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On A class of Double Difference Sequences, their Statistical
convergence in 2-normed spaces and their duals

P. Baliarsingh

ABSTRACT: In this article, we determine a new class of difference double se-
quence spaces £5°(A,), c2(Ay) and ¢§(A,) by defining a double difference A, =
(xmnl’mn - mm,n+1”m,n+1) - (xm+1,nl’m+1,n - mm+1,n+l”m+1,n+1)7 where v =
(Ymn) is a fixed double sequence of non-zero real numbers satisfying some condi-
tions and m,n € N, the set of natural numbers. Moreover, we have studied their
topological properties and certain inclusion relations. We have also discussed the
concept of the statistical convergence of these classes in 2-normed space and found
their pa—, pB8—, py—duals.
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1. Introduction

Let w? be the set of all double sequence spaces of real numbers and /o, ¢ and
co denote the set of linear spaces that are bounded, convergent and null sequences
respectively.

A double sequence & = (Z,,,,) is said to be bounded if and only if

| Z ||co= Sup |Tmn| < co.
m,n
Let £5° denote the space of all bounded double sequence spaces and it is known
that £5° is Banach space (see [18]). A double sequence x = () is called conver-
gent (with the limit L) if and only if for every e > 0, there exists a positive integer
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ng = no(e) such that |z, — L| <e ; for all m,n > ng. The limit L is called
double limit or Pringsheim limit of the double sequence x = (%, ). By ca and ¢,
we denote the space of all convergent and null double sequences.

A double sequence © = (,,,) is called Cauchy sequence if and only if for every
e > 0, there exists ng = no(e) such that |z,,, — xpe| < € for all m,n,p,q > no. In
[1] it is known that a double sequence is Cauchy if and only if it is convergent.

Throughout this paper we write sup,, ,,lim,, lim;, , and me instead of
SUP,y, > 1> WMy o0, My oyo0,00 and Z:ZO:M respectively.

The notion of difference sequence space was first introduced by Kizmaz [15] by
defining the sequence space

X(A) = {z = (23) : Az € X}, (1.1)

for X = lo, ¢ and cg, where Az = (z — Tp41).
Let v = (V) be any fixed double sequence of non zero real numbers satisfying

liminf|ymn|ﬁ =r, (0<r<oo) and vi, =v, =0 forall m,n e N\ {1}.

Now, we define a class of double difference sequence spaces as follows:

2(A,) = {ac = (Tymn) € W2 i sUP | AL | < oo},
m,n

AA,) = {ac = (Zmn) € W lim |A, Ty | = 0},
m,n

(D)) = {ac = (Tymn) € W? : lim |A, 2y — L| = 0, for some L € (C}.
m,n

where
Al/l'mun - ITmnVmn — zm,nJerm,nJrl - :Cerl,anJrl,n + zm+1,n+1ym+1,n+1-

2. Preliminaries and definitions

In this part, we give the definition of 2-normed space and investigate some rela-
tions of £5°(A,),c9(A,) and c2(A,) in 2-normed space by introducing the concept
of statistical convergence.

The idea of 2-normed spaces was first introduced by Gahler [7,8,9]. Later on
concept of double sequence spaces and 2-normed spaces have been studied and ex-
tended by many authors such as [11,12,13,14,16,17,25] etc.

Let X be a real vector space of dimension d, where 2 < d < co. A mapping on
X, defined by ||.,.]] : X x X — R which satisfies the following four conditions:

(i) ||z1, z2]| = 0 if and only if 21 and 25 are linearly dependent;
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(i) [lz1, 2ol = [lzz, 21 ];
(iil) ||owr, 22| = |||z, z2|| for any o € R and
(iv) flor + 27, zol| < [z, 22|l + [l 22|

The pair (X, ||.,.]]) is called 2-normed space. Standard examples of 2-normed space
are R? equipped with the following 2-norm

oz, yll:=lz1y2 — wayn|, where 2= (21,22),y = (y1,92),

e ||z, y|| :=the area of the triangle having vertices 0, and y (see [11]).
In this case, we have the following observations:

L |,y = 0;

2. |z,y+ az| = ||z, y| for all z,y € X and o € R;

3. ||z, y+ 2| = ||z, y|| + ||z, z|| if ,y, z are linearly independent with dimension
d=2.

The notion of statistical convergence was introduced by Fast [5] and studied by
various authors [2,4,6,19,20,21,22,23,24]. We recall some concepts connecting with
statistical convergence. Let K be a subset of N, set of natural numbers and K,, be
a set i.e.

K,={ke K :k<n},

[Kn]

then the natural density of K is given by §(K) = lim, ;o -5, provided the limit

exists, where |K,,| denotes the number of elements in K,,. Finite subsets have

natural density zero.

Definition 2.1. A sequence x = (xy) is said to be statistically convergent to a
number L, if for every e > 0

1
lim —{k <n:|zr — L| > €} =0.
non

Equivalently, the natural density of the given set i.e. 6({k < n : |xp — L| >
€}) = 0. In this case we write st — limy x, = L or z — L(S) and

S={rcw: stfliinxk = L,for some L}

Definition 2.2. A double sequence x = () in 2-normed space (X, |.,.||), is said
to be double statistically convergent to a number L, if for every e >0 and z € X

1
im — < <n: - > = 0.
lin —[{p < m,q 7 g — L2 2 €} =0
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Equivalently, the natural density of the given set i.e.
6({(p,q) e NxN: |lzpg — L, 2| = €}) = 0.
In this case we write sto — limyy, ||Zmn, 2| = | L, 2|| or Zpmn — LS(X, ., -] -

Definition 2.3. A double sequence © = () in 2-normed space ((3°(AL), ||, 1),
is said to be double A, -statistically convergent to a number L, if for every ¢ > 0
and z € {3 (A,)

. 1
}}F}l %Hp <m,q<n:[|Ayzpg — L z|| > €} = 0.

Equivalently, the natural density of the given set i.e.
d{(p,q) e NXN:||Ayzp, — L, z|| > €¢}) =0.
In this case we write sto—1limyy, || Av@mn, 2| = || L, ]| or Zppn — LS (AL), -, -]l

Definition 2.4. A double sequence x = () in 2-normed space ((3°(AL), ||, 1),
1s said to be double A, -statistically Cauchy if for every e > 0, there exist M (€), N (¢)
and z € (3 (A,) such that

S({(p,q) € NXN: [[Ay(2pg — 2mn), 2]l = €}]) = 0.

3. Main results

In this section, we discuss some inclusion relations and basic topological prop-
erties of the spaces £3°(A,),c3(A,) and ca(A,). Moreover, we determine some
interesting results of the space ¢5°(A,) by introducing the concept of double sta-
tistical convergence in 2-normed space.

Now, we state the following two theorems without proof.

Theorem 3.1. cJ(A,) C c2(A,) C UL (A,) C I and the inclusion is strict.

Theorem 3.2. The spaces (°(A,),c2(A,) and ¢3(A,) are normed linear spaces,
normed by

||1'HAV :Sup|AU:Cmn|- (31)

Theorem 3.3. The spaces (5°(A,), ca(A,) and ¢Y(A,) are complete normed linear
spaces with the norm defined by equation 5.1.
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Proof: Let (z¥,,) be a Cauchy sequence in ¢5°(A,) and ¥ = (2F ),z = (2!,,)
be two double sequences in ¢5°(A,), for all m,n,k,l € N.

Suppose
2% — 2!||a, =sup|A,(zF, —al )| =0 as k| — oco.
m,n
= |Ay 2k, —Ayal | —0 as k1 — oo and for all m,n € N.

Then for every € > 0, there exists a positive integer ng(e) such that k,1 > ng(e),
we have |A, 2k — Azl | <, for all m,n € N. Therefore, (A,zF ) is a Cauchy
sequence in R, for each fixed pair m,n € N. By the completeness of R, it converges

to Tyn in R. e,

lim Auxfnn = Ty, for each fixed pair m,n € N.
k— o0

Now, for given ¢ > 0,

lim 2% — 2!||a, = lim sup|A,zF, — A2l |

l—o0 k—00 m,n

= sup |A,,zf7m — Tn| < €
m,n

= zF 5o, in R with respect to the norm defined in (2).

Now to show that « € £3°(A,), this follows from the fact that ¢3°(A,) is a linear
space and = x — A, (%) + A, (2*). This complete the proof. Proofs of other
spaces are done by using the similar arguments. O

Theorem 3.4. (i) /5°(A,) NI = 3(AL),
(i) £5°(Ay) Nea = c3(Ay),

Proof: (i) Suppose = € [(5°(A,) N £5°], which implies sup,, ,, [Zmn| < oo and
Supmyn |Avxmn| = Supm,n |1'mnl/mn — Imn+1Vmmnt+1l — Tm+1,nVm+1,n
+xm+1,n+1um+1,n+1| < 00. Thus there exists a [ in C such that

AVZL'Z'j =1+ €ij where Eij — 0 as ’L,] — 0.

Equivalently, | 4+ ;5 = %;jVij — Ti j+1Vi j+1 — Tit1,jVit1,j + Tik1 j+1Vit1,j+1-
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Now,

m,n

> (+ey)

1,7=1,1

m,n
= Y (@il — TigeaVign — T Vit + Tkt 4 Vibt 1)
ij=1,1
m
= E (TiaVi1 — TioVio — Tik11Vit11 + Tit1,2Vide1,2 + Ti2Vio — Ti3Vi3

i=1
— XTit1,2Vi+1,2 + Ti+1,3Vi+1,3 T TinVin — Tin+1Vin+tl — TitlnVitln

+ Tit1nt1Vit1n+1)
m
= E (%‘,1%‘,1 — Zi+1,1Vi+1,1 — Tin+1Vin+l + -Ti+1,n+1l/i+1,n+1)
i=1

=21,1V1,1 — X2,1V2,1 — L1,n+1V1,n+1 + T2 nt+1V2,n+1 + T2,1V21 — £3,1V3,1
— X2 n1V2n+1 T T3 n+1V3,n+1 "+ Tm,1Vm,1 — Tm+1,1Vm+1,1
- zm,nJerm,nJrl + xm+1,n+1ym+l,n+1

=T11V1,1 — L1 n+1V1,n+1l — Tm41,1Vm+1,1 + Tmt1,n+1Vm41,n+1

m,n
1 1
= I+ — g €ij = —($1,1V1,1 — T1n+1V1n+1 — Tm+1,1Vm+1,1
mn  “ mn
7,7=1,1
+ xm—i—l,n-{-l”m—i—l,n-{-l)
m,n
1
= = —x1Vi1 + —Zm+1nt1Vmt1n41 — —— E €ij-
mn mn mmn -
7,7=1,1
Therefore, [ — 0 as m,n — oo and this complete the proof. O

Proofs of (ii) and (iii) can be done by using the similar techniques.
Theorem 3.5. Let © = (2,,,) be a double sequence and A, -statistically convergent
to L in (¢5°(AL), |-, .]]), then L is unique.
Proof: Suppose
Timn — LS (AL), I, -1 and
Tmn = L'S(5°(A), -5 11)

Assuming L # L' = L — L' # 0, there exists a non zero z € ¢3°(A,) such that
L — L’ and z are linearly independent and ¢ > 0,

6({(p,q) e NxN:[[Ayzpy — L, 2| = €}) = 0,
0({(p;a) ENXN: [[Ayapg — L', 2]| > €}) = 0.
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Now, L= L', 2 < [ Bypy — L2l + | Aytyg — L', 2]

= 0({(p, @) ENXN:IL = L', 2| 2 €}) < 6({(p, ) EN x N:[|Appg — L, z[| = €}) +
5({(p,q) EN X N:[|Ayzpy — L', 2| > €}) = 0.

Hence, L = L' which contradicts to the assumption. O

Theorem 3.6. Let (x4,,) be a double sequence and (Ymn) be a double A, -statistically

convergent sequence in (€3°(A,), |].,.]]) such that AyTmn = AvYmn for almost all

m,n, then () is a A, -statistically convergent sequence in (€5°(A,), |-, -1|)-

Proof: Suppose
Tmn € (U°(AV), ], -]]) and
Ymn — LS (AL), ||, -|I) such that Ay 2y, = Ay, for almost all m, n,

which implies 6({(p,q) € Nx N: ||Ayymn — L, z]| > €}) = 0 and
5({(m,n) € NXN: AyZymn # Ayymn}) = 0.

Now,
0({(m,n) e NXN: [|[Ayxmn — L, 2|| > €})
S 5({(m,n) S N X N : Ayxmn # Auymn}) +
d{(m,n) e NxN: ||Apymn — L, z|| > €})
= 0.
|
Theorem 3.7. Let (Xyn) and (Ymn) be two double sequences in ((3°(AL), |-, -|)

such that Ty — LSS (AL), -5 -11)s Ymn — L'SUSC(AL), -, ]]) and a € R
() @mn + ymn — (L + LS (A), |- -11);
(i) azmn = LS5 (Av), |- [])-
Proof: (i) Suppose
Fn = LSUFD, 1 1) and g — ISE B, 1)
For every non zero z € £3°(A,) and € >0 §(A1(e)) = 0 and §(Az(¢)) = 0, where

Ai(e) :={(m,n) e Nx N: ||Apzpmn — L, 2| > €/2},
Ag(€) = {(m,n) € NXN: [[Apymn — L, 2|| > €/2}.
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Now consider
Ae) :=={(m,n) e Nx N: [[A,Zmn + Apymn — (L + L"), 2|| > €}.

In order to show that d(A(e)) = 0, we need to prove that A(e) C Ai(e) U Az(e).
Assume mg,ng € A(e) such that

AL Zmn + AvYmn — (L+ L), 2| > € where mg,ng ¢ A1(e) U A (e) (3.2)
Therefore,
1AL Zmgne — L, 2| < €/2 and  [|AvYmon, — L', 2| < €/2.
By using the definition of 2-nomed space (iv), it is clear that

AL Zmn + Avymn — (L + L), 2l < [[AvTimgng — Ly 2l + [[AvYmone — L, z||
< €/2+¢/2=c¢c

Which contradicts to the assumption (3).

(ii) Assume X, — LS(P(A,),]|.,.]|) for non zero a € R, we can write

5({(m,n) €N X N: [Apamn — L, 2| > |—6|}) = 0.
«

Now consider,

{m,n e NxN: [|[Ayazy,, — L, z|| > ¢} ={m,n e Nx N: |a|||Avymn — L, || > €}
={m,n e NxN: [|[A,azy, — L, z|| > ¢/|a|}

Since the natural density of the right hand side set is zero, hence
Og;L'mnHO[LS(EgO(AU),H,H) -

Theorem 3.8. A double sequence (Tmyn) is double A, -statistically convergent se-
quence if and only if it is double A, -statistically Cauchy in (€5°(AL), |-, -1)-

Proof: Let (2,,,) is double A, -statistically convergent to a number L, for every
e>0and z € ((°(AL), ||, .||) such that

0({(m,n) e Nx N: |[|[Apzpmn — L, z|]| > €}) = 0.
In particular, for m = M,n= N
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By using the definition of 2-normed space (iv),

O(I{(p:a) € N X N: [|Ay(2pq —zmn), 2] = €}]) = 0.

Conversely, assume (Z,,,) is double A, -statistically Cauchy in (¢5°(A,),].,.|)-
Then

0({(m,n) e NxN:|[|Apzpmn — L, z|]| > €}) = 0.
This follows from the fact that

1A (2pg —xaen), 2| = |Avapg = Ly 2| + |Avenn = L 2.

4. The dual spaces

In this section, we give the definition of pa—,pB8— and py— duals of a

nonempty subset of w?

and determine pa—,pf — and py— duals of (5°(A,),
c2(Ay),3(A,). We also discuss certain Lemmas and theorems associated to this
concept. Duals of sequence spaces were studied by Et [3], Gékhan and Colak [10]

and many others.
Lemma 4.1. Let 2 be an element in €3°(A,) , then

sup {(mn)71|xmnymn|} < Q.

m,n

Proof:
Let x €l (A))
= sup Ay x| < oo,
m,n>1
Le. |zmnymn — Tmn+1Vmn+1 — Tm+1,nVm+1,n + xm+1,n+1ym+l,n+1| < 09,

for all m,n=1,2,3...
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Now consider,

|$11V11 + xmnymn| = |-T11V11 — Z1nVin — TmiVml + xmnymn|
m—1n—1
= Z (TijVij — Tij+1Vij+1 — Tit1,jVig1,j + Tit1,j+1Vit1,5+1)
i,j=1,1
m—1n—1
D |mivig — Vi — Ter Vil + Tip e Vi
i,j=1,1

IN

< O(mn)
= (mn) " YomnVmna| < 0o, forallm,n=1,2,3...

= sup {(mn)*1|zmnymn|} < oo. This completes the proof.
m,n

Definition 4.2. (/3/) Let X be a nonempty subset of w?, and p > 1, then we
define

Xre = {(ymn) € w?: Z [T yYmn|P < 00 for every x € X } ,
m,n
xph = {(ymn) € w?: Z(mmnymn)p converges for every x € X } ,
m,n
M,N
XPr = {(ymn) cw?: sup Z (TmnYmn)P| < 00 for every xz € X } .
MN>1 |, <

We call X, XP? and XP7 are the pa—,p— and py— duals of X respectively.
For p =1, X* is called Kothe-Toeplitz dual of of X and it is clear that X* ¢ X?#
and X® C X7, but X? ¢ X7 does not hold since the sequence of partial sums of

a double convergent series need not be bounded.
Theorem 4.3. Forp > 1,
@) = [eaan)]” =[] = m
where

M} = ﬂ {1‘ = (Tmn) : Z(mn)ﬂzmnyr_nmp.Np < oo} .

NeN\{1} m,n
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pa
Proof: For first inclusion, we have to show that M2 C [ego (Ay)} .
Let x € M? and y € I°(A,).
By Lemma 4.1, there exists a positive integer N such that

sup{ (mn) " [YmnVmn|} < N < 0.

m,n

Hence,z [T mn Ymn|F < Z |Zrn |P (mn)P|v L [PLNP = Z(mn)pmmnu;Hp.N’) <00,

m,n m,n m,n

which implies x € [ﬁgo(A,,)} " Therefore, M7 C [ESO(AU)} "

pa
For the second part, let x € [ﬁgO(AV)} and x ¢ M?.
Then there exists a positive integer N > 1 such that

Z(mn)pumnu;ﬁjp.N? = 0.

m,n
Define y € (3°(A,), by
N
Ymn = M-sgnxmn; m,n=1,2,3...
an

Then we have Z | ZmnYmn |© = Z | L [P (mn)? vy, [P.NP

m,n m,n

S Pl PN =

m,n

pa pa
Thus = ¢ [ESO(AU)] , contradicts the assumption that = € [ESO(AU)] .
p&
Hence, [ﬂgo (Al,)] C M?. This completes the proof. O
Proofs of other spaces can be done by using similar techniques.
n
Theorem 4.4. For p > 1 and n € {pa,pB3,pv}, [Mf} = M2.

where

M3 = U {:c = (Zmn) : sup(mn) P |TmnVmn|PN 7P < oo} .
NeN\{1} e

Proof: We give the proof of this theorem for n = pa only and that of others follow
by the similar techniques.
For the first inclusion, let x € M2 and y € M#, which implies that

Z(mn)ﬂymnu;ﬁp.N?’ < 00.

m,n
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Now,

Z 1T mnYmn|” = Z(mn)ﬂymnugﬁl|p.Np(mn)*p|xmnumn|p.N*p
m,n

m,n

< sup {(mn>7p|xmnl/mn|pN7p} Z(mn)pwmny;ﬁlw_]\fp
m,n m,n

< 00, by the hypothesis.

b pa
Therefore, x € [Mf] and M3 C [Mf] :

P
For the second inclusion, let x € [Mf} and x ¢ M3, which implies for a positive
integer N > 1

sup {(mn)_p|zmnymn|pl\7—p} = 00.
m,n

Hence, it is clear that there exist two strictly increasing sequences (m(i)) and (n(j))
of positive integers such that

(m()1(5)) 7P |Zm(iyn () V(i) PN 7P > (i 4 5)P.

For all positive integers 4, j, we define a double sequence y = (ymn) by

(m(i)n(3))

(i+j)717‘y’"(i)"(j)‘.]\7’1, if m =m(i) and n = n(y),
y =
" 0, otherwise.

By Theorem 4.3, it is clear that y € MZ. Now,

. o — |Vm(i)n(j)|p —
2 emntimal” = 3 lmni P+ )7 N

> Z 1 =00, by the assumption.

m,n 7,7

0]
yges j e
This contradicts to the fact that x € [Mﬂ . Therefore x € M3 and [Mf} C
M2. This completes the proof. O
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