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Existence and multiplicity of solutions for class of Navier boundary

p-biharmonic problem near resonance

Mohammed Massar, El Miloud Hssini, Najib Tsouli

abstract: This paper studies the existence and multiplicity of weak solutions for
the following elliptic problem
∆(ρ(x)|∆u|p−2∆u) = λm(x)|u|p−2u + f(x, u) + h(x) in Ω, u = ∆u = 0 on ∂Ω.

By using Ekeland’s variational principle, Mountain pass theorem and saddle point
theorem, the existence and multiplicity of weak solutions are established.
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1. Introduction and main results

In this article, we are concerned with the following elliptic problem of p-bihar-
monic type

{

∆(ρ(x)|∆u|p−2∆u) = λm(x)|u|p−2u+ f(x, u) + h(x) in Ω,
u = ∆u = 0 on ∂Ω.

(1.1)

where Ω ⊂ R
N (N ≥ 1) is a bounded smooth domain, p > 1, ρ ∈ C(Ω) with

infΩ ρ(x) > 0, f : Ω × R → R is a Carathéodory function and m ∈ C(Ω) is
nonnegative weight functions.

The investigation of existence and multiplicity of solutions for problems involv-
ing p-biharmonic operator has drawn the attention of many authors, see reference.

In [4], Li and Tang considered the following Navier boundary value problem

{

∆(|∆u|p−2∆u) = λf(x, u) + µg(x, u) in Ω,
u = ∆u = 0 on ∂Ω,

(1.2)

where p > max
{

1, N2
}

and λ, µ ≥ 0. Under suitable assumptions the existence
of at least three weak solutions is established. In [6], Ma and Pelicer study a
multiplicity for the perturbed p-Laplacian equation

−∆pu = λg(x)|u|p−2u+ f(x, u) + h(x) in R
N ,
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where λ is near λ1, the principal eigenvalue of the weighted problem

−∆pu = λg(x)|u|p−2u in R
N .

they proved the existence of one or three solutions.
In the present paper, we study problem (1.1) that result was extended to the

p-biharmonic operator in bounded domains, with the weight functions. We were
inspired by Ma and Pelicer [6] in which problems involving the p-laplacian operator
is studied. Our technical approach is based on Ekeland’s variational principle,
Mountain pass theorem and saddle point theorem. We assume that f satisfies the
following conditions

(F1) There exists a real a > 0 and a function b ∈ L(p⋆)′(Ω) such that

|f(x, t)| ≤ a|t|σ−1 + b(x) a.e in Ω for all t ∈ R,

with 1 < σ < p.

(F2) There exist α > 0 and β(x) ∈ L∞(Ω) satisfying

pF (x, u)− f(x, u)u ≥ α|u|µ + β(x) a.e in Ω for allu ∈ R,

where 1 < µ ≤ σ < p and F (x, u) =
∫ u

0
f(x, s)ds.

We introduce the space X := W 2,p(Ω)∩W
1,p
0 (Ω), which is a reflexive Banach space

endowed with the norm

||u|| =

(
∫

Ω

ρ|∆u|pdx

)1/p

, (see, e.g., [1, 10]).

Consider the following problem

{

∆(ρ|∆u|p−2∆u) = λm(x)|u|p−2u in Ω,
u = ∆u = 0 on ∂Ω.

(1.3)

Let λ1 denote the first eigenvalue of problem (1.3). According to the work of
M.Talbi and N.Tsouli [10], since m ∈ C(Ω) and m ≥ 0, λ1 is positive, simple,
isolated and is given by

λ1 = inf

{
∫

Ω

ρ|∆u|pdx : u ∈ X,

∫

Ω

m(x)|u|pdx = 1

}

. (1.4)

Therefore
∫

Ω

ρ|∆u|pdx ≥ λ1

∫

Ω

m(x)|u|pdx for allu ∈ X. (1.5)

Let ϕ1 normalized eigenfunction associated to λ1, which can be chosen positive.
Let

λ2 := inf {λ : λ is an eigenvalue of (1.3) with λ > λ1} . (1.6)
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The fact that λ1 is isolated implies that λ1 < λ2. It can also be shown (see Lemma
2.1) that there exists λ ∈ (λ1, λ2] such that

∫

Ω

ρ|∆u|pdx ≥ λ

∫

Ω

m(x)|u|pdx, (1.7)

for all u ∈ X with
∫

Ωm(x)|ϕ1|
p−2ϕ1udx = 0.

Definition 1.1. We say that u ∈ X is a weak solution of problem (1.1) if
∫

Ω

ρ|∆u|p−2∆u∆ϕdx−

∫

Ω

m(x)|u|p−2uϕdx−

∫

Ω

f(x, u)ϕdx −

∫

Ω

h(x)ϕdx = 0,

for all ϕ ∈ X.

The corresponding energy functional of problem (1.1) is given by

I(u) =
1

p

∫

Ω

ρ|∆u|pdx−
λ

p

∫

Ω

m(x)|u|pdx−

∫

Ω

F (x, u)dx−

∫

Ω

h(x)udx, (1.8)

it is well known that I ∈ C
1(X,R), with derivative at point u ∈ X is given by

〈I ′(u), ϕ〉 =

∫

Ω

ρ|∆u|p−2∆u∆ϕdx−λ

∫

Ω

m|u|p−2uϕdx−

∫

Ω

f(x, u)ϕdx−

∫

Ω

hϕdx,

for every ϕ ∈ X. Consequently, the critical points of the functional I correspond
to the weak solutions of the problem (1.1).

Let here recall the weak version of Mountain pass theorem (see [2], [3]) and the
saddle point theorem ( see [7]).

Theorem 1.2. let X be a real Banach space and I : X → R be a C1 functional
satisfying the Palais-Smale condition. Furthermore assume that I(0) = 0 and that
the following conditions hold:
(i) there exits a number r > 0 such that I|∂Br

≥ 0
(ii) there is an element e ∈ X\Br with I(e) ≤ 0.
Then the real number c, characterized as

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

where
Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}

is a critical value of I with c ≥ 0. If c = 0, there exists a critical point of I on ∂Br

corresponding to the critical value 0.

Theorem 1.3. Let X be a Banach space. Let I : X → R be a C1 functional that
satisfies the Palais-Smale condition, and suppose that X = V ⊕W, with V a finite
dimensional subspace of X. If there exists R > 0 such that

max
v∈V,||v||=R

I(v) < inf
w∈W

I(w),

then I has a least a critical point on X.
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Now we are ready to state our main result.

Theorem 1.4. Assume that (F1) holds. If in addition

lim
|t|→∞

F (x, tϕ1) = +∞, uniformly in x ∈ Ω, (1.9)

then for any h ∈ L(p⋆)′(Ω), with (p⋆)′ = p⋆

p⋆−1 , satisfying

∫

Ω

h(x)ϕ1dx = 0, (1.10)

problem (1.1) has at least three solutions when λ is sufficiently close to λ1 from
left.

Theorem 1.5. Assume that (F1) and (F2) hold. If in addition λ1 ≤ λ < λ, then
for any h ∈ L(p⋆)′ , problem (1.1) has at least one solution.

2. Preliminaries and proofs of Theorems

Let denote V = 〈ϕ1〉 the linear spans of ϕ1 and

W =

{

u ∈ X :

∫

Ω

m(x)|ϕ1|
p−2ϕ1udx = 0

}

. (2.1)

Then we can decompose X as a direct sum of V and W. In fact, let u ∈ X, writing

u = αϕ1 + w,

where w ∈ X, and α = λ1

∫

Ω
m(x)|ϕ1|

p−2ϕ1udx.

Since
∫

Ω

ρ|∆ϕ1|
pdx = 1,

∫

Ω

m(x)|ϕ1|
p−2ϕ1wdx = 0.

Therefore w ∈ W, hence

X = V ⊕W.

We begin by establishing the existence of λ for which (1.7) holds.

Lemma 2.1. There exists λ ∈ (λ1, λ2] such that

∫

Ω

ρ|∆u|pdx ≥ λ

∫

Ω

m(x)|u|pdx, (2.2)

for all u ∈ W.
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Proof: Let

λ = inf

{
∫

Ω

ρ|∆u|pdx : u ∈ W,

∫

Ω

m(x)|u|pdx = 1

}

.

This value is attained in W. To see why this is so, let (un) be a sequence in W,

satisfying
∫

Ω
m(x)|un|

pdx = 1 for all n, and
∫

Ω
ρ|∆un|

pdx → λ. It follows that (un)
is bounded in X and therefore, up to subsequence, we may assume that

un ⇀ u weakly in X and un → u strongly in Lp(Ω).

From the strong convergence of the sequence in Lp(Ω) we obtain

∫

Ω

m(x)|u|pdx = lim
n→∞

∫

Ω

m(x)|un|
pdx = 1

and
∫

Ω

m(x)|ϕ1|
p−2ϕ1udx = lim

n→∞

∫

Ω

m(x)|ϕ1|
p−2ϕ1undx = 0,

so that u ∈ W. By the weakly lower semicontinuity of the norm ||.||, we get

λ ≤

∫

Ω

ρ|∆u|pdx ≤ lim inf
n→∞

∫

Ω

ρ|∆un|
pdx = λ,

and hence λ is attained at u.

Now we claim that λ > λ1. It follows from (1.4) that λ ≥ λ1. If λ = λ1, by
simplicity of λ1 there is α ∈ R such that u = αϕ1. Since u ∈ W,

α

∫

Ω

m(x)|ϕ1|
pdx = 0,

which implies α = 0. This contradicts the fact that
∫

Ω
m(x)|u|pdx = 1. So, choose

λ = min{λ, λ2}. It is clear that λ satisfies (2.2) and the proof of lemma is complete.
✷

Lemma 2.2. Assume that (F1) holds. Then, for λ < λ1 the functional I is
coercive in X, and bounded from below on W. Moreover there exists a constant m
independent of λ such that infW I(u) ≥ m.

Proof: From (F1), we have

∫

Ω

|F (x, u)|dx ≤
a

σ

∫

Ω

|u|σdx+

∫

Ω

b(x)|u|dx
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By Hölder’s and Sobolev’s inequalities, it follows from (1.5) that

I(u) ≥
1

p

∫

Ω

ρ|∆u|pdx−
λ

p

∫

Ω

m(x)|u|pdx

−
a

σ

∫

Ω

|u|σdx−

∫

Ω

b(x)|u|dx −

∫

Ω

h(x)udx

≥
1

p
||u||p −

λ

pλ1
||u||p − C1||u||

σ − C2||b||(p⋆)′ ||u|| − C3||h||(p⋆)′ ||u||

=
1

p

(

1−
λ

λ1

)

||u||p − C1||u||
σ − C2||b||(p⋆)′ ||u|| − C3||h||(p⋆)′ ||u||,(2.3)

where C1, C2 and C3 are the embedding constants of Sobolev. Since λ < λ1 and
σ < p, I is coercive.

Similarly, let u ∈ W, by Lemma 2.1, for λ < λ1, we have

I(u) ≥
1

p

(

1−
λ

λ

)

||u||p − C1||u||
σ − C2||b||(p⋆)′ ||u|| − C3||h||(p⋆)′ ||u||

≥
1

p

(

1−
λ1

λ

)

||u||p − C1||u||
σ − C2||b||(p⋆)′ ||u|| − C3||h||(p⋆)′ ||u||(2.4)

Hence I is bounded from below on W. Moreover, we can find a constant m

independent of λ such that infW I(u) ≥ m.

✷

Lemma 2.3. Assume that (F1) and (1.9) hold. Then, for λ < λ1 sufficiently close
to λ1, there exist t− < 0 < t+ such that

I(t+ϕ1) < m and I(t−ϕ1) < m,

where m is given by Lemma 2.2.

Proof: By definition of λ1 and (1.10), we have

I(tϕ1) =
|t|p

p

∫

Ω

ρ|∆ϕ1|
pdx− λ

|t|p

p

∫

Ω

m(x)|ϕ1|
pdx

−

∫

Ω

F (x, tϕ1)dx− t

∫

Ω

h(x)ϕ1dx

=
|t|p

p

∫

Ω

ρ|∆ϕ1|
pdx−

λ|t|p

pλ1

∫

Ω

ρ|∆ϕ1|
pdx −

∫

Ω

F (x, tϕ1)dx

=
|t|p

p

(

1−
λ

λ1

)

−

∫

Ω

F (x, tϕ1)dx. (2.5)

From (1.9), for t > 0 large enough, we have

F (x, t+ϕ1) ≥ 0, a.e.x ∈ Ω,
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by Fatou’s Lemma, we get

lim inf
t→+∞

∫

Ω

F (x, t+ϕ1)dx ≥

∫

Ω

lim inf
t→+∞

F (x, t+ϕ1)dx

=

∫

Ω

lim
t→+∞

F (x, t+ϕ1)dx

= +∞,

so, there exists t+ > 0 such that
∫

Ω

F (x, t+ϕ1)dx > −m+ 1. (2.6)

For λ1 −
pλ1

(t+)p < λ < λ1, (2.5) and (2.6) imply

I(t+ϕ1) < m.

Similarly, we get I(t−ϕ1) < m, for some t− < 0. ✷

Proof: (Theorem 1.4) First we show that I satisfies the (PS) condition in X ,
that is for every sequence such that

I(un) → c, I ′(un) → 0, (2.7)

possesses a convergent subsequence.
Let (un) ⊂ X be a (PS) sequence. Since I is coercive, (un) is bounded in X ,

so up to subsequence, we may assume that un ⇀ u weakly in X. Therefore

〈I ′(un), un − u〉 = on(1). (2.8)

By Hölder’s inequality, we have

∣

∣

∣

∣

∫

Ω

m(x)|un|
p−2un(un − u)dx

∣

∣

∣

∣

≤ ||m||∞

(
∫

Ω

|un|
pdx

)

p−1
p

(
∫

Ω

|un − u|pdx

)
1
p

.

(2.9)
Since un → u in Lp(Ω),

lim
n→∞

∫

Ω

m(x)|un|
p−2un(un − u)dx = 0. (2.10)

Since (σ − 1)(p⋆)′ < p⋆, un → u strongly in L(σ−1)(p⋆)′(Ω), and hence there exists
g ∈ L(σ−1)(p⋆)′(Ω) such that

|un| ≤ g a.e. in Ω.

Thus

|f(x, un)|
(p⋆)′ ≤ 2(p

⋆)′
(

a(p
⋆)′ |un|

(σ−1)(p⋆)′ + |b(x)|(p
⋆)′

)

≤ 2(p
⋆)′

(

a(p
⋆)′g(σ−1)(p⋆)′ + |b(x)|(p

⋆)′
)

.
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Since the right side of the last inequality belongs to L1(Ω), it follows from Lebesgue
theorem that

f(x, un) → f(x, u) in L(p⋆)′(Ω).

By using the fact that un ⇀ u in Lp⋆

(Ω), we deduce that

lim
n→∞

∫

Ω

(f(x, un) + h)(un − u)dx = 0. (2.11)

Combining (2.8), (2.10) and (2.11) we obtain

lim
n→∞

∫

Ω

ρ|∆un|
p−2∆un∆(un − u)dx = 0.

In the same way, we obtain

lim
n→∞

∫

Ω

ρ|∆u|p−2∆u∆(un − u)dx = 0.

Therefore, the Hölder inequality imply that

0 = lim
n→∞

∫

Ω

(ρ|∆un|
p−2∆un − ρ|∆u|p−2∆u)∆(un − u)dx

≥ lim
n→∞

[

||un||
p −

(
∫

Ω

ρ|∆un|
pdx

)

p−1
p

(
∫

Ω

ρ|∆u|pdx

)1/p

−

(
∫

Ω

ρ|∆u|pdx

)

p−1
p

(
∫

Ω

ρ|∆un|
pdx

)1/p

+ ||u||p
]

= lim
n→∞

[

||un||
p − ||un||

p−1||u|| − ||u||p−1||un||+ ||u||p
]

= lim
n→∞

(||un||
p−1 − ||u||p−1)(||un|| − ||u||) ≥ 0,

hence ||un|| → ||u||. By the uniform convexity of X, it follows that un → u strongly
in X and I satisfies the (PS) condition.

Next, let

Λ± = {u ∈ X : u = ±tϕ1 + w, t > 0, w ∈ W} . (2.12)

Let (un) ⊂ Λ+ such that I(un) → c < m and I ′(un) → 0 as n → ∞. Then un → u

strongly in X. Noting that ∂Λ+ = W. So, if u ∈ ∂Λ+, it follows from infW I ≥ m

that

I(un) → c = I(u) ≥ m,

which is impossible. Therefore u ∈ Λ+, and hence I satisfies the (PS)c,Λ+ for all
c < m. Similarly, I satisfies the (PS)c,Λ− for all c < m.

In view of Lemma 2.3 for λ < λ1 sufficiently close to λ1 , we have

−∞ < inf
Λ+

I < m. (2.13)
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By Ekeland’s variational principle in Λ+, there exists a sequence (un) ⊂ Λ+ such
that

I(un) → inf
Λ+

I and I ′(un) → 0.

Since I satisfies the (PS)c,Λ+ for all c < m, there exists u+ ∈ Λ+ such that
I(u+) = infΛ+ I. Similarly, we find u− ∈ Λ− such that I(u−) = infΛ− I. Hence I

has two distinct critical points u+ and u−.

Now, we prove the existence of the third solution. To fix ideas, suppose that
I(u+) ≤ I(u−) and Putting

J(u) := I(u+ u−)− I(u−), e = u+ − u−.

So, J(0) = 0, J(e) ≤ 0. We can find r > 0 such that B(u−, r) ⊂ Λ−, thus
inf

||u−u−||=r
I(u) ≥ I(u−) and hence inf

||u||=r
J(u) ≥ 0. Let

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)), (2.14)

where
Γ =

{

γ ∈ C([0, 1], X) : γ(0) = u−, γ(1) = u+
}

.

Since J also satisfies the (PS) condition and J ′ = I ′, it follows from the Mountain
pass theorem 1.2 that c is a critical value of I. Noting that all paths joining u− to
u+ pass through W, so c ≥ m. Therefore the third solution is obtained, and the
proof of theorem is complete. ✷

Proof: (Theorem 1.5) The proof will be divided in some steps.
Step 1 (the growth of F ).
We prove that for some C1, C2 > 0,

∫

Ω

F (x, tϕ1)dx ≥ C1||tϕ1||
µ − C2. (2.15)

From (F2), we have

d

du

(

F (x, u)

|u|p

)

≤ −α|u|µ−p−2u− β(x)|u|−p−2u, (u > 0).

Noting that F (x,u)
|u|p → 0 as u → ∞, thus after integration from u > 0 to +∞, we

see that

F (x, u) ≥
α

p− µ
|u|µ +

β(x)

p

Since this inequality holds for u < 0, we get
∫

Ω

F (x, tϕ1)dx ≥
α|t|µ

p− µ

∫

Ω

|ϕ1|
µdx+

1

p

∫

Ω

β(x)dx

≥
α|t|µ

p− µ

∫

Ω

|ϕ1|
µdx−

1

p
||β||∞|Ω|

≥ C1|t|
µ − C2
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and (2.15) follows.
Step 2 (the Palais-Smale condition). Let (un) be a sequence satisfying (2.7), we
note that

〈I ′(un), un〉 − pI(un) =

∫

Ω

pF (x, un)dx−

∫

Ω

f(x, un)undx+ (p− 1)

∫

Ω

hundx

≥ α

∫

Ω

|un|
µdx+

∫

Ω

β(x)dx + (p− 1)

∫

Ω

hundx

≥ αC3||un||
µ − C4||h||L(p⋆)′ ||un||+ C5. (2.16)

From the boundedness of 〈I ′(un), un〉− pI(un), we deduce that (un) is bounded in
X. By a similar argument as in the proof of Theorem 1.4, we conclude that (un)
possesses a convergent subsequence in X.

Step 3 (the saddle point theorem). Using again Lemma 2.1, we get

I(u) ≥
1

p

∫

Ω

ρ|∆u|pdx−
λ

p

∫

Ω

m(x)|u|pdx

−
a

σ

∫

Ω

|u|σdx−

∫

Ω

b(x)|u|dx−

∫

Ω

h(x)udx

≥
1

p

(

1−
λ

λ

)

||u||p − C1||u||
σ − C2||b||(p⋆)′ ||u|| − C3||h||(p⋆)′ ||u||.

Since λ < λ,

inf
w∈W

I(w) > −∞. (2.17)

On the other hand, by (2.15) we see that

I(tϕ1) ≤ −

(

λ− λ1

pλ1

)

||tϕ1||
p − C1||tϕ1||

µ + C||h||(p⋆)′ ||tϕ1||+ C2.

It follows from λ ≥ λ1 and 1 < µ < p that

lim
v∈V,||v||→∞

I(v) = −∞. (2.18)

By (2.17) and (2.18), there exists R > 0 such that

max
v∈V,||v||=R

I(v) < inf
w∈W

I(w).

Hence, I satisfies the hypotheses of Theorem 1.3, and there exists a critical point
of I, that is a solution of (1.1). ✷
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