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Existence of solutions for a fourth order problem at resonance

El. M. Hssini, M. Massar, M. Talbi and N. Tsouli

abstract: In this work, we are interested at the existence of nontrivial solutions
of two fourth order problems governed by the weighted p-biharmonic operator. The
first is the following

∆(ρ|∆u|p−2∆u) = λ1m(x)|u|p−2u+ f(x, u)− h in Ω, u = ∆u = 0 on ∂Ω,

where λ1 is the first eigenvalue for the eigenvalue problem ∆(ρ|∆u|p−2∆u) =
λm(x)|u|p−2u in Ω, u = ∆u = 0 on ∂Ω. In the seconde problem, we replace λ1

by λ such that λ1 < λ < λ̄, where λ̄ is given bellow.
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1. Introduction and main results

In the present paper, we are concerned with the existence of weak solutions of
the following problem

{

∆(ρ|∆u|p−2∆u) = λ1m(x)|u|p−2u+ f(x, u)− h in Ω
u = ∆u = 0 on ∂Ω,

(1.1)

where p > 1, Ω is a bounded domain of RN (N ≥ 1) with smooth boundary ∂Ω,
ρ ∈ C(Ω), with infΩ ρ(x) > 0, f : Ω×R −→ R is a bounded Carathéodory function,

h ∈ Lp′

(Ω),
(

p′ = p
p−1

)

, m ∈ C(Ω) is nonnegative weight function and λ1 design

the first eigenvalue for the eigenvalue problem

{

∆(ρ|∆u|p−2∆u) = λm(x)|u|p−2u in Ω
u = ∆u = 0 on ∂Ω.

(1.2)

The investigation of existence of solutions for problems at resonance has drawn
the attention of many authors, see for example [1,3,6,7,12]. In [7], Liu and
Squassina study the following p-biharmic problem

{

∆(∆u|p−2∆u) = g(x, u) in Ω
u = ∆u = 0 on ∂Ω.
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Under some conditions on g(x, u) at resonance, the authors established the exis-
tence of at least one nontrivial solution.

According to the work of Talbi and Tsouli [10], the eigenvalue problem (1.2) has
a nondecreasing and unbounded sequence of eigenvalues, and the first eigenvalue
λ1 is given by

λ1 = inf
u∈X

{
∫

Ω

ρ|∆u|pdx :

∫

Ω

m(x)|u|pdx = 1

}

,

where X := W 2,p(Ω) ∩W 1,p
0 (Ω) is the reflexive Banach space endowed with the

norm

||u|| =

(
∫

Ω

ρ|∆u|pdx

)1/p

.

Since m ∈ C(Ω) and m ≥ 0, λ1 is positive, simple and isolated. Therefore
∫

Ω

ρ|∆u|pdx ≥ λ1

∫

Ω

m(x)|u|pdx for allu ∈ X. (1.3)

Moreover, there exists a unique positive eigenfunction ϕ1 associated to λ1, which
can be chosen normalized. Let

λ2 := inf {λ : λ is a eigenvalue of (1.2), withλ > λ1} .

The fact that λ1 is isolated implies that λ1 < λ2. It can also be shown (see
Lemma 2.1) that there exists λ ∈ (λ1, λ2] such that

∫

Ω

ρ|∆u|pdx ≥ λ

∫

Ω

m(x)|u|pdx, (1.4)

for all u ∈ X with

∫

Ω

m(x)ϕp−1
1 udx = 0.

In addition, we study the existence of solutions for the following boundary value
problem

{

∆(ρ|∆u|p−2∆u) = λm(x)|u|p−2u+ f(x, u)− h in Ω
u = ∆u = 0 on ∂Ω,

(1.5)

We assume that the function f satisfy the following hypothese:

(H) For almost every x ∈ Ω, there exist

lim
s→−∞

f(x, s) = l(x), lim
s→+∞

f(x, s) = k(x). (1.6)

Let us recall the minimum principle and the saddle point theorem (see [9]).

Theorem 1.1. Let X be a Banach space and Φ ∈ C
1(X,R). Assume that

(i) Φ satisfies the Palais-Smale condition,
(ii) Φ is bounded from below c = inf

X
Φ.

Then there exists u0 ∈ X such that Φ(u0) = c.
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Theorem 1.2. Let X be a Banach space. Let Φ : X → R be a C1 functional that
satisfies the Palais-Smale condition, and suppose that X = V ⊕W, with V a finite
dimensional subspace of X. If there exists R > 0 such that

max
v∈V,||v||=R

Φ(v) < inf
w∈W

Φ(w),

then Φ has a least a critical point on X.

Now, we are ready to state our main results.

Theorem 1.3. Assume that (1.6) holds. Suppose that h ∈ Lp′

(Ω) is such that
either

∫

Ω

k(x)ϕ1dx <

∫

Ω

h(x)ϕ1dx <

∫

Ω

l(x)ϕ1dx (1.7)

or
∫

Ω

l(x)ϕ1dx <

∫

Ω

h(x)ϕ1dx <

∫

Ω

k(x)ϕ1dx. (1.8)

Then problem (1.1) has at least a weak solution .

Theorem 1.4. Assume that (1.6) holds. If h ∈ Lp′

(Ω) satisfy (1.7) or (1.8), then
problem (1.5) with λ1 < λ < λ, has at least one solution.

2. Preliminaries and proofs of Theorems

We consider the following energy functional Φ : X → R defined by

Φ(u) =
1

p

∫

Ω

ρ|∆u|pdx−
λ1
p

∫

Ω

m(x)|u|pdx−

∫

Ω

F (x, u)dx+

∫

Ω

hudx,

where

F (x, t) =

∫ t

0

f(x, s)ds for almost every x ∈ Ω, ∀t ∈ R.

It is well known that Φ ∈ C
1(X,R), with derivative at point u ∈ X is given by

〈Φ′(u), v〉 =

∫

Ω

ρ|∆u|p−2∆u∆vdx−λ1

∫

Ω

m(x)|u|p−2uvdx−

∫

Ω

f(x, u)vdx+

∫

Ω

hvdx,

for every v ∈ X.
Let denote V = 〈ϕ1〉 the linear spans of ϕ1 and

W =

{

u ∈ X :

∫

Ω

m(x)ϕp−1
1 udx = 0

}

. (2.1)

Then we can decompose X as a direct sum of V and W. In fact, let u ∈ X, writing

u = αϕ1 + w,

where w ∈ X, and α = λ1
∫

Ω
m(x)ϕp−1

1 udx.
Since

∫

Ω

ρ|∆ϕ1|
pdx = 1,
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∫

Ω

m(x)ϕp−1
1 wdx = 0.

Therefore w ∈W, hence
X = V ⊕W.

We begin by establishing the existence of λ for which (1.4) holds.

Lemma 2.1. There exists λ ∈ (λ1, λ2] such that

∫

Ω

ρ|∆u|pdx ≥ λ

∫

Ω

m(x)|u|pdx, (2.2)

for all u ∈W.

Proof: Let

λ = inf

{
∫

Ω

ρ|∆u|pdx : u ∈W,

∫

Ω

m(x)|u|pdx = 1

}

.

This value is attained in W. To see why this is so, let (un) be a sequence in W,
satisfying

∫

Ω
m(x)|un|

pdx = 1 for all n, and
∫

Ω
ρ|∆un|

pdx→ λ. It follows that (un)
is bounded in X and therefore, up to subsequence, we may assume that

un ⇀ u weakly in X and un → u strongly in Lp(Ω).

From the strong convergence of the sequence in Lp(Ω) we obtain

∫

Ω

m(x)|u|pdx = lim
n→∞

∫

Ω

m(x)|un|
pdx = 1

and
∫

Ω

m(x)ϕp−1
1 udx = lim

n→∞

∫

Ω

m(x)ϕp−1
1 undx = 0,

so that u ∈ W. By the weakly lower semicontinuity of the norm ||.||, we get

λ ≤

∫

Ω

ρ|∆u|pdx ≤ lim inf
n→∞

∫

Ω

ρ|∆un|
pdx = λ,

and hence λ is attained at u.
Now we claim that λ > λ1. It follows from (1.3) that λ ≥ λ1. If λ = λ1, by

simplicity of λ1 there is α ∈ R such that u = αϕ1. Since u ∈ W,

α

∫

Ω

m(x)ϕp
1dx = 0,

which implies α = 0. This contradicts the fact that
∫

Ω
m(x)|u|pdx = 1. So, choose

λ = min{λ, λ2}. It is clear that λ satisfies (2.2) and the proof of lemma is complete.
✷
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Lemma 2.2. Assume that (1.6) and (1.7) or (1.8) are verified. Then the functional
Φ satisfies the Palais-Smale condition on X.

Proof: Let (un) be a sequence in X , and c a real number such that:

|Φ(un)| ≤ c for all n, (2.3)

Φ′(un) → 0. (2.4)

We claim that (un) is bounded in X. Indeed, suppose by contradiction that

||un|| → +∞, as n→ +∞.

Put vn = un/||un||, thus (vn) is bounded, for a subsequence still denoted (vn),
we can assume that vn ⇀ v weakly in X , by Sobelev injection theorem we have
vn → v strongly in Lp(Ω), and vn → v a.e. in Ω. Dividing (2.3) by ||un||

p, we get

lim
n→+∞

(

1

p

∫

Ω

ρ|∆vn|
pdx−

λ1
p

∫

Ω

m(x)|vn|
pdx−

∫

Ω

F (x, un)

||un||p
dx+

∫

Ω

h
un

||un||p
dx

)

= 0.

(2.5)
By the hypotheses on f, h and (un), we obtain

lim
n→+∞

∫

Ω

F (x, un)

||un||p
dx = lim

n→+∞

∫

Ω

h
un

||un||p
dx = 0,

while

lim
n→+∞

∫

Ω

m(x)|vn|
pdx =

∫

Ω

m(x)|v|pdx

then, from (2.5) we deduce that

1 = lim
n→+∞

∫

Ω

ρ|∆vn|
pdx = λ1

∫

Ω

m(x)|v|pdx.

Then v 6≡ 0. According to the definition of λ1 and the weak lower semi continuity
of norm, one has

λ1

∫

Ω

m(x)|v|pdx ≤

∫

Ω

ρ|∆v|pdx ≤ lim inf
n→+∞

∫

Ω

ρ|∆vn|
pdx = λ1

∫

Ω

m(x)|v|pdx.

This implies that

vn → v strongly in X and

∫

Ω

ρ|∆v|pdx = λ1

∫

Ω

m|v|pdx.

By the definition of ϕ1, we deduce that v = ±ϕ1.
On the other hand, from (2.3) we have

− cp ≤

∫

Ω

ρ|∆un|
pdx− λ1

∫

Ω

m(x)|un|
pdx− p

∫

Ω

F (x, un)dx + p

∫

Ω

hundx ≤ cp

(2.6)
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In view of (2.4), for all ε > 0 and n large enough, we have

−ε‖un‖ ≤ −

∫

Ω

ρ|∆un|
pdx+λ1

∫

Ω

m|un|
pdx+

∫

Ω

f(x, un)undx−

∫

Ω

hundx ≤ ε‖un‖

(2.7)
Let

g(x, s) =

{

F (x,s)
s if s 6= 0

f(x, 0) if s = 0.
(2.8)

Suppose that vn → −ϕ1 (for example), then un(x) → −∞ for a.e. x ∈ Ω, it follows
from (1.6) that

{

f(x, un) → l(x) a.e x ∈ Ω
g(x, un) → l(x) a.e x ∈ Ω,

Moreover, the Lebesgue’s theorem imply

lim
n→+∞

∫

Ω

(f(x, un)vn − pg(x, un)vn)dx = (p− 1)

∫

Ω

l(x)ϕ1dx. (2.9)

Combining (2.6) and (2.7), we get

−cp−ε‖un‖ ≤

∫

Ω

f(x, un)undx−p

∫

Ω

F (x, un)dx+(p−1)

∫

Ω

hundx ≤ cp+ε‖un‖.

Dividing by ||un|| the last inequalities, we obtain

−cp

||un||
− ε ≤

∫

Ω

f(x, un)vndx− p

∫

Ω

g(x, un)vndx+ (p− 1)

∫

Ω

hvndx ≤
cp

||un||
+ ε,

and passing to the limits, we deduce from (2.9) that

∫

Ω

l(x)ϕ1dx =

∫

Ω

h(x)ϕ1dx,

which contradicts both (1.7) and (1.8). Thus (un) is bounded in X , for a subse-
quence denoted also (un), there exists u ∈ X such that un ⇀ u weakly in X , and
strongly in Lp(Ω). From

lim
n→+∞

〈Φ′(un), (un − u)〉 = 0,

that is

〈Φ′(un), (un − u)〉 =

∫

Ω

ρ|∆un|
p−2∆un∆(un − u)dx

−λ1

∫

Ω

m(x)|un|
p−2un(un − u)dx

−

∫

Ω

f(x, un)(un − u)dx+

∫

Ω

h(un − u)dx

= on(1).
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Using the hypotheses on m, h and f , we see that

lim
n→+∞

∫

Ω

m(x)|un|
p−2un(un − u)dx = 0, lim

n→+∞

∫

Ω

f(x, un)(un − u)dx = 0

lim
n→+∞

∫

Ω

h(un − u)dx = 0.

Consequently,

lim
n→+∞

∫

Ω

ρ|∆un|
p−2∆un∆(un − u)dx = 0.

In the same way, we obtain

lim
n→∞

∫

Ω

ρ|∆u|p−2∆u∆(un − u)dx = 0.

Therefore

0 = lim
n→∞

∫

Ω

(ρ|∆un|
p−2∆un − ρ|∆u|p−2∆u)∆(un − u)dx

≥ lim
n→∞

(||un||
p−1 − ||u||p−1)(||un|| − ||u||) ≥ 0,

hence ||un|| → ||u||. By the uniform convexity of X, it follows that un → u strongly
in X and Φ satisfies the (PS) condition. ✷

Lemma 2.3. Assume that (1.6) and (1.7) are satisfied. Then the functional Φ is
coercive on X.

Proof: Suppose by contadiction that Φ is not coercive, then there exists a sequence
(un) such that ||un|| → +∞, and |Φ(un)| ≤ C.
In the proof of lemma 2.2, we have showed that vn = un/||un|| → ±ϕ1.
Since

0 ≤

∫

Ω

ρ|∆un|
pdx− λ1

∫

Ω

m|un|
pdx,

−

∫

Ω

F (x, un)dx +

∫

Ω

hundx ≤ Φ(un) ≤ C. (2.10)

Assume vn → −ϕ1 (for example). Dividing (2.10) by ||un||, we get

−

∫

Ω

F (x, un)

||un||
dx+

∫

Ω

h
un

||un||
dx ≤

C

||un||
.

Passing to the limits, we have
∫

Ω

l(x)ϕ1dx ≤

∫

Ω

h(x)ϕ1dx

which contradicts (1.7).
✷



140 El. M. Hssini, M. Massar, M. Talbi, N. Tsouli

Proof: [Proof of Theorem 1.3]. If (1.7) holds, the coerciveness of the functional
Φ and the Palais-Smale condition entrain, from theorem 1.1, that Φ attains its
minimum, so problem (1.1) admits at least a weak solution in X .

If (1.8) holds, then Φ has the geometry of the saddle point theorem 1.2. Indeed,
splitting X = V ⊕W. Let u ∈ W, using Höder inequality and the properties of F,
since λ > λ1

Φ(u) ≥
1

p

∫

Ω

ρ|∆u|pdx−
λ1
p

∫

Ω

m(x)|u|pdx−

∫

Ω

F (x, u)dx +

∫

Ω

h(x)udx

≥
1

p

(

1−
λ1

λ

)

||u||p − C(‖b‖∞|Ω|
1

p′ + ‖h‖p′)||u||, (2.11)

where C is the embedding constants of Sobolev, ‖.‖p′ and ‖.‖∞ denote the norms

in Lp′

(Ω) and L∞(Ω) respectively. Then Φ is bounded from below on W, is a
consequence of the assumption that p > 1, so that

inf
w∈W

Φ(w) > −∞. (2.12)

On the other hand, for every t ∈ R, one has

Φ(tϕ1) = −

∫

Ω

F (x, tϕ1)dx+ t

∫

Ω

h(x)ϕ1dx

= t

(
∫

Ω

h(x)ϕ1dx−

∫

Ω

g(x, tϕ1)ϕ1dx

)

where g has been defined by (2.8). From the Lebesgue theorem, it follows that

lim
t→+∞

(
∫

Ω

h(x)ϕ1dx−

∫

Ω

g(x, tϕ1)ϕ1dx

)

=

∫

Ω

(h(x) − k(x))ϕ1dx, (2.13)

and the limit is negative by (1.8). Analogously, if t tends to −∞, we have the same
result with k(x) exchanged with l(x), so that the limit is positive by (1.8). In both
cases we get

lim
t→±∞

Φ(tϕ1) = −∞ (2.14)

By (2.12) and (2.14), there exists R > 0 such that

max
v∈V,||v||=R

Φ(v) < inf
w∈W

Φ(w).

Hence, Φ satisfies the hypotheses of Theorem 1.2, and there exists a critical point
of Φ, that is a solution of (1.1). ✷

Proof: [Proof of Theorem 1.4]. The result of lemma 2.2 holds true for the
Euler functional associated to problem (1.5), that is

Φλ(u) =
1

p

∫

Ω

ρ|∆u|pdx−
λ

p

∫

Ω

m(x)|u|pdx−

∫

Ω

F (x, u)dx+

∫

Ω

hudx (2.15)
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for every u ∈ X. Indeed, Let (un) be a sequence satisfying (2.3) and (2.4), suppose
that (un) is unbounded, and define vn = un/||un||, so that, up to subsequence,
(vn) converges weakly to a function v in X. Dividing (2.4) by ||un||

p−1, and then
taking 〈Φ′

λ(un), vn − v〉 = on(1), we get

lim
n→+∞

∫

Ω

ρ|∆vn|
p−2∆vn∆(vn − v)dx = 0

this fact implies (as in proof of lemma 2.2) that vn → v strongly in X. since
〈Φ′

λ(un), ψ/||un||
p−1〉 = on(1), with ψ ∈ X,

∫

Ω

ρ|∆v|p−2∆v∆ψdx = λ

∫

Ω

m|v|p−2vψdx,

so that v solve the problem ∆(ρ|∆u|p−2∆u) = λm(x)|u|p−2u with Navier boundary
condition on ∂Ω. But this equation, being λ ∈ (λ1, λ) ⊂ (λ1, λ2), has zero as
the only solution by definition of λ. Thus v = 0, a contradiction with the strong
convergence of vn to v. Hence (un) is bounded. This implies, by same argument in
proof of lemma 2.2, that (un) is strongly convergent.
On the other hand, as in the second part of the proof of Theorem 1.3, rewrite
everything with λ instead of λ1 and use the fact that λ < λ, we get the coerciveness
of Φλ on W.
Now, recalling that

∫

Ω

ρ|∆tϕ1|
pdx = λ1

∫

Ω

m(x)|tϕ1|
pdx, for every t ∈ R

thus

Φλ(tϕ1) =
λ1 − λ

p
|t|p

∫

Ω

m|ϕ1|
pdx+ t

(
∫

Ω

h(x)ϕ1dx−

∫

Ω

g(x, tϕ1)ϕ1dx

)

,

since λ > λ1 and p > 1, we have, as before

lim
t→±∞

Φλ(tϕ1) = −∞.

Using again the saddle point theorem, the desired result follows. ✷
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