

Bol. Soc. Paran. Mat. ©SPM -ISSN-2175-1188 ON LINE SPM: www.spm.uem.br/bspm (3s.) **v. 32** 2 (2014): **83–93**. ISSN-00378712 IN PRESS doi:10.5269/bspm.v32i2.17522

Existence and multiplicity of solutions for class of Navier boundary p-biharmonic problem near resonance

Mohammed Massar, El Miloud Hssini, Najib Tsouli

ABSTRACT: This paper studies the existence and multiplicity of weak solutions for the following elliptic problem

 $\Delta(\rho(x)|\Delta u|^{p-2}\Delta u) = \lambda m(x)|u|^{p-2}u + f(x,u) + h(x)$ in Ω , $u = \Delta u = 0$ on $\partial\Omega$. By using Ekeland's variational principle, Mountain pass theorem and saddle point theorem, the existence and multiplicity of weak solutions are established.

Key Words: p-biharmonic, resonance, Ekeland's principle, Mountain pass theorem, saddle point theorem.

Contents

1 Introduction and main results

83

2 Preliminaries and proofs of Theorems

86

1. Introduction and main results

In this article, we are concerned with the following elliptic problem of p-biharmonic type

$$\begin{cases} \Delta(\rho(x)|\Delta u|^{p-2}\Delta u) = \lambda m(x)|u|^{p-2}u + f(x,u) + h(x) & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (1.1)

where $\Omega \subset \mathbb{R}^N(N \geq 1)$ is a bounded smooth domain, p > 1, $\rho \in C(\overline{\Omega})$ with $\inf_{\overline{\Omega}} \rho(x) > 0$, $f : \overline{\Omega} \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function and $m \in C(\overline{\Omega})$ is nonnegative weight functions.

The investigation of existence and multiplicity of solutions for problems involving p-biharmonic operator has drawn the attention of many authors, see reference.

In [4], Li and Tang considered the following Navier boundary value problem

$$\begin{cases} \Delta(|\Delta u|^{p-2}\Delta u) = \lambda f(x,u) + \mu g(x,u) & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial\Omega, \end{cases}$$
 (1.2)

where $p>\max\left\{1,\frac{N}{2}\right\}$ and $\lambda,\mu\geq0$. Under suitable assumptions the existence of at least three weak solutions is established. In [6], Ma and Pelicer study a multiplicity for the perturbed p-Laplacian equation

$$-\Delta_p u = \lambda g(x)|u|^{p-2}u + f(x,u) + h(x) \quad \text{in } \mathbb{R}^N,$$

2000 Mathematics Subject Classification: 35J35, 35J40

where λ is near λ_1 , the principal eigenvalue of the weighted problem

$$-\Delta_p u = \lambda g(x)|u|^{p-2}u \quad \text{in } \mathbb{R}^N.$$

they proved the existence of one or three solutions.

In the present paper, we study problem (1.1) that result was extended to the p-biharmonic operator in bounded domains, with the weight functions. We were inspired by Ma and Pelicer [6] in which problems involving the p-laplacian operator is studied. Our technical approach is based on Ekeland's variational principle, Mountain pass theorem and saddle point theorem. We assume that f satisfies the following conditions

 (F_1) There exists a real a>0 and a function $b\in L^{(p^{\star})'}(\Omega)$ such that

$$|f(x,t)| \le a|t|^{\sigma-1} + b(x)$$
 a.e in Ω for all $t \in \mathbb{R}$,

with $1 < \sigma < p$.

 (F_2) There exist $\alpha > 0$ and $\beta(x) \in L^{\infty}(\Omega)$ satisfying

$$pF(x,u) - f(x,u)u \ge \alpha |u|^{\mu} + \beta(x)$$
 a.e in Ω for all $u \in \mathbb{R}$,

where
$$1 < \mu \le \sigma < p$$
 and $F(x, u) = \int_0^u f(x, s) ds$.

We introduce the space $X:=W^{2,p}(\Omega)\cap W^{1,p}_0(\Omega)$, which is a reflexive Banach space endowed with the norm

$$||u|| = \left(\int_{\Omega} \rho |\Delta u|^p dx\right)^{1/p}$$
, (see, e.g., [1, 10]).

Consider the following problem

$$\begin{cases} \Delta(\rho|\Delta u|^{p-2}\Delta u) = \lambda m(x)|u|^{p-2}u & \text{in } \Omega, \\ u = \Delta u = 0 & \text{on } \partial\Omega. \end{cases}$$
 (1.3)

Let λ_1 denote the first eigenvalue of problem (1.3). According to the work of M.Talbi and N.Tsouli [10], since $m \in C(\overline{\Omega})$ and $m \geq 0$, λ_1 is positive, simple, isolated and is given by

$$\lambda_1 = \inf \left\{ \int_{\Omega} \rho |\Delta u|^p dx : u \in X, \int_{\Omega} m(x) |u|^p dx = 1 \right\}. \tag{1.4}$$

Therefore

$$\int_{\Omega} \rho |\Delta u|^p dx \ge \lambda_1 \int_{\Omega} m(x) |u|^p dx \text{ for all } u \in X.$$
(1.5)

Let φ_1 normalized eigenfunction associated to λ_1 , which can be chosen positive. Let

$$\lambda_2 := \inf \{ \lambda : \lambda \text{ is an eigenvalue of } (1.3) \text{ with } \lambda > \lambda_1 \}.$$
 (1.6)

The fact that λ_1 is isolated implies that $\lambda_1 < \lambda_2$. It can also be shown (see Lemma 2.1) that there exists $\overline{\lambda} \in (\lambda_1, \lambda_2]$ such that

$$\int_{\Omega} \rho |\Delta u|^p dx \ge \overline{\lambda} \int_{\Omega} m(x) |u|^p dx, \tag{1.7}$$

for all $u \in X$ with $\int_{\Omega} m(x) |\varphi_1|^{p-2} \varphi_1 u dx = 0$.

Definition 1.1. We say that $u \in X$ is a weak solution of problem (1.1) if

$$\int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta \varphi dx - \int_{\Omega} m(x) |u|^{p-2} u \varphi dx - \int_{\Omega} f(x, u) \varphi dx - \int_{\Omega} h(x) \varphi dx = 0,$$

for all $\varphi \in X$.

The corresponding energy functional of problem (1.1) is given by

$$I(u) = \frac{1}{p} \int_{\Omega} \rho |\Delta u|^p dx - \frac{\lambda}{p} \int_{\Omega} m(x) |u|^p dx - \int_{\Omega} F(x, u) dx - \int_{\Omega} h(x) u dx, \quad (1.8)$$

it is well known that $I \in \mathcal{C}^1(X,\mathbb{R})$, with derivative at point $u \in X$ is given by

$$\langle I'(u), \varphi \rangle = \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta \varphi dx - \lambda \int_{\Omega} m|u|^{p-2} u \varphi dx - \int_{\Omega} f(x, u) \varphi dx - \int_{\Omega} h \varphi dx,$$

for every $\varphi \in X$. Consequently, the critical points of the functional I correspond to the weak solutions of the problem (1.1).

Let here recall the weak version of Mountain pass theorem (see [2], [3]) and the saddle point theorem (see [7]).

Theorem 1.2. let X be a real Banach space and $I: X \to \mathbb{R}$ be a C^1 functional satisfying the Palais-Smale condition. Furthermore assume that I(0) = 0 and that the following conditions hold:

- (i) there exits a number r > 0 such that $I|_{\partial B_r} \ge 0$
- (ii) there is an element $e \in X \setminus \overline{B_r}$ with $I(e) \leq 0$.

Then the real number c, characterized as

$$c := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t))$$

where

$$\Gamma := \{ \gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e \}$$

is a critical value of I with $c \ge 0$. If c = 0, there exists a critical point of I on ∂B_r corresponding to the critical value 0.

Theorem 1.3. Let X be a Banach space. Let $I: X \to \mathbb{R}$ be a C^1 functional that satisfies the Palais-Smale condition, and suppose that $X = V \oplus W$, with V a finite dimensional subspace of X. If there exists R > 0 such that

$$\max_{v \in V, ||v|| = R} I(v) < \inf_{w \in W} I(w),$$

then I has a least a critical point on X.

Now we are ready to state our main result.

Theorem 1.4. Assume that (F_1) holds. If in addition

$$\lim_{|t| \to \infty} F(x, t\varphi_1) = +\infty, \quad uniformly \ in \ x \in \Omega, \tag{1.9}$$

then for any $h \in L^{(p^{\star})'}(\Omega)$, with $(p^{\star})' = \frac{p^{\star}}{p^{\star}-1}$, satisfying

$$\int_{\Omega} h(x)\varphi_1 dx = 0, \tag{1.10}$$

problem (1.1) has at least three solutions when λ is sufficiently close to λ_1 from left.

Theorem 1.5. Assume that (F_1) and (F_2) hold. If in addition $\lambda_1 \leq \lambda < \overline{\lambda}$, then for any $h \in L^{(p^*)'}$, problem (1.1) has at least one solution.

2. Preliminaries and proofs of Theorems

Let denote $V = \langle \varphi_1 \rangle$ the linear spans of φ_1 and

$$W = \left\{ u \in X : \int_{\Omega} m(x) |\varphi_1|^{p-2} \varphi_1 u dx = 0 \right\}. \tag{2.1}$$

Then we can decompose X as a direct sum of V and W. In fact, let $u \in X$, writing

$$u = \alpha \varphi_1 + w,$$

where $w \in X$, and $\alpha = \lambda_1 \int_{\Omega} m(x) |\varphi_1|^{p-2} \varphi_1 u dx$. Since

$$\int_{\Omega} \rho |\Delta \varphi_1|^p dx = 1,$$

$$\int_{\Omega}m(x)|\varphi_1|^{p-2}\varphi_1wdx=0.$$

Therefore $w \in W$, hence

$$X = V \oplus W$$

We begin by establishing the existence of $\overline{\lambda}$ for which (1.7) holds.

Lemma 2.1. There exists $\overline{\lambda} \in (\lambda_1, \lambda_2]$ such that

$$\int_{\Omega} \rho |\Delta u|^p dx \ge \overline{\lambda} \int_{\Omega} m(x) |u|^p dx, \tag{2.2}$$

for all $u \in W$.

Proof: Let

$$\lambda = \inf \left\{ \int_{\Omega} \rho |\Delta u|^p dx : u \in W, \int_{\Omega} m(x) |u|^p dx = 1 \right\}.$$

This value is attained in W. To see why this is so, let (u_n) be a sequence in W, satisfying $\int_{\Omega} m(x)|u_n|^p dx = 1$ for all n, and $\int_{\Omega} \rho |\Delta u_n|^p dx \to \lambda$. It follows that (u_n) is bounded in X and therefore, up to subsequence, we may assume that

$$u_n \rightharpoonup u$$
 weakly in X and $u_n \to u$ strongly in $L^p(\Omega)$.

From the strong convergence of the sequence in $L^p(\Omega)$ we obtain

$$\int_{\Omega} m(x)|u|^p dx = \lim_{n \to \infty} \int_{\Omega} m(x)|u_n|^p dx = 1$$

and

$$\int_{\Omega} m(x) |\varphi_1|^{p-2} \varphi_1 u dx = \lim_{n \to \infty} \int_{\Omega} m(x) |\varphi_1|^{p-2} \varphi_1 u_n dx = 0,$$

so that $u \in W$. By the weakly lower semicontinuity of the norm ||.||, we get

$$\lambda \le \int_{\Omega} \rho |\Delta u|^p dx \le \liminf_{n \to \infty} \int_{\Omega} \rho |\Delta u_n|^p dx = \lambda,$$

and hence λ is attained at u.

Now we claim that $\lambda > \lambda_1$. It follows from (1.4) that $\lambda \geq \lambda_1$. If $\lambda = \lambda_1$, by simplicity of λ_1 there is $\alpha \in \mathbb{R}$ such that $u = \alpha \varphi_1$. Since $u \in W$,

$$\alpha \int_{\Omega} m(x) |\varphi_1|^p dx = 0,$$

which implies $\alpha = 0$. This contradicts the fact that $\int_{\Omega} m(x)|u|^p dx = 1$. So, choose $\overline{\lambda} = \min\{\lambda, \lambda_2\}$. It is clear that $\overline{\lambda}$ satisfies (2.2) and the proof of lemma is complete.

Lemma 2.2. Assume that (F1) holds. Then, for $\lambda < \lambda_1$ the functional I is coercive in X, and bounded from below on W. Moreover there exists a constant m independent of λ such that $\inf_W I(u) \geq m$.

Proof: From (F1), we have

$$\int_{\Omega} |F(x,u)| dx \le \frac{a}{\sigma} \int_{\Omega} |u|^{\sigma} dx + \int_{\Omega} b(x)|u| dx$$

By Hölder's and Sobolev's inequalities, it follows from (1.5) that

$$I(u) \geq \frac{1}{p} \int_{\Omega} \rho |\Delta u|^{p} dx - \frac{\lambda}{p} \int_{\Omega} m(x) |u|^{p} dx$$

$$- \frac{a}{\sigma} \int_{\Omega} |u|^{\sigma} dx - \int_{\Omega} b(x) |u| dx - \int_{\Omega} h(x) u dx$$

$$\geq \frac{1}{p} ||u||^{p} - \frac{\lambda}{p\lambda_{1}} ||u||^{p} - C_{1} ||u||^{\sigma} - C_{2} ||b||_{(p^{\star})'} ||u|| - C_{3} ||h||_{(p^{\star})'} ||u||$$

$$= \frac{1}{p} \left(1 - \frac{\lambda}{\lambda_{1}} \right) ||u||^{p} - C_{1} ||u||^{\sigma} - C_{2} ||b||_{(p^{\star})'} ||u|| - C_{3} ||h||_{(p^{\star})'} ||u|| (2.3)$$

where C_1, C_2 and C_3 are the embedding constants of Sobolev. Since $\lambda < \lambda_1$ and $\sigma < p$, I is coercive.

Similarly, let $u \in W$, by Lemma 2.1, for $\lambda < \lambda_1$, we have

$$I(u) \geq \frac{1}{p} \left(1 - \frac{\lambda}{\overline{\lambda}} \right) ||u||^p - C_1 ||u||^{\sigma} - C_2 ||b||_{(p^{\star})'} ||u|| - C_3 ||h||_{(p^{\star})'} ||u||$$

$$\geq \frac{1}{p} \left(1 - \frac{\lambda_1}{\overline{\lambda}} \right) ||u||^p - C_1 ||u||^{\sigma} - C_2 ||b||_{(p^{\star})'} ||u|| - C_3 ||h||_{(p^{\star})'} ||u|| (2.4)$$

Hence I is bounded from below on W. Moreover, we can find a constant m independent of λ such that $\inf_W I(u) \geq m$.

Lemma 2.3. Assume that (F1) and (1.9) hold. Then, for $\lambda < \lambda_1$ sufficiently close to λ_1 , there exist $t^- < 0 < t^+$ such that

$$I(t^+\varphi_1) < m$$
 and $I(t^-\varphi_1) < m$,

where m is given by Lemma 2.2.

Proof: By definition of λ_1 and (1.10), we have

$$I(t\varphi_{1}) = \frac{|t|^{p}}{p} \int_{\Omega} \rho |\Delta\varphi_{1}|^{p} dx - \lambda \frac{|t|^{p}}{p} \int_{\Omega} m(x) |\varphi_{1}|^{p} dx$$

$$- \int_{\Omega} F(x, t\varphi_{1}) dx - t \int_{\Omega} h(x) \varphi_{1} dx$$

$$= \frac{|t|^{p}}{p} \int_{\Omega} \rho |\Delta\varphi_{1}|^{p} dx - \frac{\lambda |t|^{p}}{p\lambda_{1}} \int_{\Omega} \rho |\Delta\varphi_{1}|^{p} dx - \int_{\Omega} F(x, t\varphi_{1}) dx$$

$$= \frac{|t|^{p}}{p} \left(1 - \frac{\lambda}{\lambda_{1}}\right) - \int_{\Omega} F(x, t\varphi_{1}) dx. \tag{2.5}$$

From (1.9), for t > 0 large enough, we have

$$F(x, t^+\varphi_1) \ge 0$$
, a.e. $x \in \Omega$,

by Fatou's Lemma, we get

$$\lim_{t \to +\infty} \inf \int_{\Omega} F(x, t^{+} \varphi_{1}) dx \geq \int_{\Omega} \liminf_{t \to +\infty} F(x, t^{+} \varphi_{1}) dx$$

$$= \int_{\Omega} \lim_{t \to +\infty} F(x, t^{+} \varphi_{1}) dx$$

$$= +\infty.$$

so, there exists $t^+ > 0$ such that

$$\int_{\Omega} F(x, t^{+}\varphi_{1})dx > -m + 1. \tag{2.6}$$

For $\lambda_1 - \frac{p\lambda_1}{(t^+)^p} < \lambda < \lambda_1$, (2.5) and (2.6) imply

$$I(t^+\varphi_1) < m.$$

Similarly, we get $I(t^-\varphi_1) < m$, for some $t^- < 0$.

Proof: (Theorem 1.4) First we show that I satisfies the (PS) condition in X, that is for every sequence such that

$$I(u_n) \to c, \quad I'(u_n) \to 0,$$
 (2.7)

possesses a convergent subsequence.

Let $(u_n) \subset X$ be a (PS) sequence. Since I is coercive, (u_n) is bounded in X, so up to subsequence, we may assume that $u_n \rightharpoonup u$ weakly in X. Therefore

$$\langle I'(u_n), u_n - u \rangle = o_n(1). \tag{2.8}$$

By Hölder's inequality, we have

$$\left| \int_{\Omega} m(x) |u_n|^{p-2} u_n(u_n - u) dx \right| \le ||m||_{\infty} \left(\int_{\Omega} |u_n|^p dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} |u_n - u|^p dx \right)^{\frac{1}{p}}. \tag{2.9}$$

Since $u_n \to u$ in $L^p(\Omega)$,

$$\lim_{n \to \infty} \int_{\Omega} m(x) |u_n|^{p-2} u_n(u_n - u) dx = 0.$$
 (2.10)

Since $(\sigma - 1)(p^*)' < p^*$, $u_n \to u$ strongly in $L^{(\sigma - 1)(p^*)'}(\Omega)$, and hence there exists $g \in L^{(\sigma - 1)(p^*)'}(\Omega)$ such that

$$|u_n| < q$$
 a.e. in Ω .

Thus

$$|f(x, u_n)|^{(p^{\star})'} \leq 2^{(p^{\star})'} \left(a^{(p^{\star})'} |u_n|^{(\sigma - 1)(p^{\star})'} + |b(x)|^{(p^{\star})'} \right)$$

$$\leq 2^{(p^{\star})'} \left(a^{(p^{\star})'} g^{(\sigma - 1)(p^{\star})'} + |b(x)|^{(p^{\star})'} \right).$$

Since the right side of the last inequality belongs to $L^1(\Omega)$, it follows from Lebesgue theorem that

$$f(x, u_n) \to f(x, u)$$
 in $L^{(p^*)'}(\Omega)$.

By using the fact that $u_n \rightharpoonup u$ in $L^{p^*}(\Omega)$, we deduce that

$$\lim_{n \to \infty} \int_{\Omega} (f(x, u_n) + h)(u_n - u)dx = 0.$$
(2.11)

Combining (2.8), (2.10) and (2.11) we obtain

$$\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u_n|^{p-2} \Delta u_n \Delta (u_n - u) dx = 0.$$

In the same way, we obtain

$$\lim_{n \to \infty} \int_{\Omega} \rho |\Delta u|^{p-2} \Delta u \Delta (u_n - u) dx = 0.$$

Therefore, the Hölder inequality imply that

$$0 = \lim_{n \to \infty} \int_{\Omega} (\rho |\Delta u_{n}|^{p-2} \Delta u_{n} - \rho |\Delta u|^{p-2} \Delta u) \Delta(u_{n} - u) dx$$

$$\geq \lim_{n \to \infty} \left[||u_{n}||^{p} - \left(\int_{\Omega} \rho |\Delta u_{n}|^{p} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} \rho |\Delta u|^{p} dx \right)^{1/p} - \left(\int_{\Omega} \rho |\Delta u|^{p} dx \right)^{\frac{p-1}{p}} \left(\int_{\Omega} \rho |\Delta u_{n}|^{p} dx \right)^{1/p} + ||u||^{p} \right]$$

$$= \lim_{n \to \infty} \left[||u_{n}||^{p} - ||u_{n}||^{p-1} ||u|| - ||u||^{p-1} ||u_{n}|| + ||u||^{p} \right]$$

$$= \lim_{n \to \infty} (||u_{n}||^{p-1} - ||u||^{p-1}) (||u_{n}|| - ||u||) \geq 0,$$

hence $||u_n|| \to ||u||$. By the uniform convexity of X, it follows that $u_n \to u$ strongly in X and I satisfies the (PS) condition.

Next, let

$$\Lambda^{\pm} = \{ u \in X : u = \pm t\varphi_1 + w, \ t > 0, \ w \in W \}.$$
 (2.12)

Let $(u_n) \subset \Lambda^+$ such that $I(u_n) \to c < m$ and $I'(u_n) \to 0$ as $n \to \infty$. Then $u_n \to u$ strongly in X. Noting that $\partial \Lambda^+ = W$. So, if $u \in \partial \Lambda^+$, it follows from $\inf_W I \ge m$ that

$$I(u_n) \to c = I(u) \ge m,$$

which is impossible. Therefore $u \in \Lambda^+$, and hence I satisfies the $(PS)_{c,\Lambda^+}$ for all c < m. Similarly, I satisfies the $(PS)_{c,\Lambda^-}$ for all c < m.

In view of Lemma 2.3 for $\lambda < \lambda_1$ sufficiently close to λ_1 , we have

$$-\infty < \inf_{\Lambda^+} I < m. \tag{2.13}$$

By Ekeland's variational principle in $\overline{\Lambda^+}$, there exists a sequence $(u_n) \subset \Lambda^+$ such that

$$I(u_n) \to \inf_{\Lambda^+} I$$
 and $I'(u_n) \to 0$.

Since I satisfies the $(PS)_{c,\Lambda^+}$ for all c < m, there exists $u^+ \in \Lambda^+$ such that $I(u^+) = \inf_{\Lambda^+} I$. Similarly, we find $u^- \in \Lambda^-$ such that $I(u^-) = \inf_{\Lambda^-} I$. Hence I has two distinct critical points u^+ and u^- .

Now, we prove the existence of the third solution. To fix ideas, suppose that $I(u^+) \leq I(u^-)$ and Putting

$$J(u) := I(u + u^{-}) - I(u^{-}), \quad e = u^{+} - u^{-}.$$

So, $J(0)=0,\ J(e)\leq 0.$ We can find r>0 such that $\overline{B(u^-,r)}\subset \Lambda^-,$ thus $\inf_{||u-u^-||=r}I(u)\geq I(u^-)$ and hence $\inf_{||u||=r}J(u)\geq 0.$ Let

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)), \tag{2.14}$$

where

$$\Gamma = \{ \gamma \in C([0,1], X) : \gamma(0) = u^-, \ \gamma(1) = u^+ \}.$$

Since J also satisfies the (PS) condition and J' = I', it follows from the Mountain pass theorem 1.2 that c is a critical value of I. Noting that all paths joining u^- to u^+ pass through W, so $c \ge m$. Therefore the third solution is obtained, and the proof of theorem is complete.

Proof: (Theorem 1.5) The proof will be divided in some steps.

Step 1 (the growth of F).

We prove that for some C_1 , $C_2 > 0$,

$$\int_{\Omega} F(x, t\varphi_1) dx \ge C_1 ||t\varphi_1||^{\mu} - C_2. \tag{2.15}$$

From (F_2) , we have

$$\frac{d}{du}\left(\frac{F(x,u)}{|u|^p}\right) \le -\alpha |u|^{\mu-p-2}u - \beta(x)|u|^{-p-2}u, \quad (u>0).$$

Noting that $\frac{F(x,u)}{|u|^p} \to 0$ as $u \to \infty$, thus after integration from u > 0 to $+\infty$, we see that

$$F(x,u) \ge \frac{\alpha}{p-\mu} |u|^{\mu} + \frac{\beta(x)}{p}$$

Since this inequality holds for u < 0, we get

$$\int_{\Omega} F(x, t\varphi_1) dx \geq \frac{\alpha |t|^{\mu}}{p - \mu} \int_{\Omega} |\varphi_1|^{\mu} dx + \frac{1}{p} \int_{\Omega} \beta(x) dx$$

$$\geq \frac{\alpha |t|^{\mu}}{p - \mu} \int_{\Omega} |\varphi_1|^{\mu} dx - \frac{1}{p} ||\beta||_{\infty} |\Omega|$$

$$\geq C_1 |t|^{\mu} - C_2$$

and (2.15) follows.

Step 2 (the Palais-Smale condition). Let (u_n) be a sequence satisfying (2.7), we note that

$$\langle I'(u_n), u_n \rangle - pI(u_n) = \int_{\Omega} pF(x, u_n) dx - \int_{\Omega} f(x, u_n) u_n dx + (p-1) \int_{\Omega} h u_n dx$$

$$\geq \alpha \int_{\Omega} |u_n|^{\mu} dx + \int_{\Omega} \beta(x) dx + (p-1) \int_{\Omega} h u_n dx$$

$$\geq \alpha C_3 ||u_n||^{\mu} - C_4 ||h||_{L(p^*)'} ||u_n|| + C_5. \tag{2.16}$$

From the boundedness of $\langle I'(u_n), u_n \rangle - pI(u_n)$, we deduce that (u_n) is bounded in X. By a similar argument as in the proof of Theorem 1.4, we conclude that (u_n) possesses a convergent subsequence in X.

Step 3 (the saddle point theorem). Using again Lemma 2.1, we get

$$I(u) \geq \frac{1}{p} \int_{\Omega} \rho |\Delta u|^{p} dx - \frac{\lambda}{p} \int_{\Omega} m(x) |u|^{p} dx - \frac{a}{\sigma} \int_{\Omega} |u|^{\sigma} dx - \int_{\Omega} b(x) |u| dx - \int_{\Omega} h(x) u dx \geq \frac{1}{p} \left(1 - \frac{\lambda}{\overline{\lambda}} \right) ||u||^{p} - C_{1} ||u||^{\sigma} - C_{2} ||b||_{(p^{\star})'} ||u|| - C_{3} ||h||_{(p^{\star})'} ||u||.$$

Since $\lambda < \overline{\lambda}$,

$$\inf_{w \in W} I(w) > -\infty. \tag{2.17}$$

On the other hand, by (2.15) we see that

$$I(t\varphi_1) \leq -\left(\frac{\lambda-\lambda_1}{p\lambda_1}\right)||t\varphi_1||^p - C_1||t\varphi_1||^\mu + C||h||_{(p^\star)'}||t\varphi_1|| + C_2.$$

It follows from $\lambda \geq \lambda_1$ and $1 < \mu < p$ that

$$\lim_{v \in V, ||v|| \to \infty} I(v) = -\infty. \tag{2.18}$$

By (2.17) and (2.18), there exists R > 0 such that

$$\max_{v \in V, ||v|| = R} I(v) < \inf_{w \in W} I(w).$$

Hence, I satisfies the hypotheses of Theorem 1.3, and there exists a critical point of I, that is a solution of (1.1).

References

 M. J. Alves, R. B. Assunção, P. C. Carrião, O. H. Miyagaki, Multiplicity of non trivial solutions to a problem involving the weighted p-biharmonic operator, Matemática Contemporânea, 36 (2009) 11-27.

- 2. B. E. Breckner, D. Ropovš, C. Varga, On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket, *Nonlinear Anal.*, 73 (2010) 2980-2990.
- 3. P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations, 60 (1985) 142-149.
- 4. C. Li, C. L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, *Nonlinear Anal.*, 72 (2010), 1339-1347.
- 5. C. Li, C. L. Tang, Existence of three solutions for (p,q)-biharmonic systems, *Nonlinear Anal.*, 73 (2010), 796-805.
- 6. T. F. Ma, M. L. Pelicer, Perturbations near resonance for the p-laplacian in \mathbb{R}^N , Abstract and Applied Analysis., 7:6 (2002) 323-334.
- P. H. Rabinowitz, Some minimax theorems and applications to partial differential equations, Nonlinear Analysis: A collection of papers honor of Erich Röthe. Academic press, New York, 1978, pp. 161-177.
- 8. Y. Shen, J. Zhang, Existence of two solutions for a Navier boundary value Problem involving the p-biharmonic, *Differential Equations and Applications*, 3 (2011), 399-414.
- 9. Y. Shen, J. Zhang, Multiplicity of positive solutions for a Navier boundary-value problem involving the p-biharmonic with critical exponent, *Electronic J. of Differential Equations*, 47 (2011) 1-14.
- M. Talbi, N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math., 4 (2007), 73-86.
- 11. M. Talbi, N. Tsouli, Positive solutions with changing sign energy to a nonhomogeneous elliptic problem of fourth order, *Bol. Soc. Paran. Mat.*, (3s.) v. 29 1 (2011), 25-39.

Mohammed Massar; El Miloud Hssini; Najib Tsouli
Department of Mathematics, University Mohamed I, Oujda, Morocco.
E-mail address: massarmed@hotmail.com; hssini1975@yahoo.fr; tsouli@hotmail.com