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New spaces and Continuity via Ω̂-closed sets
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abstract: In this paper, we introduce new spaces like
Ω̂
Tδ and ωTΩ̂

. It turns
out that the space

Ω̂
Tδ coincide with semi-T1 and in ωTΩ̂

-space every closed set is

Ω̂-closed set and in semi-T 1

2

every Ω̂-closed set is closed in a topological space. Also

we introduce some kinds of generalized continuity such as Ω̂-continuity, Ω̂-irresolute
and weakly Ω̂-continuity.
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1. Introduction

In the recent years, many new separation axioms were introduced by us-
ing generalized closed sets such as [3] Tb, [12] Td, [2] semi-T1, semi-T 1

2

and [6] T 3

4

.

The class of Ω̂-closed sets [8] has been introduced recently by using the δ-closure
operator. As the class of Ω̂-closed sets are independent of the class of closed sets,
our interest is to find the spaces in which they are interrelated. With these moti-
vation, new separation axioms via Ω̂-closed sets such as Ω̂Tδ which coincide with

semi-T1 and ωTΩ̂ in which every Ω̂-closed set is closed set are introduced and stud-

ied. Moreover, we introduce and study various types of the continuity via Ω̂-closed
sets. Also we investigate the role of new spaces and it’s impacts on all these con-
tinuities.
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2. Preliminaries

Throughout this paper (X, τ) (or briefly X) represent a topological space on
which no separation axioms are assumed unless explicitly stated. For a subset A
of (X, τ), we denote the closure of A, the interior of A and the complement of A as
cl(A), int(A) and Ac respectively. The family of all open sets in (X, τ) are denoted
by O(X) and O(X, x) = {U ∈ X : x ∈ U ∈ O(X)} Let us recall the following
definitions, which are useful in the sequel.

Definition 2.1. [7] A subset A of X is called δ-closed in a topological space (X, τ)
if A = δcl(A), where δcl(A) = {x ∈ X : int(cl(U)) ∩ A 6= ∅, U ∈ O(X, x)}.
The complement of δ-closed set in (X, τ ) is called δ-open set in (X, τ ). From [7],
Lemma 3, δcl(A) =

⋂
{F ∈ δC(X) : A ⊆ F} and from Corollary 4, δcl(A) is a

δ-closed for a subset A in a topological space (X, τ).

The following notations are used in this paper. The family of all δ-open (resp.Ω̂-
open) sets on X are denoted by δO(X) (resp.Ω̂O(X)).

• δO(X, x) = {U ∈ X : x ∈ U ∈ δO(X)}

• Ω̂O(X, x) = {U ∈ X : x ∈ U ∈ Ω̂O(X)}

Definition 2.2. A subset A of a topological space (X, τ ) is called

(i) semi open [9] if A ⊆ cl(int(A)).

(ii) pre open [11] if A ⊆ int(cl(A)).

(iii) regular open [15] if A = int(cl(A)).

(iv) a δ generalised closed (briefly δg-closed) set [5] if δcl(A) ⊆ U whenever A ⊆ U
and U is open in (X, τ).

(v) gα-closed set [8] if αcl(A) ⊆ U whenever A ⊆ U and U is α open in (X, τ ).

(vi) ĝ (or) ω-closed set [17] if cl(A) ⊆ U whenever A ⊆ U and U is semi open in
(X, τ ).

(vii) Ω̂-closed set [8] if δcl(A) ⊆ U whenever A ⊆ U and U is semi open in (X, τ).

The complement of semi open (resp.pre open, regular open δg-closed ω(or ĝ)-closed)
set is called semi closed (resp.pre closed, regular closed, δg-open, ω(orĝ)-open,Ω̂-
open).

Definition 2.3. A function f : (X, τ ) → (Y, σ) is called a

(i) contra continuous [5] if the inverse image of open set in Y is closed set in X.

(ii) perfectly continuous [14] if the inverse image of open set in Y is clopen set
in X.
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(iii) completely continuous [1] if the inverse image of open set in Y is regular open
set in X.

(iv) super continuous [10] if the inverse image of open set in Y is δ open set in
X.

(v) semi continuous [9] if the inverse image of open set in Y is semi open set in
X.

(vi) pre continuous [11] if the inverse image of open set in Y is pre open set in
X.

(vi) δg-continuous [6] if the inverse image of open set in Y is δg-open set in X.

(vii) ω-continuous [17] if the inverse image of open set in Y is ω-open set in X.

(viii) gα-continuous [4] if the inverse image of open set in Y is gα-open set in X.

(ix) δ-closed mapping [13] if the image of every δ-closed set in X is δ-closed in Y.

Definition 2.4. A space (X, τ) is said to be T 3

4

[6] if every δg-open set is δ-open
set in X.

Definition 2.5. A space (X, τ ) is said to be weakly Hausdorff [6] if for every two
different point x and y, there exists a regular open set U such that x ∈ U, y /∈ U.

3. Ω̂Tδ-spaces and ωTΩ̂-spaces

In this section, we introduce two new spaces in which we get the relationship
between the class of Ω̂-open sets and that of open sets. These spaces provide a new
path to class of Ω̂-open sets to travel along with open sets.

Definition 3.1. A space (X, τ) is called Ω̂Tδ-space if every Ω̂-closed set in X is
δ-closed in X.

Example 3.2. X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}. Here, Ω̂O(X) = τ =
δO(X).
Therefore, (Y, σ) is Ω̂Tδ-space.

Theorem 3.3. Every T 3

4

-space is Ω̂Tδ-space.

Proof: Suppose that (X, τ ) is a T 3

4

-space and A is any Ω̂-closed set in (X, τ ). By

[8] Theorem 3.5, A is δg-closed set in X. Since X is T 3

4

-space, A is δ-closed set in
X.
Thus, X is Ω̂Tδ-space. ✷

Remark 3.4. Converse is not always possible from the Example 3.2.

Example 3.5. By [6] the digital line is T 3

4

. By Theorem 3.3, the digital line is

Ω̂Tδ-space.
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Let us give some characterizations of Ω̂Tδ-space.

Theorem 3.6. A topological space (X, τ) is Ω̂Tδ-space if and only if every singleton
set is semi closed in (X, τ ).

Proof: Necessity- Let x ∈ X. By [8] Proposition 4.7, {x} is semi closed or {x}c

is Ω̂-closed in X. Therefore, if {x} is not semi closed then {x}c is Ω̂-closed in X,
By hypothesis, {x}c is δ-closed set in (X, τ) and hence {x} is δ-open in (X, τ ). By
[6] Lemma 4.2, {x} is regular open and hence {x} is semi closed in X.
Sufficiency- Suppose that A is any Ω̂-closed set in (X, τ ) and x ∈ δcl(A) \ (A).
Since A is Ω̂-closed set in (X, τ ), [8] by Theorem 4.4, δcl(A)\ (A) does not contain
any non-empty semi closed set in X . Therefore, {x} is not a semi closed in (X, τ),
a contradiction.
Therefore, δcl(A) = A and hence A is δ-closed in (X, τ ). ✷

Theorem 3.7. In a topological space (X, τ ), the following statements are equiva-
lent.

(i) (X, τ ) is semi-T1-space.

(ii) {x} is semi closed in X for every x ∈ X.

(iii) X is Ω̂Tδ.

Proof: By [12], (i)⇔ (ii) holds and by Theorem 3.6, (iii) ⇔ (ii) holds. ✷

Theorem 3.8. Every Ω̂Tδ-space is semi-T 1

2

-space.

Proof: Since every semi-T1-space is semi-T 1

2

and by Theorem 3.6,
every Ω̂Tδ-space is semi-T 1

2

-space. ✷

Remark 3.9. Converse is not true in general as seen from the following example.

Example 3.10. X = {a, b, c}, σ = {∅, {a}, X}. is semi-T 1

2

but not Ω̂Tδ-space.

Theorem 3.11. A topological space (X, τ) is weakly Hausdorff if and only if (X, τ)
is Ω̂Tδ-space and every singleton set is Ω̂-closed in (X, τ ).

Proof: Necessity- By [6] Lemma 4.17, every {x} is δ-closed and hence semi
closed in X. By Theorem 3.7, X is Ω̂Tδ-space. By [8] Theorem 3.2, {x} is Ω̂-closed
in (X, τ).
Sufficiency- Let x ∈ X. By hypothesis, {x} is δ-closed in X and again by [6]
Lemma 4.17, (X, τ) is weakly Hausdorff. ✷

Definition 3.12. A space (X, τ ) is called ωTΩ̂-space if every ω-closed set in X is

Ω̂-closed in X.
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Example 3.13. Let X = {a, b, c, d}, τ = {∅, {a}, {bcd}, X}. Then (X, τ) is ωTΩ̂-
space.

Let us characterize ωTΩ̂-space via closed sets.

Theorem 3.14. A space (X, τ) is ωTΩ̂-space if and only if every closed set is

Ω̂-closed in (X, τ ).

Proof: Necessity- Suppose that A is any closed set in (X, τ ). Then by [16], A is
ω-closed set in X. By hypothesis, A is Ω̂-closed set in X.
Sufficiency- Suppose that A is ω-closed set in X. Then by [16], cl(A) ⊆ sker(A).
Then sker(cl(A)) ⊆ sker(sker(A)) = sker(A). Since cl(A) is closed set in X,
by hypothesis, cl(A) is Ω̂-closed set in X. By [8] Theorem 4.10, δcl(cl(A)) ⊆
sker(cl(A)) ⊆ sker(A). But δcl(A) ⊆ δcl(cl(A)). Therefore, δcl(A) ⊆ sker(A).
Again by [8] Theorem 4.10, A is Ω̂-closed in (X, τ). ✷

Remark 3.15. From the above discussion, a space (X, τ ) is ωTΩ̂-space if and only

if every open set is Ω̂-open in (X, τ ).

Let us characterize semi-T 1

2

-space via Ω̂-closed sets.

Theorem 3.16. Every Ω̂-closed set in topological space (X, τ ) is closed in X if
and only if every singleton set is either open or semi closed in (X, τ).

Proof: Necessity- Assume that every Ω̂-closed set in a topological space (X, τ ) is
closed set in X and suppose that there exists x ∈ X such that {x} is not semi closed
subset of X. Then {x}c is not semi open subset of X. Here, X is the only semi
open set containing {x}c and δcl({x}c) ⊆ X. Therefore, {x}c is Ω̂-closed subset of
X and by hypothesis, {x}cis closed in X. Thus, {x} is open in X.
Sufficiency- Suppose that A is Ω̂-closed set in X and there exists x ∈ cl(A) \ (A).
Case(i)-{x} is open in X. Then A ∩ {x} 6= ∅, a contradiction to x ∈ cl(A) \ (A).
Case(ii)-{x} is semi closed in X. Since cl(A) \ (A) ⊆ δcl(A) \ (A), {x} is a semi
closed subset of δcl(A) \ (A), a contradiction to Theorem 4.4 in [8]. In both cases,
we arrive at a contradiction. Therefore, cl(A) = A and hence A is closed in X. ✷

Theorem 3.17. In a topological space (X, τ ), the following statements are equiv-
alent.

(i) (X, τ ) is semi-T 1

2

-space.

(ii) {x} is either open or semi closed in X for every x ∈ X.

(iii) Every Ω̂-closed set in (X, τ ) is closed set in (X, τ ).

(iv) Every ω-closed set is closed in X.
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Proof: (i) ⇒ (ii) By [16] Theorem 4.8, it follows.
(ii) ⇒ (iii) By Theorem 3.16, it follows.
(iii) ⇒ (iv) Suppose that F is ω-closed set in X. By hypothesis and by Theorem
3.16, every {x} is either open or semi closed in X. By [17] Theorem 5.01, F is
closed in X.
(iv) ⇒ (i) By [17] Theorem 5.01, it holds. ✷

Remark 3.18. From the above discussion, a space (X, τ) is semi-T 1

2

if and only

if every Ω̂-open set is open in (X, τ ).

4. Ω̂-continuity

Definition 4.1. A function f : (X, τ ) → (Y, σ) is called Ω̂-continuous if the inverse
image of every open set in (Y, σ) is Ω̂-open in (X, τ ).

Example 4.2. X = Y = {a, b, c}, τ = {∅, {a, b}, X}, σ = {∅, {a}, {a, b}, X}. If
f : (X, τ ) → (Y, σ) is defined by f(a) = a, f(b) = b, f(c) = b. Then, f is Ω̂-
continuous.

Theorem 4.3. Let f : (X, τ ) → (Y, σ) be any function. Then, the following state-
ments hold.

(i) Every super continuous function is Ω̂-continuous function.

(ii) Every Ω̂-continuous function is δg-continuous function.

(iii) Every Ω̂-continuous function is ω-continuous function.

Proof: It follows from the Definition 4.1 and by [8] Theorems 3.2 and 3.5. ✷

Remark 4.4. The converse is not always true from the following example.

Example 4.5. Example 4.2 shows that f is Ω̂-continuous but not super continu-
ous. X = Y = {a, b, c, d}, τ = {∅, {a}, {a, b}, {a, b, c}, X}, σ = {∅, {b, c}, {a, b, c},
{b, c, d}, Y }.
If f : (X, τ ) → (Y, σ) is defined by f(a) = b, f(b) = c, f(c) = f(d) = a. Then f is
g, δg and ω-continuous but not Ω̂-continuous.

Remark 4.6. The notion of Ω̂-continuous and continuous are independent from
the examples 4.2 and 4.5.

Remark 4.7. The pictorial representation of the above discussions and the existing
results are given below. The reversible implication is never possible.
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Sup Cont

Cont

Ω̂-Cont δg-Cont

ω-Cont g-Cont

✲ ✲

✲
✲

❄ ❄ ❄❥

The following Theorem gives the conditions under which reversible implication
of Theorem 4.3 holds.

Theorem 4.8. In a topological space (X, τ ), the following holds.

(i) If (X, τ) is Ω̂Tδ-space, then every Ω̂-continuous function is super continuous
function.

(ii) If (X, τ ) is T 3

4

-space, then every δg-continuous function is Ω̂-continuous func-
tion.

(iii) If (X, τ ) is ωTΩ̂-space, then every ω-continuous function is Ω̂-continuous func-
tion .

Proof:

(i) Since in a space Ω̂Tδ every Ω̂-open set is δ-open, it follows.

(ii) In a space T 3

4

, every δg-open set is δ-open. Therefore, by [8] Theorem 3.2, it
follows.

(iii) In a space ωTΩ̂, every ω-open set is Ω̂-open. Therefore, it follows.

✷

Theorem 4.9. If a space (X, τ) is ωTΩ̂-space, then every continuous function is

Ω̂-continuous function.

Proof: It follows from the Definition 4.1 and Theorem 3.14. ✷

Theorem 4.10. If a space (X, τ ) is semi-T 1

2

-space, then every Ω̂-continuous func-
tion is continuous function.

Proof: It follows from the Definition 4.1 and Theorem 3.17. ✷

Let us decompose perfectly continuous functions via Ω̂-continuous mappings as
follows.
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Theorem 4.11. If f : (X, τ) → (Y, σ) is a function, then the followings are equiv-
alent.

(i) f is perfectly continuous.

(ii) f is completely continuous and contra continuous.

(iii) f is super continuous and contra continuous.

(iv) f is Ω̂-continuous and contra continuous.

(v) f is ω-continuous and contra continuous.

(vi) f is gα-continuous and contra continuous.

(vii) f is pre-continuous and contra continuous.

Proof:

(i) Since a clopen set is regular closed and open, it holds.

(ii) Since a regular closed set is δ-closed, it holds.

(iii) Since a δ-closed set is Ω̂-closed, it holds.

(iv) Since a Ω̂-closed set is ω-closed, it holds.

(v) Since a ω-closed set is gα-closed, it holds.

(vi) Since a gα-closed set is pre-closed, it holds.

(vii) If A is pre-closed and open set in (X, τ), then cl(int(A)) ⊆ A, and A = intA.
Thus cl(A) ⊆ A and hence A is closed. Thus A is clopen in X. Therefore,
every pre-continuous and contra continuous function is perfectly continuous.

✷

Remark 4.12. The composition of Ω̂-continuous functions is not always Ω̂- con-
tinuous function as seen from the following example.

Example 4.13. Let X = Y = Z = {a, b, c}, τ = {∅, {a}, {a, b}, X}, σ = {∅, {a},
{b, c}, Y }, η = {∅, {a}, {a, b}, {a, c}, Z}. If f : (X, τ ) → (Y, σ) is defined by f(a) =
b, f(b) = b, f(c) = c. Then f is Ω̂-continuous function. Define g : (Y, σ) → (Z, η) as
g(a) = b, g(b) = c, g(c) = a. Then g is Ω̂-continuous function. But g ◦ f : (X, τ ) →
(Z, η), defined by (g ◦f)(x) = g(f(x)) for all x ∈ X is not a Ω̂-continuous function.

Theorem 4.14. The following statements are true.

(i) If f : (X, τ ) → (Y, σ) is Ω̂-continuous and g : (Y, σ) → (Z, η) is continuous,
then
g ◦ f : (X, τ ) → (Z, η) is Ω̂-continuous.
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(ii) If f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) are continuous, then g◦f : (X, τ)→
(Z, η) is Ω̂-continuous provided (X, τ ) is ωTΩ̂-space.

(iii) If f : (X, τ ) → (Y, σ) and g : (Y, σ) → (Z, η) are Ω̂-continuous, then g ◦
f : (X, τ ) → (Z, η) is Ω̂-continuous whenever (Y, σ) is semi-T 1

2

-space.

(iv) If f : (X, τ ) → (Y, σ) is continuous and g : (Y, σ) → (Z, η) is Ω̂-continuous,
then
g◦f : (X, τ) → (Z, η) is Ω̂-continuous provided (X, τ ) is ωTΩ̂-space and (Y, σ)
is semi-T 1

2

-space.

(v) If f : (X, τ ) → (Y, σ) is continuous and g : (Y, σ) → (Z, η) is Ω̂-continuous
then,

g ◦ f : (X, τ ) → (Z, η) is continuous whenever (Y, σ) is semi-T 1

2

-space

(vi) If f : (X, τ ) → (Y, σ) is Ω̂-continuous and g : (Y, σ) → (Z, η) is continuous,
then
g ◦ f : (X, τ ) → (Z, η) is continuous whenever (X, τ ) is semi-T 1

2

-space.

Proof: They follow straight forward from their definitions. ✷

Theorem 4.15. f : (X, τ ) → (Y, σ) is a surjective function such that f(U) is Ω̂-
open set in Y for any Ω̂-open set in U in X and g : (Y, σ) → (Z, η) is any function.
If g ◦ f : (X, τ) → (Z, η) is Ω̂-continuous, then g is Ω̂-continuous function.

Proof: Suppose that y ∈ Y and W is any open set in Z containing g(y). Since f
is surjective, there exists x ∈ X such that f(x) = y. Then (g ◦ f)(x) = g(f(x)) =
g(y) ∈ W. Since g ◦f is Ω̂-continuous, there exists an Ω̂-open set U in X containing
x such that (g ◦ f)(U) ⊆ W. If we take V = f(U), then by our assumption, V
is a Ω̂-open set in Y containing f(x) and (g ◦ f)(U) = g(V ) ⊆ W. Thus, g is
Ω̂-continuous function. ✷

Let us characterize Ω̂-continuous function.

Theorem 4.16. If f : (X, τ) → (Y, σ) is any function, then the following state-
ments are equivalent.

(i) f is Ω̂-continuous function.

(ii) For each x ∈ X and each V ∈ O(Y, f(x)), there exists U ∈ Ω̂O(X, x) such
that f(U) ⊆ V.

(iii) The inverse image of every closed set in (Y, σ) is Ω̂-closed set in (X, τ ).

(iv) f(Ω̂cl(A)) ⊆ cl(f(A)) for each subset A of (X, τ).

(v) Ω̂cl(f−1(B)) ⊆ f−1(cl(B)) for each subset B of (Y, σ).
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Proof: (i) ⇒ (ii) Suppose that x ∈ X and V is any open set in (Y, σ) containing
f(x). Then x ∈ f−1(V ). Define U = f−1(V ). By hypothesis, U is Ω̂-open in (X, τ)
containing x. Also f(U) ⊆ V.
(ii) ⇒ (i) Suppose that V is any open set in (Y, σ) and x ∈ f−1(V ) be arbi-
trary. By hypothesis, there exists Ux ∈ Ω̂O(X, x) such that f(Ux) ⊆ V. Then
x ∈ Ux ⊆ f−1(V ) implies that f−1(V ) =

⋃
{Ux : x ∈ f−1(V )}. By [8] Theorem

4.16, f−1(V ) is Ω̂-open in (X, τ).
(i) ⇒ (iii) Let Fbe any closed set in (Y, σ). Then Y \ F is open in (Y, σ). By
hypothesis, f−1(Y \ F ) = X \ f−1(F ) is Ω̂-open in (X, τ ). Therefore, f−1(F ) is
Ω̂-closed in (X, τ ).
(iii) ⇒ (i) Let V be any open set in (Y, σ). Then Y \ V is closed in (Y, σ). By
hypothesis, f−1(Y \ V ) = X \ f−1(V ) is Ω̂-closed in (X, τ). Therefore, f−1(V ) is
Ω̂-open in (X, τ ).
(iii) ⇒ (iv) Let A be any subset of X. Then A ⊆ f−1(f(A)) ⊆ f−1(cl(f(A))). By
hypothesis, f−1(cl(f(A))) is a Ω̂-closed in (X, τ ) containing A. By the definition
of Ω̂-closure, Ω̂cl(A) ⊆ f−1(cl(f(A))). Therefore, f(Ω̂cl(A)) ⊆ cl(f(A)).
(iv) ⇒ (iii) Suppose that F is any closed set in (Y, σ). By hypothesis,
f(Ω̂cl(f−1(F ))) ⊆ cl(f(f−1(F ))) ⊆ cl(F ) ⊆ F. Then Ω̂cl(f−1(F )) ⊆ f−1(F ). Thus
f−1(F ) is Ω̂-closed in (X, τ).
(iv) ⇒ (v) Let B be any subset of (Y, σ). By hypothesis, f(Ω̂cl(f−1(B))) ⊆
cl(f(f−1(B))) ⊆ cl(B). Then Ω̂cl(f−1(B)) ⊆ f−1(cl(B)).
(v) ⇒ (iv) Let A be any subset of (X, τ). If we define B = f(A), then A ⊆
f−1(f(A)) = f−1(B). Then Ω̂cl(A) ⊆ Ω̂cl(f−1(B)). By hypothesis, Ω̂cl(f−1(B)) ⊆
f−1(cl(B)). Then Ω̂cl(A) ⊆ f−1(cl(B)) = f−1(cl(f(A))). Therefore, f(Ω̂cl(A)) ⊆
cl(f(A)). ✷

Proposition 4.17. If f : (X, τ) → (Y, σ) is a Ω̂-continuous function and A is
both open and pre-closed subset of (X, τ), then the restriction f |A is Ω̂-continuous
function.

Proof: Let F be any open subset of (Y, σ). By hypothesis, f−1(F ) is Ω̂-open
subset of (X, τ). By [8] Theorem 6.10, f−1(F )∩A is Ω̂-open in (A, τ |A). Therefore,
(f |A)−1(F ) is Ω̂-open in (A, τ |A). Thus, f |A is Ω̂-continuous function. ✷

Theorem 4.18. Let {Aα, α ∈ Λ} be a cover of X by open and preclosed subsets
of (X, τ). If f |Aα : (Aα, τ |Aα) → (Y, σ) is Ω̂-continuous function for each α ∈ Λ,
then f : (X, τ ) → (Y, σ) is Ω̂-continuous function.

Proof: Let V be any open subset of (Y, σ). Since f |Aα is Ω̂-continuous function,
(f |Aα)

−1(V ) is Ω̂-open subset of (Aα, τ |Aα). By [8] Theorem 6.9, for each α ∈ Λ,
(f |Aα)

−1(V ) is Ω̂-open subset of (X, τ). Since f−1(V ) =
⋃
{(f |Aα)

−1(V ) : α ∈ Λ}
and since Ω̂O(X) is closed under arbitrary union, f−1(V ) is Ω̂-open subset of
(X, τ ). Thus, f is Ω̂-continuous function. ✷

Let us prove a significant theorem as follows.
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Theorem 4.19. "The Pasting lemma" for Ω̂-continuous function.
Let A and B be any two both open and pre-closed subsets of (X, τ ) such that X =
A∪B. Let f : (A, τ |A) → (Y, σ) and g : (B, τ |B) → (Y, σ) be Ω̂-continuous functions
such that f(x) = g(x) for every x ∈ A∩B. Then the combination (f▽g)(x) = f(x)
for every x ∈ A and (f ▽ g)(y) = g(y) for every y ∈ B is Ω̂-continuous function.

Proof: Let F be any closed set in (Y, σ). Then (f ▽ g)−1(F ) = ((f ▽ g)−1(F ) ∩
A) ∪ ((f ▽ g)−1(F ) ∩ B) = f−1(F ) ∪ g−1(F ) = C ∪ D, where C = f−1(F ) and
D = g−1(F ). Since f and g are Ω̂-continuous, C and D are Ω̂-closed sets in (A, τ |A)
and (B, τ |B) respectively. By [8], Theorem 6.6, C and D are Ω̂-closed sets in (X, τ).
By [8], Theorem 4.12, (f▽g)−1(F ) is Ω̂-closed sets in (X, τ ). Thus, the combination
(f ▽ g) is Ω̂-continuous function. ✷

Theorem 4.20. If f : (X, τ ) → (Y, σ) is semi-continuous and δ-closed mapping
and if A is Ω̂-closed set in (X, τ), then f(A) is Ω̂-closed in (Y, σ).

Proof: Suppose that f(A) ⊆ U, where U is any semi-open subset of Y. Then
A ⊆ f−1(U). Since f is semi-continuous, f−1(U) is semi open set in X. Since A
is Ω̂-closed set in X, δcl(A) ⊆ f−1(U) and hence f(δcl(A)) ⊆ U. By [7] Corol-
lary 4, δcl(A) is δ-closed set and since f is a δ-closed mapping, δcl(f(A)) ⊆
δcl(f(δcl(A))) ⊆ f(δcl(A)) ⊆ U. Thus, f(A) is Ω̂-closed in (Y, σ). ✷

5. Ω̂-irresolute mappings

Definition 5.1. A function f : (X, τ ) → (Y, σ) is said to be Ω̂-irresolute if f−1(V )
is Ω̂-open set in (X, τ ) for every Ω̂-open set V in (Y, σ).

Example 5.2. Let X = Y = {a, b, c, d}, τ = {∅, {b, c}, {a, b, c}, {b, c, d}, X} and
σ = {∅, {a}, {a, b}, Y }. Define f : (X, τ) → (Y, σ) as f(a) = b, f(b) = a, f(c) =
c, f(d) = d. Here f is Ω̂-irresolute function.

Let us characterizes Ω̂-irresolute function in the following theorems

Theorem 5.3. A function f : (X, τ ) → (Y, σ) is Ω̂-irresolute if and only f−1(F )
is Ω̂-closed set in (X, τ) for every Ω̂-closed set F in (Y, σ).

Proof: Necessity- Suppose that f is Ω̂-irresolute and F is any Ω̂-closed set in
(Y, σ). Then (Y \F ) is Ω̂-open set in (Y, σ) and by hypothesis, f−1(Y \F ) is Ω̂-open
set in (X, τ ). Then (X \ f−1(F )) is Ω̂-open set in (X, τ ). Thus, f−1(F ) is Ω̂-closed
set in (X, τ ).
Sufficiency- Suppose V is any Ω̂-open set in (Y, σ). Then (Y \V ) is Ω̂-closed set in
(Y, σ). By hypothesis, f−1(Y \V ) is Ω̂-closed set in (X, τ ) and hence (X \ f−1(V ))
is Ω̂-closed set in (X, τ ). Thus, f−1(V ) is Ω̂-open set in (X, τ ). ✷

Theorem 5.4. A function f : (X, τ ) → (Y, σ) is Ω̂-irresolute if and only if
f(Ω̂cl(A)) ⊆ Ω̂cl(f(A)) for every subset A of X.
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Proof: Necessity- Suppose that f is Ω̂-irresolute and A is any subset of X. Let
x ∈ Ω̂cl(A) and f(x) /∈ Ω̂cl(f(A)). By [8] Theorem 5.11, there exists a Ω̂-open set
V in Y containing f(x) such that V ∩ f(A) = ∅. Then f−1(V ) ∩ A = ∅. Since f is
Ω̂-continuous, f−1(V ) is Ω̂-open set in X containing x. Since x ∈ Ω̂cl(A) and by [8]
Theorem 5.11, f−1(V )∩A 6= ∅, a contradiction. Therefore, f(Ω̂cl(A)) ⊆ Ω̂cl(f(A)).
Sufficiency- Let F be any Ω̂-closed set in Y. If x ∈ Ω̂cl(f−1(F )), then f(x) ∈
f(Ω̂cl(f−1(F ))). By hypothesis, f(x) ∈ Ω̂cl(f(f−1(F ))) ⊆ Ω̂cl(F ) = F. Then
x ∈ f−1(F ). By [8] Theorem 5.3 (v), f−1(F ) is Ω̂-closed set in X and hence
Ω̂-continuous. ✷

Theorem 5.5. A function f : (X, τ ) → (Y, σ) is Ω̂-irresolute iff Ω̂cl(f−1(B)) ⊆
f−1(Ω̂cl(B)) for each subset B of (Y, σ).

Proof: Necessity- For any set B in Y by Theorem 5.4, f(Ω̂cl(f−1(B))) ⊆
Ω̂cl(f(f−1(B))) ⊆ Ω̂cl(B). Therefore, Ω̂cl(f−1(B)) ⊆ f−1(Ω̂cl(B)).
Sufficiency- It suffices to show that inverse image of a closed subset of Y is Ω̂-
closed subset of X. Suppose that F is any closed set in X. Then by [8] Theorem
5.3, F = Ω̂cl(F ). By hypothesis, Ω̂cl(f−1(F )) ⊆ f−1(Ω̂cl(F )) = f−1(F ). Again by
[8] Theorem 5.3, f−1(F ) is Ω̂-closed in X. ✷

Theorem 5.6. f : (X, τ ) → (Y, σ) is Ω̂-continuous function if and only if for
every x ∈ X and for every V ∈ Ω̂O(Y, f(x)), there exists U ∈ Ω̂O(X, x) such that
f(U) ⊆ V.

Proof: Necessity- Suppose that x ∈ X and V is any Ω̂-open set in (Y, σ) con-
taining f(x). Then x ∈ f−1(V ). Define U = f−1(V ). By hypothesis, U is Ω̂-open
in (X, τ) containing x. Also f(U) ⊆ V.
Sufficiency- Suppose that V is any Ω̂-open set in (Y, σ) and x ∈ f−1(V ). By hy-
pothesis, there exists Ux ∈ Ω̂O(X, x) such that f(Ux) ⊆ V. Then x ∈ Ux ⊆ f−1(V )
implies that f−1(V ) =

⋃

x∈f−1(V )

Ux. By [8] Theorem 4.16, f−1(V ) is Ω̂-open in

(X, τ ).
✷

Remark 5.7. From the following examples, it is shown that the notion of Ω̂-
irresolute and Ω̂-continuous functions are independent. Moreover, the concept of
Ω̂-irresolute and continuous functions are independent.

Example 5.8. X = Y = {a, b, c, d}, τ = {∅, {b, c}, {a, b, c}, {b, c, d}, X}, σ =
{∅, {a}, {a, b}.Y }. If f : (X, τ ) → (Y, σ) is defined by f(a) = b, f(b) = a, f(c) =
c, f(d) = d. Then f is Ω̂-irresolute but not continuous.

Example 5.9. X = Y = {a, b, c}, τ = {∅, {a}, X}, σ = {∅, {a}, {b, c}, Y }. If
f : (X, τ) → (Y, σ) is defined by f(a) = b, f(b) = c, f(c) = b. Then f is Ω̂-
continuous and continuous but not Ω̂-irresolute.
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Example 5.10. X = Y = {a, b, c, d}, τ = {∅, {c}, {c, d}, X}, σ = {∅, {a}, {a, b}.Y }.
If f : (X, τ) → (Y, σ) is defined by f(a) = c, f(b) = d, f(c) = a, f(d) = b. Then f
is Ω̂-irresolute but not Ω̂-continuous.

Theorem 5.11. Let (Y, σ) be a ωTΩ̂-space. If f : (X, τ ) → (Y, σ) is Ω̂-irresolute

then it is Ω̂-continuous.Moreover, if (X, τ ) is semi-T 1

2

-space, then f is continuous.

Proof: Suppose that V is open in Y. Since Y is ωTΩ̂, V is Ω̂-open in Y. Since f is

Ω̂-irresolute, f−1(V ) is Ω̂-open in X. Therefore, f is Ω̂-continuous. If X is semiT 1

2

,

then f−1(V ) is open in X and hence f is continuous. ✷

Theorem 5.12. Let (Y, σ) be a semi-T 1

2

-space. If f : (X, τ ) → (Y, σ) is Ω̂-

continuous then it is Ω̂-irresolute.

Proof: It follows from their definitions. ✷

Theorem 5.13. Suppose (Y, σ) is a semi-T 1

2

-space and (X, τ) is ωTΩ̂-space.

If f : (X, τ) → (Y, σ) is continuous then it is Ω̂-irresolute.

Proof: It follows from their definitions. ✷

Composition theorems.

Theorem 5.14. The following statements are true.

(i) If f : (X, τ) → (Y, σ) is Ω̂-irresolute and g : (Y, σ) → (Z, η) is Ω̂-irresolute,
then
g ◦ f : (X, τ ) → (Z, η) is Ω̂-irresolute.

(ii) If f : (X, τ) → (Y, σ) is continuous and g : (Y, σ) → (Z, η) is Ω̂-irresolute
function, then g ◦ f : (X, τ ) → (Z, η) is Ω̂-irresolute whenever (Y, σ) is semi-
T 1

2

-space and (X, τ) is ωTΩ̂-space.

(iii) If f : (X, τ ) → (Y, σ) is Ω̂-continuous and g : (Y, σ) → (Z, η) is Ω̂-irresolute,
then
g ◦ f : (X, τ ) → (Z, η) is Ω̂-irresolute whenever (Y, σ) is semi-T 1

2

-space.

(iv) If f : (X, τ) → (Y, σ) is Ω̂-irresolute and g : (Y, σ) → (Z, η) is continuous
function, then g ◦ f : (X, τ) → (Z, η) is Ω̂-continuous whenever (Y, σ) is ωTΩ̂-
space.

(v) If f : (X, τ ) → (Y, σ) is Ω̂-irresolute and g : (Y, σ) → (Z, η) is Ω̂-continuous,
then
g ◦ f : (X, τ ) → (Z, η) is Ω̂-continuous.
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(vi) If f : (X, τ ) → (Y, σ) is Ω̂-irresolute and g : (Y, σ) → (Z, η) is Ω̂-continuous,
then
g ◦ f : (X, τ ) → (Z, η) is continuous whenever (X, τ ) is semi-T 1

2

-space..

Proof: They follow straight forward from their definitions. ✷

Let us prove an application of Ω̂-irresolute functions as follows.

Theorem 5.15. "The Pasting lemma" for Ω̂-irresolute function.
Let A and B be any two both open and pre-closed sets in (X, τ) such that X =
A∪B.Let f : (A, τ |A) → (Y, σ) and g : (B, τ |B) → (Y, σ) be Ω̂-irresolute functions
such that f(x) = g(x) for every x ∈ A∩B.Then the combination (f▽g)(x) = f(x)
for every x ∈ A and (f ▽ g)(y) = g(y) for every y ∈ B is Ω̂-irresolute function.

Proof: It is similar to that of 4.18. ✷

Theorem 5.16. Let (X, τ) be a Hausdorff space and if f : (X, τ) → (Y, σ) is Ω̂-
continuous, then the set A = {x ∈ X : f(x) = x} is Ω̂-closed set in (X, τ).

Proof: Suppose that x ∈ Ω̂cl(A) \ A. Then x 6= f(x). Since X is Hausdorff,there
exists two disjoint open sets U and V in X such that x ∈ U and f(x) ∈ V. Since f

is Ω̂-continuous and by [8] Theorem 4.12, f−1

(V ) ∩ U is Ω̂-open set containing x.

Since x ∈ Ω̂cl(A), by [8] Theorem 5.11, f−1

(V )∩U ∩A 6= ∅. Therefore, U ∩V 6= ∅
a contradiction. Thus A is Ω̂-closed set in (X, τ ). ✷

Corollary 5.17. Let (X, τ ) be a Hausdorff and ωTΩ̂-space and if f : (X, τ) → (Y, σ)

is Ω̂-irresolute, then the set A = {x ∈ X : f(x) = x} is Ω̂-closed set in (X, τ).

Theorem 5.18. If f : (X, τ) → (Y, σ) and g : (X, τ) → (Y, σ) are Ω̂-irresolute from
X into a Hausdorff space Y, then the set A = {x ∈ X : f(x) = g(x)} is Ω̂-closed
set in (X, τ ).

Proof: Let x ∈ (X \A).Then f(x) 6= g(x). Since Y is Hausdorff space, there exists
two disjoint open sets U and V in Y such that f(x) ∈ U and g(x) ∈ V. Since f is

Ω̂-continuous and by [8] Theorem 4.12, f−1

(U) ∩ g−
1

(V ) is Ω̂-open set containing

x. Moreover, f−1

(U)∩g−
1

(V )∩A = ∅. Therefore, x ∈ f−1

(U)∩g−
1

(V ) ⊆ (X \A).
This implies that (X \A) is Ω̂-open in (X, τ) and hence A is Ω̂-closed set in (X, τ).

✷

Corollary 5.19. Let (Y, σ) be a Ω̂-T2-space and if f : (X, τ ) → (Y, σ) and g :
(X, τ ) → (Y, σ) are Ω̂-irresolute, then the set A = {x ∈ X : f(x) = g(x)} is
Ω̂-closed set in (X, τ).

Theorem 5.20. Let (X, τ ) be a semi-T 1

2

-space. If f : (X, τ) → (Y, σ) is Ω̂-
continuous injective and Y is Hausdorff, then X is Hausdorff.
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Proof: Suppose that x, y ∈ X such that x 6= y. Since f is injective, f(x) 6= f(y)
and since Y is Hausdorff space, there exists two disjoint open sets U and V in Y
such that f(x) ∈ U and f(y) ∈ V. Since f is Ω̂-continuous, f−1(U) and f−1(V )
are disjoint Ω̂-open sets in X containing x and y respectively. Since X is semi-
T 1

2

-space, f−1(U) and f−1(V ) are disjoint open sets in X containing x and y

respectively. Thus, (X, τ ) is Hausdorff. ✷

Definition 5.21. A space is said to be Ω̂-T2, if for every distinct pair of points
x, y ∈ X there exists disjoint Ω̂-open sets in X such that x ∈ U, y ∈ V.

Corollary 5.22. Let (Y, σ) be Hausdorff space. If f : (X, τ ) → (Y, σ) is Ω̂-
continuous injective, then X is Ω̂-T2.

Corollary 5.23. Let (X, τ ) be semi-T 1

2

-space and (Y, σ) be Ω̂-T2-space. If f :

(X, τ ) → (Y, σ) is Ω̂-irresolute injective, then X is Hausdorff.

Corollary 5.24. If f : (X, τ ) → (Y, σ) is Ω̂-irresolute injective and Y is Ω̂-T2,
then X is Ω̂-T2.

6. weakly Ω̂-continuous

Definition 6.1. A function f : (X, τ ) → (Y, σ) is weakly Ω̂-continuous at x ∈ X
if for each G ∈ O(Y, f(x)), there exists U ∈ Ω̂O(X, x) such that f(U) ⊆ cl(G). If
f is weakly Ω̂ continuous at each x ∈ X, then f is weakly Ω̂-continuous on X.

Example 6.2. X = Y = {a, b, c}, τ = {∅, {a}, {a, b}, X}, σ = {∅, {a}, {a, b}, {a, c},
Y }. Define f : (X, τ) → (Y, σ) as an identity function. Then f is weakly Ω̂-
continuous.

Theorem 6.3. Every Ω̂-continuous function is weakly Ω̂-continuous function.

Proof: Let x ∈ X and V ∈ O(Y, f(x)). By hypothesis,their exists U ∈ Ω̂O(X, x)
such that f(U) ⊆ V ⊆ cl(V ). Thus, f is weakly Ω̂-continuous function. ✷

Remark 6.4. The converse is not possible in general, as seen from the example
6.2.

The following theorem gives the conditions under which the reversible implica-
tion of Theorem 6.3 is true.

Theorem 6.5. If (Y, σ) is regular space, then every weakly Ω̂-continuous function
f : (X, τ) → (Y, σ) is Ω̂-continuous function.

Proof: Let x ∈ X and V be any open set in Y containing f(x). Since Y is reg-
ular,there exists an open set W in Y such that f(x) ∈ W ⊆ cl(W ) ⊆ V. Since f
is weakly Ω̂-continuous, there exists Ω̂-open set in U in X containing x such that
f(U) ⊆ cl(W ) ⊆ V . Therefore, f is Ω̂-continuous function. ✷

The following theorem states the characterization of weakly Ω̂-continuous func-
tion.
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Theorem 6.6. The following statements are equivalent.

(i) f : (X, τ) → (Y, σ) is weakly Ω̂-continuous function.

(ii) Ω̂cl(f−1(int(cl(V )))) ⊆ f−1(cl(V )) for every subset V of Y.

(iii) Ω̂cl(f−1(int(F ))) ⊆ f−1(F ) for every regular closed subset F of Y.

(iv) Ω̂cl(f−1(U) ⊆ f−1(cl(U)) for every open subset U of Y.

(v) f−1(U) ⊆ Ω̂int(f−1(cl(U))) for every open subset U of Y.

Proof:
(i) ⇒ (ii) Suppose that V is any subset of Y and x /∈ f−1(cl(V )). Then

f(x) /∈ cl(V ) implies that there exists an open set U in Y containing f(x) such
that U ∩ V = ∅. Therefore U = int(U) ⊆ int(X \ V ) = (X \ cl(V )). Then
cl(U) ∩ int(cl(V )) = ∅ and hence f−1(int(cl(V ))) ⊆ (X \ f−1(cl(U))). Since
f is weakly Ω̂-continuous, there exists Ω̂-open set W in X containing x such
that f(W ) ⊆ cl(U) and then W ⊆ f−1(cl(U)). Therefore, f−1(int(cl(V ))) ⊆
(X \ W ) where (X \ W ) is a Ω̂-closed set in X. By [8] the definition of Ω̂ clo-
sure, Ω̂cl(f−1(int(cl(V )))) ⊆ (X \W ). Then W ∩ Ω̂cl(f−1(int(cl(V )))) = ∅. Since
x ∈ W,x /∈ Ω̂cl(f−1(int(cl(V )))).
(ii) ⇒ (iii) Suppose that F is any regular closed set in Y. By hypothesis,
Ω̂cl(f−1(int(cl(int(F ))))) ⊆ f−1(cl(int(F ))). Then, Ω̂cl(f−1(int(F ))) ⊆ f−1(F ).
(iii) ⇒ (iv) Suppose that U is any open set in Y and then cl(U) is regular
closed set in Y. By hypothesis, Ω̂cl(f−1(int(cl(U)))) ⊆ f−1(cl(U)). Since U is
open, Ω̂cl(f−1(U) ⊆ Ω̂cl(f−1(int(cl(U))) ⊆ f−1(cl(U)). Thus, Ω̂cl(f−1(U)) ⊆
f−1(cl(U)).
(iv) ⇒ (v) Suppose that U is open in Y and then (Y \ cl(U)) is open in Y. By hy-
pothesis, Ω̂cl(f−1(Y \ cl(U)) ⊆ f−1(cl(Y \ cl(U))). That is, Ω̂cl(X \ f−1(cl(U))) ⊆
f−1(cl(Y \ cl(U))). By [8] Theorem 5.15 (i), (X \ Ω̂int(f−1(cl(U))) ⊆ f−1(cl(Y \
cl(U))) ⊆ (X \ f−1(U)). Therefore, f−1(U)) ⊆ Ω̂int(f−1(cl(U))).
(v) ⇒ (i) Suppose that x ∈ X and U be any open set in Y containing f(x). By
hypothesis,
f−1(U) ⊆ Ω̂int(f−1(cl(U))). By [8] Remark 5.13, Ω̂int(f−1(cl(U))) is a Ω̂ open set
in X such that Ω̂int(f−1(cl(U))) ⊆ f−1(cl(U)). Therefore, f(Ω̂int(f−1(cl(U)))) ⊆
cl(U). If we take W = Ω̂int(f−1(cl(U))), then W is Ω̂-open set in X containing x
such that f(W ) ⊆ cl(U). ✷

Theorem 6.7. f : (X, τ) → (Y, σ) is weakly Ω̂-continuous function if and only if
Ω̂cl(f−1(int(F ))) ⊆ f−1(F ) for every closed subset F of Y.

Proof: Necessity- Suppose that F is any closed set in Y and then (Y \F ) is open
set in Y. By Theorem 6.6, (v), f−1(Y \ F ) ⊆ Ω̂int(f−1(cl(Y \ F ))). Then,
(X \ f−1(F )) ⊆ Ω̂int(f−1(Y \ intF ))) = Ω̂int[(f−1(Y )) \ f−1(intF )] = Ω̂int[(X \
f−1(intF )] = (X \ Ω̂cl(f−1(intF ))). Therefore, Ω̂cl(f−1(intF )) ⊆ f−1(F ).
Sufficiency- Suppose that x ∈ X and U be any open set in Y containing f(x).
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Then, (Y \ U) is closed in Y not containing f(x). By hypothesis, Ω̂cl(f−1(int(Y \
U))) ⊆ f−1(Y \ U). Since x /∈ f−1(int(Y \ U)), x /∈ Ω̂cl(f−1(int(Y \ U))). By [8]
Theorem 5.11, there exists Ω̂-open set V in X such that V ∩ f−1(int(Y \ U)) = ∅.
Also f(V ) ∩ int(Y \ U) = ∅ implies that f(V ) ⊂ cl(U). Thus f is weakly Ω̂-
continuous function. ✷

Remark 6.8. If f and g are weakly Ω̂-continuous functions, then their composition
is not always weakly Ω̂-continuous function from the following example. However,
composition is possible if we consider g as a continuous function.

Example 6.9. X = Y = Z = {a, b, c, d} and τ = {∅, {a}, {a, b}, X}, σ = {∅, {a},
{bcd}, Y }, η = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, Z}.Define f : (X, τ) →
(Y, σ) and g : (Y, σ) → (Z, η) by f(a) = b, f(b) = c, f(c) = d, f(d) = b, g(a) =
a, g(b) = a, g(c) = d, g(d) = b. Then f and g are weakly Ω̂-continuous functions
where as g ◦ f : (X, τ ) → (Z, η), defined by (g ◦ f)(x) = g(f(x)) for all x ∈ X is
not a weakly Ω̂-continuous function.

Theorem 6.10. If f : (X, τ ) → (Y, σ) is weakly Ω̂-continuous function and g is
continuous,then g ◦ f : (X, τ) → (Z, η) is weakly Ω̂-continuous function.

Proof: Suppose that x ∈ X and W is any open set in Z containing (g ◦ f)(x).
Since g is continuous, g−1(W ) is open set in Y containing f(x). Since f is weakly
Ω̂-continuous, there exists Ω̂-open set U in X containing x such that f(U) ⊆
cl(g−1(W )). Since g is continuous, (g ◦ f)(U) ⊆ g(f(U)) ⊆ g(cl(g−1(W ))) ⊆
cl(gg−1(W )) ⊆ cl(W ). Therefore, g ◦ f : (X, τ) → (Z, η) is weakly Ω̂-continuous
function. ✷

Theorem 6.11. f : (X, τ ) → (Y, σ) is a surjective function such that f(U) is Ω̂-
open set in Y for any Ω̂-open set in U in X and g : (Y, σ) → (Z, η) is any function.
If g ◦ f : (X, τ ) → (Z, η) is weakly Ω̂-continuous,then g is weakly Ω̂-continuous
function.

Proof: Suppose that y ∈ Y and W is any open set in Z containing g(y). Since f
is surjective, there exists x ∈ X such that f(x) = y. Then (g ◦ f)(x) = g(f(x)) =
g(y) ∈ W. Since g ◦ f is weakly Ω̂-continuous, there exists an Ω̂-open set U in
X containing x such that (g ◦ f)(U) ⊆ cl(W ). If we take V = f(U), then by our
assumption, V is a Ω̂-open set in Y containing f(x) and (g◦f)(U) = g(V ) ⊆ cl(W ).
Thus, g is weakly Ω̂-continuous function. ✷

Theorem 6.12. If f : (X, τ ) → (Y, σ) is Ω̂-irresolute function and g is weakly
Ω̂-continuous, then g ◦ f : (X, τ ) → (Z, η) is weakly Ω̂-continuous function.

Proof: Suppose that x ∈ X and W is any open set in Z containing (g◦f)(x). Since
g is weakly Ω̂-continuous,there exists Ω̂-open set V in Y containing f(x) such that
g(V ) ⊆ cl(W ). Since f is Ω̂-irresolute,there exists Ω̂-open set U in X containing
x such that f(U) ⊆ V. Then (g ◦ f)(U) ⊆ g(f(U)) ⊆ g(V ) ⊆ cl(W ). Therefore,
g ◦ f : (X, τ) → (Z, η) is weakly Ω̂-continuous function. ✷
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Theorem 6.13. If f : (X, τ ) → (Y, σ) is weakly Ω̂-continuous and Y is Hausdorff,
then f has Ω̂-closed points inverses.

Proof: Suppose that y ∈ Y and x ∈ {x ∈ X : f(x) 6= y}.Since f(x) 6= y in a Haus-
dorff space Y , there exists two disjoint open sets U and V in Y such that f(x) ∈ U
and y ∈ V .Moreover,cl(U) ∩ V = ∅ implies that y /∈ cl(U). Since f is weakly Ω̂-
continuous,there exists Ω̂-open set W in X containing x such that f(W ) ⊆ cl(U).
If W * {x ∈ X : f(x) 6= y},then choose a point z ∈ W such that f(z) = y. Then
y = f(z) ∈ f(W ) ⊆ cl(U), a contradiction.Hence x ∈ W ⊆ {x ∈ X : f(x) 6= y} and
hence {x ∈ X : f(x) 6= y} is Ω̂-open in X .Therefore, f−1(y) = {x ∈ X : f(x) = y}
is Ω̂-closed in X. ✷

Definition 6.14. If A ⊆ X, weakly Ω̂-continuous retraction of X onto A is a
weakly Ω̂-continuous function f : X → A such that f(a) = a for each a ∈ A.

Theorem 6.15. If A ⊆ X, and f : X → A is a weakly Ω̂-continuous retraction of
a Hausdorff space X onto A, then A is Ω̂-closed in X.

Proof: Suppose that there exists x ∈ Ω̂cl(A) \ A. Then x 6= f(x). Since X is
Hausdorff, there exists two disjoint open sets U and V in X such that x ∈ U and
f(x) ∈ V .Also U ∩ cl(V ) = ∅. Let W be an arbitrary Ω̂-open set in X containing
x. By [8] Theorem 4.12, U ∩W is a such that Ω̂-open set in X containing x. Since
x ∈ Ω̂cl(A), by [8] Theorem 5.11, U ∩ W ∩ A 6= ∅. If we choose y ∈ U ∩W ∩ A,
then y ∈ A implies that y = f(y) ∈ U and hence f(y) /∈ cl(V ). That is,there exists
y ∈ W such that f(y) /∈ cl(V ). Therefore, f(W ) " cl(V ) for any Ω̂-open set in X
containing x, a contradiction. Thus, A is Ω̂-closed in X. ✷

Definition 6.16. A space (X, τ ) is called Urysohn space if for every pair of distinct
points x and y in X, there exists open sets U and V in X such that x ∈ U, y ∈ V
and cl(U) ∩ cl(V ) = ∅.

Theorem 6.17. If f : (X, τ ) → (Y, σ) is injective weakly Ω̂-continuous from X
into a Urysohn space Y, then X is Ω̂-T2-space.

Proof: Suppose that x, y ∈ X such that x 6= y. Since f is injective, f(x) 6= f(y)
and since Y is Urysohn space, there exists two open sets U and V in Y such
that f(x) ∈ U, f(y) ∈ V and cl(U) ∩ cl(V ) = ∅. Since f is weakly Ω̂-continuous,
there exists Ω̂-open set U1 and V1 in X containing x and y respectively such that
f(U1) ⊆ cl(U), f(V1) ⊆ cl(V ). Moreover, U1 ∩ V1 = ∅. Thus, X is Ω̂-T2-space. ✷
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