have:

(I) T (x∗1x12x2∗ + y∗1y12y2∗) = T (x∗1x12x2∗) + T (y∗1y12y2∗).

(II) T (x∗2x21x1∗ + y∗2y21y1∗) = T (x∗2x21x1∗) + T (y∗2y21y1∗).

Proof: The proof makes use of a clever factoring procedure:

T (x∗1x12x2∗ + y∗1y12y2∗) = T [(x∗1x12 + y∗1)(x2∗ + y12y2∗)]

= T (x∗1x12 + y∗1)(x2∗ + y12y2∗)

= T (x∗1x12 + y∗1)x2∗ + T (x∗1x12 + y∗1)y12y2∗

= T (x∗1x12x2∗ + y∗1x2∗) + T (x∗1x12y12y2∗ + y∗1y12y2∗)

= T (x∗1x12x2∗) + T (y∗1y12y2∗).
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By a similar method, we can get the proof of (II). ✷

Lemma 2.3. For any xij ∈ Rij, we have

(1) [T (x11 + x21)− T (x11)− T (x21)]R12R = (0).

(2) [T (x12 + x22)− T (x12)− T (x22)]R21R = (0).

(3) [T (x21 + y21)− T (x21)− T (y21)]R12R = (0).

(4) [T (x22 + y22)− T (x22)− T (y22)]R21R = (0).

(5) T (x11 + y11) = T (x11) + T (y11).

(6) T (x12 + y12) = T (x12) + T (y12).

Proof: Here we make use of the results (I) and (II) of Lemma 2.2:
(1) Using (I), we get

T (x11 + x21)y12y2∗ = T (x11y12y2∗ + x21y12y2∗)

= T (x11y12y2∗) + T (x21y12y2∗)

= T (x11)y12y2∗ + T (x21)y12y2∗.

This means,
[T (x11 + x21)− T (x11)− T (x21)]R12R2∗ = (0).

But also since R12R1∗ = (0) we have,

[T (x11 + x21)− T (x11)− T (x21)]R12R1∗ = (0).

So we arrive at

[T (x11 + x21)− T (x11)− T (x21)]R12R = (0).

(2) Using (II) and the same argument as (1) we get the proof.
(3) Using (I) and the same argument as (1) we get the proof.
(4) Using (II) and the same argument as (1) we get the proof.
(5) Let x11 and y11 be two elements in the subring R11, then T (x11 + y11) =
T [e1(x11+y11)] = T (e1)(x11+y11) = T (e1)x11+T (e1)y11 = T (e1x11)+T (e1y11) =
T (x11) + T (y11).
(6) Use the same argument as (5). ✷
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Theorem 2.4. Let R be a prime ring with an idempotent element e1 6= 0, 1. Let

T : R → R be a multiplicative left centralizer, i.e., T (xy) = T (x)y for all x, y ∈ R.

Then T is additive.

Proof: The set I = R12R21 + R12 + R21 + R21R12 is an ideal of R. By (1) of
Lemma 2.3 and the fact that R∗1R2∗ = (0) we get,

[T (x11 + x21)− T (x11)− T (x21)]IR = (0). (2.4)

Similarly, using Lemma 2.3, we get

[T (x12 + x22)− T (x12)− T (x22)]IR = (0), (2.5)

[T (x21 + y21)− T (x21)− T (y21)]IR = (0), (2.6)

[T (x22 + y22)− T (x22)− T (y22)]IR = (0), (2.7)

[T (x11 + y11)− T (x11)− T (y11)]IR = (0), (2.8)

and
[T (x12 + y12)− T (x12)− T (y12)]IR = (0). (2.9)

By the previous equations (2.4)-(2.9) and Lemma 2.1, for all a, b in R, we get

[T (a+ b)− T (a)− T (b)]IR = (0). (2.10)

Since R is not zero, by the primeness of R we have

[T (a+ b)− T (a)− T (b)]I = (0). (2.11)

This means that [T (a+ b)− T (a)− T (b)] is a left annihilator of I. In a prime ring
either it must be zero or else I must be zero. If [T (a + b) − T (a) − T (b)] = (0)
this means that T is additive. Now if I = (0) this means R = R11 + R22. But
R11 and R22 are orthogonal ideals in R this gives R22 = 0 since R11 6= (0) because
it contains e1. In this case we have R = R11. Since, by (5) of Lemma 2.3, T is
additive in R11, we have that T is additive in R. ✷

Corollary 2.5. Let R be a prime ring with an idempotent element e 6= 0, 1. Let

G : R → R be a multiplicative generalized derivation, i.e., G(xy) = G(x)y+xD(y),
for all x, y ∈ R, related with a derivation D. Then G is additive.

Proof: Since G − D is a left centralizer, then G − D is additive by the previous
theorem. Since D is additive we get that G is additive. ✷

Now we study the additivity for a semiprime ring containing an idempotent
element e1 6= 0, 1.

Proposition 2.6. If R is a semiprime ring and J be an ideal generated by {T (a+
b)− T (a)− T (b) : ∀a, b ∈ R}. Then J ⊆ R22.
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Proof: Assume an ideal I = R12R21 + R12 + R21 + R21R12 and J be an ideal
generated by {T (a + b) − T (a) − T (b)}. Then, by Lemmas 2.1 and 2.3 we have
JIR = (0), and by the semiprimeness of R we get (JI)2 = 0, this implies that
JI = (0). Also, (J ∩ I)2 ⊂ JI = 0. By the semiprimeness of R we get J ∩ I = 0.
But if J∩I = 0. Then J ⊆ (R11+R22). Now let J = J11+J22, J11 and J22 are ideals
in R. For any j ∈ J11, T (aj+bj)−T (aj)−T (bj) = T (aj)+T (bj)−T (aj)−T (bj) = 0
because RJ11 ⊆ R11 and T is additive in R11. So we get JJ11 = 0 which implies
(J11 + J22)J11 = J2

11 = 0. Because of the semiprimeness of R we get J11 = 0. This
means J = J22 ⊂ R22. ✷

Now we delete the semiprimeness hypothesis and obtain a similar result:

Proposition 2.7. Let R be a ring. Let T : R → R be a multiplicative left central-

izer, i.e., T (xy) = T (x)y for all x, y ∈ R. For all integers n ≥ 1, let J∗ be an ideal

generated by

S = {T n(a+ b)− T n(a)− T n(b) : ∀a, b ∈ R}.

Then T n is again a multiplicative centralizer. Moreover, T (J∗) ⊂ J∗ and T is

additive on R/J∗.

Proof: Of course T n is a left centralizer on R, since for all x, y ∈ R we have that

T n(xy) = T n−1(T (x)y) = T n−2(T 2(x)y) = . . . . . . . . . = T (T n−1(x)y) = T n(x)y.

The set S is a right ideal, so J∗ = S +RS and we have

T (RS) ⊂ T (R)S ⊂ RS ⊂ J∗, which implies T (J∗) ⊂ J∗

and

T [T n(a+ b)− T n(a)− T n(b)] ≡ 0 mod J

T [T n(a+ b)− T n(a)]− T n+1(b) ≡ 0 mod J

T [T n(a+ b)]− T n+1(a)− T n+1(b) ≡ 0 mod J

T n+1(a+ b)− T n+1(a)− T n+1(b) ≡ 0 mod J

Since J∗ is invariant, T is a left centralizer on the quotient ring R/J∗. Since
T (a+ b)− T (a)− T (b) ≡ 0 in R/J∗, T is additive left centralizer on R/J∗. ✷

From Propositions 2.6 and 2.7 it follows that:

Proposition 2.8. Let R be a semiprime ring. If T : R → R be a multiplicative

left centralizer, i.e., T (xy) = T (x)y for all x, y ∈ R. Let J∗ be an ideal generated

by

S = {T n(a+ b)− T n(a)− T n(b) : ∀a, b ∈ R}.
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Then J∗ ⊂ R22.

In light of Proposition 2.7, T n is a left centralizer for all n ≥ 1. Hence, by
Lemmas 2.1, 2.2 and 2.3, the following lemmas also hold:

Lemma 2.9. Let n 6= 1 be an integer. Then for any xij ∈ Rij , we have

[T n(x11 + x12 + x21 + x22)− T n(x11 + x21)− T n(x12 + x22)]R = (0).

Lemma 2.10. Let n 6= 1 be an integer. For any xij ∈ Rij, ∗ means any value of

1, 2 can be used, we have:

(I) T n(x∗1x12x2∗ + y∗1y12y2∗) = T n(x∗1x12x2∗) + T n(y∗1y12y2∗).

(II) T n(x∗2x21x1∗ + y∗2y21y1∗) = T n(x∗2x21x1∗) + T n(y∗2y21y1∗).

Lemma 2.11. Let n 6= 1 be an integer. For any xij ∈ Rij, we have

(1) [T n(x11 + x21)− T n(x11)− T n(x21)]R12R = (0).
(2) [T n(x12 + x22)− T n(x12)− T n(x22)]R21R = (0).
(3) [T n(x21 + y21)− T n(x21)− T n(y21)]R12R = (0).
(4) [T n(x22 + y22)− T n(x22)− T n(y22)]R21R = (0).
(5) T n(x11 + y11) = T n(x11) + T n(y11).
(6) T n(x12 + y12) = T n(x12) + T n(y12).

Theorem 2.12. Let R be a semiprime ring and n ≥ 1 be an integer. Let J∗ be

an ideal generated by S = {T n(a+ b)− T n(a)− T n(b), ∀a, b ∈ R}. If R satisfies

any of the following conditions then T n is additive on R:

(1) J∗ = (0).
(2) T n is additive on R22.

(3) R22 = R21R12.

Proof: (1) Since T n(a+ b)− T n(a)− T n(b) ∈ J∗ ∀ a, b ∈ R, if J∗ = (0) then T n

is additive.
(2) Since T n is additive on R22, then by Proposition 2.8 it is additive on J∗. Then
for any j ∈ J∗, [T n(a + b) − T (a) − T (b)]j = T (aj + bj) − T (aj) − T (bj) = 0.
Therefore (J∗)2 = (0). Since R is semiprime, J∗ = (0) and we conclude by the
previous argument.
(3) Assume the ideal I = R12R21 + R12 + R21 + R21R12. If R22 = R21R12 then
by Lemmas 2.4 and 2.6 we have J∗IR = (0) which implies J∗I = (0). Thus
(J∗ ∩ I)2 ⊆ J∗I = (0) and by the semiprimeness of R it follows J∗ ∩ I = (0) which
implies J∗ = (0) and again conclude by argument in (1). ✷

As a particular case of the previous theorem we obtain the last result of the
paper:

Theorem 2.13. Let R be a semiprime ring and J be an ideal generated by S =
{T (a+ b)−T (a)−T (b), ∀a, b ∈ R}. If R satisfies any of the following conditions
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then T is additive on R:

(1) J = (0).
(2) T is additive on R22.

(3) R22 = R21R12.

Corollary 2.14. Let R be a semiprime ring which satisfies the conditions of the

above Theorem 2.13 then, any multiplicative generalized derivation on R, is addi-

tive.

Proof: If G(xy) = G(x)y+xD(y), where D is an (additive) derivation, then G−D
is a multiplicative left centralizer. So G−D is additive and G is additive. ✷
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