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Multiplicity Results for a Fourth Order Quasi-Linear Problems
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abstract: In this paper we prove the existence of nontrivial solutions to a p-
biharmonic elliptic equations with Navier boundary conditions. The results are
proved by applying minimax arguments and Morse theory.
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1. Introduction

We consider the following problem with Navier boundary conditions

(P)

{

∆2
pu = f(x, u) in Ω
u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, ∆2
pu =

∆(|∆u|p−2∆u), is the p-biharmonic operator, 1 < p < ∞ and
f : Ω× R → R is a Carathéodory function satisfying the subcritical growth condi-
tion:
(F0) |f(x, t)| ≤ c(1 + |t|q−1), ∀t ∈ R, a.e. x ∈ Ω,
for some c > 0, and 1 ≤ q < p∗ where p∗ = Np

N−2p if 1 < 2p < N and p∗ = +∞ if
N ≤ 2p.

Observe that, if f(x, 0) ≡ 0, then the problem (P) has a trivial solution u ≡ 0.
We are interested in finding multiple nontrivial solutions of (P) in the Sobolev
space W 2,p(Ω) ∩W

1,p
0 (Ω), equipped with the norm

‖ u ‖= (

∫

Ω

|∆u|p dx)
1

p .

It is well known that the functional Φ : W 2,p(Ω) ∩W
1,p
0 (Ω) → R

Φ(u) =
1

p

∫

Ω

|∆u|p dx −

∫

Ω

F (x, u) dx,
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with F (x, t) =
∫ t

0 f(x, s) ds, is of class C1 and

〈Φ′(u), ϕ〉 =

∫

Ω

|∆u|p−2∆u∆ϕdx−

∫

Ω

f(x, u)ϕ dx

for every ϕ ∈ W 2,p(Ω) ∩ W
1,p
0 (Ω). Moreover, the critical points of Φ are weak

solutions for (P). Notice that for the eigenvalue problem
{

∆2
pu = λ|u|p−2u in Ω
u = ∆u = 0 on ∂Ω,

(1.1)

as for the p-Laplacian eigenvalue problem with Dirichlet boundary data,

λn = inf
K∈An

sup
u∈K

∫

Ω

|∆u|p dx, n = 1, 2, ...

is the sequence of eigenvalues, where

An = {K ⊂ N : K is compact, symmetric and γ(K) ≥ n}

and

N = {u ∈ W 2,p(Ω) ∩W
1,p
0 (Ω) :

∫

Ω

|u|p dx = 1}.

Here γ(K) indicate the genus of K. It has been recently proved by P. Drábek and
M. Ôtani [4] that (1.1) has the least eigenvalue

λ1(p) = inf{

∫

Ω

|∆u|p dx : u ∈ W 2,p(Ω) ∩W
1,p
0 (Ω),

∫

Ω

|u|p dx = 1}, (1.2)

which is simple, positive and has an associated normalized eigenfunction ϕ1 which
is positive in Ω. It is also known, (see [4]), that there exists δ > 0 such that
(λ1(p), λ1(p) + δ) that not contain other eigenvalues.

Remark 1.1. Let V = span{ϕ1} be the eigenspace associated with λ1, where
‖ ϕ1 ‖= 1. Taking a subspace W ⊂ W 2,p(Ω) ∩W

1,p
0 (Ω) complementing V , that is,

W 2,p(Ω) ∩W
1,p
0 (Ω) = V ⊕W , there exists λ̂ > λ1 with

∫

Ω

|∆u|p dx ≥ λ̂

∫

Ω

|u|p dx (1.3)

for each u ∈ W ( in case p = 2, one may take λ̂ = λ2).

The existence of solutions of p-biharmonic equation has been studied by several
authors see [1,4,9,11] and the reference therein.
It will be seen that critical groups and Morse Theory, developed by Chang [3] or
Mawhin and Willem [10], are the main tools used to solve our problem. The main
point in this theory is to introduce the critical groups of an isolated critical point.
With this aim, we need to suppose a conditions that give us information about the
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behavior of the perturbed function f(x, t) or its primitive F (x, t) =
∫ t

0 f(x, s) ds
near infinity and near zero. More precisely, the following conditions are assumed:
(F1) lim

|t|→∞
[tf(x, t)− pF (x, t)] = ∞ uniformly for a.e. x ∈ Ω,

(F2) lim
|t|→∞

[tf(x, t)− pF (x, t)] = −∞ uniformly for a.e. x ∈ Ω,

(F3) there exists δ ∈ (0, λ2 − λ1) such that
lim sup
|t|→∞

pF (x,t)
|t|p < λ1 + δ, uniformly a.e. x ∈ Ω,

(F4) lim
|t|→∞

[
∫

Ω F (x, tϕ1) dx− 1
p
|t|p) = ∞,

(F5) there exist µ ∈ (0, p), γ > 0 and α a constant non positive, such that
0 < µF (x, t) ≤ tf(x, t), for a.e. x ∈ Ω, 0 <| t |≤ γ,

and

lim inf
|t|→0

µF (x, t)− tf(x, t)

|t|p
≥ α > λ1(

µ

p
− 1) uniformly a.e. x ∈ Ω.

The main result reads as follows.

Theorem 1.1. Suppose (F0), (F3)− (F5) and (F1) or (F2). Then the problem (P)
has at least nontrivial solution.

The second purpose of this paper is to show the existence of at least two non-
trivial solutions of problem (P) under the following assumptions:
(F6) ∃R > 0, λ̄ ∈]λ1, λ̂[ such that for all | t |≤ R and x ∈ Ω

λ1 | t |p≤ pF (x, t) ≤ λ̄ | t |p .

(F7) lim
|t|→∞

(F (x, t) − λ1

p
| t |p) = −∞.

Now, we can state the following result.

Theorem 1.2. Under (F0), (F6) and (F7), the problem (P) has at least two non-
trivial solutions.

Remark 1.2. In Theorem 1.4 [9], the authors established the existence of at least
two nontrivial solutions of problem (P), under (F0), (F6) and the following hypoth-
esis.
(F ′

7) lim
|t|→∞

pF (x,t)
|t|p < λ1.

Note that our condition (F7) is weaker than (F ′
7).

For finding critical points of Φ, by applying minimax methods, we will use the
following compactness condition, introduced by Cerami [2], which is a generaliza-
tion of the classical Palais-Smale type (PS).

Definition 1.1. Given c ∈ R, we say that Φ ∈ C1(X,R) satisfies the condition
(Cc), if
(i) Every bounded sequence (un) ⊂ X such that Φ(un) → c and Φ′(un) → 0 has a
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convergent subsequence,
(ii) there exists constants δ, R, α > 0 such that

‖ Φ′(u) ‖X′‖ u ‖X≥ α, ∀u ∈ Φ−1([c− δ, c+ δ]) with ‖ u ‖X≥ R.
If Φ satisfies condition (Cc) for every c ∈ R, we simply say that Φ satisfies (C).

The paper is organized as follows. In section 2 we introduce some auxiliary
results. In Section 3, we will prove the existence of at least nontrivial solution by
combining the minimax method and Morse theory. In section 4, we will give the
proof of Theorem 1.2.

2. Critical Groups

In this section, we investigate the critical groups at zero and at a mountain
pass type. To proceed, some concepts are needed. Let X denote the generalized
Sobolev space W 2,p(Ω) ∩W

1,p
0 (Ω), given a Φ ∈ C1(X,R). For β, c ∈ R, we set

Φβ = {x ∈ X : Φ(x) ≤ β},

K = {x ∈ X : Φ′(x) = 0},

Kc = {x ∈ K : Φ(x) = c}.

Denote by Hq(A,B) the q-th homology group of the topological pair (A,B) with
integer coefficient. The critical groups of Φ at an isolated critical point u ∈ Kc are
defined by Cq(Φ, u) = Hq(Φ

c ∩ U, (Φc \ {u}) ∩ U), q ∈ Z ,

where U is a closed neighborhood of u.
Moreover, it is known that Cq(Φ, u) is independent of the choice of U due to the
excision property of homology. We refer the readers to [3,10] for more information.

Recall that in the case when Φ satisfies the Cerami condition and for [a, b] ⊂
R ∪ {∞} the critical set Kb

a = {x ∈ Y ; a ≤ Φ(x) ≤ b,Φ′(x) = 0} is finite, we have
the following Morse relations between the Morse critical groups and homological
characterization of subset sets:

Hq(Φ
a,Φb) =

⊕

Kb
a

Cq(Φ, u). (2.1)

Now, we will show that the critical groups of Φ at zero are trivial.

Lemma 2.1. Assume (F0) and (F5). Then Cq(Φ, 0) ∼= 0, ∀q ∈ Z.

Proof. Let Bρ = {u ∈ X, ‖ u ‖≤ ρ}, ρ > 0 which is to be chosen later. The idea
of the proof is to construct a retraction of Bρ \ {0} to Bρ ∩ Φ0 \ {0} and to prove
that Bρ∩Φ0 is contractible in itself. For this purpose, we need to analyze the local
properties of Φ near zero. Thus, some technical affirmations must be proved.
Claim 1. Under (F0) and (F5), zero is local maximum for the functional Φ(su),
s ∈ R, for u 6= 0.

In fact, it follows from the first condition of (F5), there exists a constant c0 > 0
such that

F (x, t) ≥ c0 | t |µ, for x ∈ Ω, | t |≤ γ. (2.2)
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Using (F0) and (2.2), we get

F (x, t) ≥ c0 | t |µ −c1 | t |q, x ∈ Ω, t ∈ R (2.3)

for some q ∈ (p, p∗) and c1 > 0.
Then, for u ∈ X , u 6= 0 and s > 0, we have

Φ(su) =
1

p
sp

∫

Ω

|∆u|p dx−

∫

Ω

F (x, (su)) dx

≤
sp

p
‖ u ‖p −

∫

Ω

(c0 | (su) |µ −c1 | (su) |q) dx

≤
sp

p
‖ u ‖p −c0s

µ ‖ u ‖µLµ +c1s
q ‖ u ‖qLq . (2.4)

Since µ < p < q, there exists a s0 = s0(u) > 0 such that

Φ(su) < 0, for all 0 < s < s0. (2.5)

Claim 2. There exists ρ > 0 such that

d

ds
Φ(su) |s=1> 0, (2.6)

for every u ∈ X with Φ(u) = 0 and 0 <‖ u ‖≤ ρ.

Indeed, let u ∈ X be such that Φ(u) = 0. In turn, for (F5) and (F0) respectively,
we have for ε > 0 sufficiently small that there exists
r = r(ε) > 0 such that

µF (x, u)− f(x, u)u ≥ (α− ε) | u |p, a.e. x ∈ Ω and | u |≤ r,

and

µF (x, u)− f(x, u)u ≥ −cε | u |q, a.e. x ∈ Ω and | u |> r,

for some q ∈ (p, p∗) and cε > 0.

Define Ωr(u) = {x ∈ Ω : | u |> r} and Ωr(u) = {x ∈ Ω : | u |≤ r}.
Denote by 〈., .〉 the duality pairing between X and X ′. Then, since Φ(u) = 0, by
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virtue of (1.2), we find

d

ds
Φ(su) |s=1 = 〈Φ′(su), u〉 |s=1

=

∫

Ω

|∆u|p dx−

∫

Ω

f(x, u)u dx,

= (1 −
µ

p
)

∫

Ω

|∆u|p dx+

∫

Ωr(u)

(µF (x, u)− f(x, u)u) dx

+

∫

Ωr(u)

(µF (x, u)− f(x, u)u) dx,

≥ (1 −
µ

p
) ‖ u ‖p +(α− ε)

∫

Ωr(u)

| u |p dx− cε

∫

Ωr(u)

| u |q dx,

≥ (1 −
µ

p
) ‖ u ‖p +

(α− ε)

λ1

∫

Ω

| ∆u |p dx − cεc
q ‖ u ‖q,

≥ (1 −
µ

p
) ‖ u ‖p +

(α− ε)

λ1
‖ u ‖p −cεc

q ‖ u ‖q,

≥ θ ‖ u ‖p −Cε ‖ u ‖q,

where θ = (1− µ
p
+ α

λ1

− ε
λ1

), c > 0 is the embedding constant for X →֒ Lq(Ω) and
Cε = cεc

q.
Since p < q, the inequality (2.6) follows for ε small enough such that θ > 0.
Claim 3. For all u ∈ X with Φ(u) ≤ 0 and ‖ u ‖≤ ρ, we have

Φ(su) ≤ 0, for all s ∈ (0, 1). (2.7)

Indeed, given ‖ u ‖≤ ρ with Φ(u) ≤ 0, assume by contradiction that there
exists some s0 ∈ (0, 1] such that Φ(s0u) > 0. Thus, by the continuity of Φ,
there exists an s1 ∈ (s0, 1] such that Φ(s1u) = 0. Choose s2 ∈ (s0, 1] such that
s2 = min{s ∈ [s0, 1]; Φ(su) = 0}. It is easy to see that Φ(su) ≥ 0 for each
s ∈ [s0, s2]. Taking u1 = s2u, it is clear that

Φ(su)− Φ(s2u) ≥ 0 implies that
d

ds
Φ(su) |s=s2=

d

ds
Φ(su1) |s=1≤ 0.

This is a contradiction with (2.6). The proof of the claim is completed.
Let us fix ρ > 0 such that zero is the unique critical point of Φ in Bρ. First, by

taking the mapping h : [0, 1]× (Bρ ∩ Φ0) → Bρ ∩ Φ0 as

h(s, u) = (1− s)u,

we have that Bρ ∩ Φ0 is contractible in itself.
Now, we prove that (Bρ∩Φ0)\{0} is contractible in itself too. For this purpose,

define a mapping T : Bρ \ {0} → (0, 1] by

T (u) = 1, for u ∈ (Bρ ∩ Φ0) \ {0},

T (u) = s, for u ∈ Bρ \Φ
0 with Φ(su) = 0, s < 1. (2.8)
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From the relations (2.5)-(2.7), the mapping T is well defined and if Φ(u) > 0 then
there exists an unique T (u) ∈ (0, 1) such that

Φ(su) < 0, ∀s ∈ (0, T (u)),

Φ(T (u)u) = 0, (2.9)

Φ(su) > 0, ∀s ∈ (T (u), 1).

Thus, using (2.6) and (2.9) and the Implicit Function Theorem we get that the
mapping T is continuous.

Next, we define a mapping η : Bρ \ {0} → (Bρ ∩ Φ0) \ {0} by

η(u) = T (u)u, u ∈ Bρ \ {0} with Φ(u) ≥ 0,

η(u) = u, u ∈ Bρ \ {0} with Φ(u) < 0.

Since T (u) = 1 as Φ(u) = 0, the continuity of η follows from the continuity of T .
Obviously, η(u) = u for u ∈ (Bρ ∩Φ0) \ {0}. Thus, η is a retraction of Bρ \ {0}

to (Bρ ∩Φ0)\ {0}. Since X is infinite dimensional, Bρ \ {0} is contractible in itself.
By the fact that retracts of contractible space are also contractible, (Bρ ∩Φ0)\ {0}
is contractible in itself.

From the homology exact sequence, one has

Hq(Bρ ∩Φ0, (Bρ ∩ Φ0) \ {0}) = 0, ∀q ∈ Z.

Hence
Cq(Φ, 0) = Hq(Bρ ∩ Φ0, (Bρ ∩Φ0) \ {0}) = 0, ∀q ∈ Z.

The proof of lemma 2.1 is completed. ✷

We will use the following lemma, which is proved with (PS) condition see for
example [10].

Lemma 2.2. Assume Φ ∈ C1(X,R), there exists u0 ∈ X, u1 ∈ X and a bounded
open neighborhood Ω of u0 such that u1 ∈ X \ Ω̄ and

max(Φ(u0),Φ(u1)) < inf Φ∂Ω.

Let Γ = {g ∈ C([0, 1], X) : g(0) = u0, g(1) = u1} and

c = inf
g∈Γ

max
t∈[0,1]

Φ(g(t)).

If Φ satisfies the (C) condition over X and if each critical point of Φ in Kc is
isolated in X, then there exists u ∈ Kc such that dimC1(Φ, u) ≥ 1.

Proof. Let ε > 0 be such that c− ε > max(Φ(u0),Φ(u1)) and c is the only critical
value of Φ in [c− ε, c+ ε]. Consider the exact sequence

... → H1(Φ
c+ε,Φc−ε)

∂
→ H0(Φ

c−ε, ∅)
i∗→ H0(Φ

c+ε, ∅) → ...
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where ∂ is the boundary homomorphism and i∗ is induced by the inclusion mapping
i : (Φc−ε, ∅) → (Φc+ε, ∅). The definition of c implies that u0 and u1 are path
connected in Φc+ε but not in Φc−ε. Thus, ker i∗ 6= {0} [3,10] and, by exactness,
H1(Φ

c+ε,Φc−ε) 6= {0}. Using (2.1), we deduce that dimC1(Φ, u) ≥ 1. The lemma
2.2 is proved. ✷

3. Proof of Theorem 1.1

The proof is based on the following minimax theorem due to the first author
[5, Theorem 3.5], with Cerami condition.

Theorem 3.1. Let Φ be a C1 functional on X satisfying (C), let Q be a closed
connected subset of X such that ∂Q ∩ ∂(−Q) 6= ∅ and β ∈ R.
Assume that

1. for every K ∈ A2, there exists vK such that

Φ(vK) ≥ β and Φ(−vK) ≥ β,

2. a = sup
∂Q

Φ < β,

3. sup
∂Q

Φ < ∞.

Then Φ has a critical value c ≥ β given by

c = inf
h∈Γ

sup
x∈Q

Φ(h(x)),

where Γ = {h ∈ C(X,X) : h(x) = x for every x ∈ ∂Ω}.

We will establish the compactness condition under the condition (F0), (F3) and
(F1). The proof is similar for (F0), (F3) and (F2).

Lemma 3.1. Assume (F0), (F3) and (F1). Then Φ satisfies the condition (C).

Proof. (i) First, we verify that the Palais-Small condition is satisfied on the bounded
subsets of X . Let (un) ⊂ X be bounded such that

Φ′(un) → 0 and Φ(un) → c, c ∈ R. (3.1)

Passing if necessary to a subsequence, we may assume that

un ⇀ u weakly in X,

un → u strongly in Lp(Ω),

un(x) → u(x) a.e. in Ω.

(3.2)

From (3.1) and (3.2), we have 〈Φ′(un), un − u〉 → 0, or equivalently
∫

Ω

| ∆un |p−2 ∆un∆(un − u) dx−

∫

Ω

f(x, un)(un − u) dx → 0. (3.3)
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By the Hölder inequality, we obtain
∫

Ω

f(x, un)(un − u) dx → 0. (3.4)

Thus, it follows from (3.3) and (3.4) that 〈∆2
pun, un−u〉 → 0. Since , ∆2

p is of type
S+ ( see [4] ), we deduce that un → u strongly in X .

Now, we will show that (ii) is satisfied for every c ∈ R. By contradiction, let
(un) ⊂ X such that

Φ(un) → c, 〈Φ′(un), un〉 → 0 and ‖ un ‖→ +∞. (3.5)

Therefore,

lim
n

∫

Ω

(unf(x, un)− pF (x, un)) dx = pc. (3.6)

Taking vn = un

‖un‖
, clearly vn is bounded in X . So, there is a function v ∈ X and

a subsequence still denote by (vn) such that

vn ⇀ v weakly in X,

vn → v strongly in Lp(Ω),

vn(x) → v(x) a.e. in Ω.

(3.7)

On the other hand, in view (F0) and (F3), it follows that

F (x, s) ≤
λ1 + δ

p
| s |p +b, ∀s ∈ R, b ∈ Lp(Ω). (3.8)

Combining relations (3.5) and (3.8), we obtain

1

p
‖ un ‖p −

λ1 + δ

p
‖ un ‖pLp −b ≤ C, C ∈ R.

Dividing by ‖ un ‖ and passing to the limit, we conclude

1

p
−

λ1 + δ

p
‖ v ‖pLp −b ≤ 0,

and consequently v 6= 0.
Let Ω0 = {x ∈ Ω : v(x) 6= 0}, via the result above we have | Ω0 |> 0 and

| un(x) |→ +∞, a.e. x ∈ Ω0. (3.9)

Furthermore, (F0) and (F1) implies that there exists M > 0 and d ∈ L1(Ω) such
that

sf(x, s)− pF (x, s) ≥ −M + d(x), ∀s ∈ R, a.e. x ∈ Ω.

Hence,
∫

Ω

(unf(x, un)−pF (x, un)) dx≥

∫

Ω0

(unf(x, un)−pF (x, un)) dx−M | Ω\Ω0 |−‖ d ‖L1 .



226 A.R. El Amrouss and F. Kissi

Using (3.9) and Fatou’s lemma, one deduce

lim
n

∫

Ω

(unf(x, un)− pF (x, un)) dx = +∞.

This contradicts (3.6). ✷

Next, we will prove the geometric conditions of Theorem 3.1. Let denote E(λ1)
the eigenspace associated to the eigenvalue λ1

Lemma 3.2. Under the hypothesis (F0), (F3) and (F4), we have:
(i) Φ is anticoercive on E(λ1).
(ii) For all K ∈ A2, there exists vK ∈ K and β ∈ R such that Φ(vK) ≥ β and
Φ(−vK) ≥ β.

Proof. (i) For every v ∈ E(λ1), there exists t ∈ R such that v = tϕ1. Therefore,
using (F4), we write

Φ(v) =
| t |p

p

∫

Ω

| ∆ϕ1 |p dx−

∫

Ω

F (x, tϕ1) dx

= −[

∫

Ω

F (x, tϕ1) dx−
| t |p

p
] → −∞, as | t |→ ∞.

(ii) By the Ljusternik-Schnirelmann theory, we write

λ2 = inf
K∈A2

sup{

∫

Ω

| ∆u |p dx,

∫

Ω

| u |p dx = 1 and u ∈ K}.

Then, for all K ∈ A2, and all ε > 0, there exists vK ∈ K such that

(λ2 − ε)

∫

Ω

| vK |p dx ≤

∫

Ω

| ∆vK |p dx. (3.10)

Indeed, if 0 ∈ K, we take vK = 0.
Otherwise, we consider the odd mapping

g : K → K ′, v →
v

‖ v ‖Lp

.

By the genus properties, we have γ(g(K)) ≥ 2, and by the definition of λ2, there
exist ωK ∈ K ′ such that

∫

Ω

| ωK |p dx = 1 and (λ2 − ε) ≤

∫

Ω

| ∆ωK |p dx.

Thus (3.10) is satisfied by setting vK = g−1(ωK).
On the other hand, the two assumptions (F0) and (F3) implies

F (x, s) ≤ (
λ1 + δ − 2ε

p
) | s |p +C, ∀s ∈ R, (3.11)
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for some constant C > 0. Consequently, one deduce from (3.10) and (3.11) that

Φ(vK) ≥
1

p

∫

Ω

| ∆vK |p dx− (
λ1 + δ − 2ε

p
)

∫

Ω

| vK |p dx− C | Ω |

≥
1

p

∫

Ω

| ∆vK |p dx− (
λ2 − 2ε

p
)

∫

Ω

| vK |p dx− C | Ω |

≥
1

p
(1−

λ2 − 2ε

λ2 − ε
)

∫

Ω

| ∆vK |p dx− C | Ω | .

The argument is similar for

Φ(−vK) ≥
1

p
(1−

λ2 − 2ε

λ2 − ε
)

∫

Ω

| ∆vK |p dx− C | Ω | . (3.12)

Finally, for every K ∈ A2, we have Φ(±vK) ≥ β = −C | Ω |, which completes the
proof. ✷

Proof of Theorem 1.1. Putting Q = {tϕ1 :| t |≤ R} for R > 0, clearly, Q is closed
and compact. In view of lemma 3.2, we can find t0 > 0 such that Φ(±t0ϕ1) < β.
In return for lemma 3.2, we may apply Theorem 3.1 to get that Φ has a critical
value given by

c = inf
h∈Γ

sup
x∈Ω

Φ(h(x)) ≥ β,

where Γ = {h ∈ C([0, 1], X) : h(0) = −t0ϕ1, h(1) = t0ϕ1}. Therefore, there exists
at least one critical point u∗ of Φ. More precisely, u∗ is a mountain Pass type.
However, by lemma 2.2, we have C1(Φ, u

∗) ≇ 0. Using lemma 2.1, one deduces
u∗ 6= 0.

4. Proof of Theorem 1.2

In this section we prove Theorem 1.2 via the following abstract critical point
theorem.

Theorem 4.1 ( [8]). Let X be a real Banach pace and let Φ ∈ C1(X,R) be bounded
from below an satisfying the Palais-Smale condition. Assume that Φ has a critical
point u which is homologically nontrivial, that is, Cj(Φ, u) 6= {0} for some j, and
it is not a minimizer for Φ. Then Φ admits at least three critical points.

In order to apply Theorem 4.1, we need the following lemmas.
First, we recall the notion of "Local Linking", which was initially introduced by
Liu and Li [7].

Definition 4.1. Let X be a real Banach space such that X = V ⊕W , where V and
W are closed subspace of X. Let Φ : X → R be a C1-functional. We say that Φ has
a local linking near the origin 0 (with respect to the decomposition X = V ⊕W ), if
there exists ρ > 0 such that

u ∈ V :‖ u ‖≤ ρ =⇒ Φ(u) ≤ 0,

u ∈ W : 0 <‖ u ‖≤ ρ =⇒ Φ(u) > 0.
(4.1)



228 A.R. El Amrouss and F. Kissi

We now show that our functional Φ has a local linking near the origin with
respect to the space decomposition X = V ⊕W , according to Remark 1.1.

Lemma 4.1. Under the condition (F6), Φ has a local linking near the origin 0.

Proof. Take u ∈ V . Since V is finite dimensional, it is easily seen that ‖ u ‖≤ ρ ⇒|
u(x) |≤ R, ∀x ∈ Ω for ρ > 0 small. So it follows from (F6) that for ‖ u ‖≤ ρ,

Φ(u) =
1

p

∫

Ω

| ∆u |p dx−

∫

Ω

F (x, u) dx

=
λ1

p

∫

Ω

| u |p dx−

∫

Ω

F (x, u) dx

=

∫

|u|≤R

[
λ1

p
| u |p −F (x, u)] dx ≤ 0.

To prove the second assertion, take u ∈ W . Using (F0) and (1.3) we have

Φ(u) =
1

p

∫

Ω

| ∆u |p dx−

∫

Ω

F (x, u) dx

=
1

p

∫

Ω

(| ∆u |p −λ̄ | u |p) dx −

∫

|u|≤R

[F (x, u)−
λ̄

p
| u |p] dx

−

∫

|u|>R

[F (x, u)−
λ̄

p
| u |p] dx

≥
1

p
(1−

λ̄

λ̂
) ‖ u ‖p −c

∫

Ω

| u |s dx

≥
1

p
(1−

λ̄

λ̂
) ‖ u ‖p −C ‖ u ‖s,

where p < s ≤ p∗ and c, C are positive constants. Since s > p, it follows that
Φ(u) > 0 for ρ > 0 sufficiently small. This completes the proof. ✷

Since dimV = 1 < +∞, by combining Lemma 4.1 and Theorem 2.1 in [6], we
obtain the following result.

Lemma 4.2. The point 0 is a critical point of Φ and C1(Φ, 0) 6= {0}.

Lemma 4.3. If f satisfies (F7), then Φ is coercive on X; that is
Φ(u) → +∞ as ‖ u ‖→ ∞.

Proof. Let G(x, t) = F (x, t) − λ1

p
| t |p.

Then, from (F7) we conclude that, for every M > 0, there is RM > 0 such that

G(x, t) ≤ −M, ∀ | t |≥ RM , a.e. x ∈ Ω. (4.2)

By contradiction, let K ∈ R and (un) ⊂ X be such that ‖ un ‖→ ∞ and
Φ(un) ≤ K.



Multiplicity Results 229

Putting vn = un

‖un‖
, one has ‖ vn ‖= 1. For a subsequence, we may assume that

for some v0 ∈ X , we have vn ⇀ v0 weakly in X , vn → v0 strongly in Lp(Ω),
vn(x) → v0(x) a.e. in Ω.

Now, using (4.2) it follows that

K

‖ un ‖p
≥

Φ(un)

‖ un ‖p
=

1

p

∫

Ω

| ∆vn |p dx−

∫

Ω

F (x, un)

‖ un ‖p
dx

≥
1

p

∫

Ω

(| ∆vn |p −λ1 | vn |p) dx−

∫

Ω

G(x, un)

‖ un ‖p
dx

≥
1

p

∫

Ω

(| ∆vn |p −λ1 | vn |p) dx+
M1

‖ un ‖p
.

Where M1 > 0. Letting n → ∞, we get

1 = lim sup
n→∞

∫

Ω

| ∆vn |p dx ≤ λ1

∫

Ω

| v0 |p dx.

Consequently, v0 6= 0. Let Ω0 = {x ∈ Ω : v0(x) 6= 0}, via the result above we have
| Ω0 |> 0 and

| un(x) |→ +∞, a.e. x ∈ Ω0.

Thus, from (F7) and (1.2) we deduce that

K ≥ Φ(un) =
1

p

∫

Ω

(| ∆un |p −λ1 | un |p) dx−

∫

Ω

G(x, un) dx

≥ −

∫

Ω

G(x, un) dx → +∞.

This is a contradiction. Hence Φ is coercive on X . ✷

Proof of Theorem 1.2. By lemma 4.3, Φ satisfies the (PS) condition and bounded
from below. By lemma 4.2, the trivial solution u = 0 is homological nontrivial and
is not a minimizer. The conclusion follows from Theorem 4.1. ✷
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