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Note on generalized topological spaces with hereditary classes
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abstract: In this paper, we extend the study of ΨH operator introduced and
studied in [5] and rectify the errors in the paper. Moreover, characterizations of
µ−codense and strongly µ−codense hereditary classes in generalized topological
spaces are also given.
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1. Introduction

Let X be a nonempty set. A family µ of subsets of X is called a generalized
topology (GT) [1] if ∅ ∈ µ and the arbitrary union of members of µ is again in µ.
The largest µ−open set contained in a subset A of X is denoted by iµ(A) [1] and
is called the µ− interior of A. The smallest µ−closed set containing A is called the
µ − closure of A and is denoted by cµ(A) [1]. Throughout the paper, by a space
we always mean a generalized space (X,µ). σ(µ) = {A ⊂ X | A ⊂ cµiµ(A)} is the
family of all µ− semiopen sets [2]. A subset A of X is said to be σ(µ)− closed if
its complement is µ−semiopen. A GT µ is said to be a quasi− topology [4] on X
if M, N ∈ µ implies M ∩N ∈ µ.

A hereditary class H of X is a nonempty collection of subset of X such that
A ⊂ B, B ∈ H implies A ∈ H [3]. A hereditary class H of X is an ideal [6] if
A∪B ∈ H whenever A ∈ H and B ∈ H. With respect to the generalized topology
µ of all µ−open sets and a hereditary class H, for each subset A of X, a subset
A⋆(H) or simply A⋆ of X is defined by A⋆ = {x ∈ X | M ∩ A 6∈ H for every
M ∈ µ containing x} [3]. H is said to be µ− codense if µ∩H = {∅} [3] and is said
to be strongly µ − codense [3] if M , N ∈ µ and M ∩ N ∈ H, then M ∩ N = ∅.
Every strongly µ−codense hereditary class is µ−codense but the converse is not
true [3]. A subset A of X is said to be µ−rare [3] (resp. µr−open) if iµcµ(A) = ∅
(resp. A = iµcµ(A)). If Hr is the collection of all µ−rare sets in (X,µ), then
Hr is a hereditary class and for this hereditary class, A⋆ ⊂ cµiµcµ(A) for every
subset A of X [3, Proposition 2.11]. If c⋆(A) = A ∪ A⋆ for every subset A of
X, with respect to µ and a hereditary class H of subsets of X, then c⋆ ∈ Γ and
µ⋆ = {A ⊂ X | c⋆(X − A) = X − A} is a generalized topology finer than µ [3].
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The following lemmas will be useful in the sequel and we use some of the results
without mentioning it, when the context is clear.

Lemma 1.1. [3] Let (X,µ) be a space with a hereditary class H. If A and B are
any two subsets of X, then the following hold.
(a) If A ∈ H, then A⋆ = X −Mµ where Mµ =

⋃
{M | M ∈ µ}.

(b) If A ⊂ A⋆, then cµ(A) = A⋆ = c⋆(A) = c⋆(A⋆).
(c) H is µ−codense if and only if X = X⋆.
(d) A⋆ is µ−closed for every subset A of X.
(e) If F is µ−closed, then F ⋆ ⊂ F.

Lemma 1.2. [7, Theorem 2.4] If (X,µ) is a quasi-topological space and H is a
hereditary class of subsets of X, then the following statements are equivalent.
(a) H is µ−codense.
(b) H is strongly µ−codense.

Lemma 1.3. [7, Theorem 2.5] If (X,µ) is a space and H is a hereditary class of
subsets of X, then the following statements are equivalent.
(a) H is strongly µ−codense.
(b) M ⊂ M⋆ for every M ∈ µ.
(c) S ⊂ S⋆ for every S ∈ σ(µ).
(d) cµ(M) = M⋆ for every M ∈ µ.
(e) cµ(S) = S⋆ for every S ∈ σ(µ).

2. Operator ΨH

If H is a hereditary class on a space (X,µ), an operator ΨH : ℘(X) → ℘(X)
is defined as follows: for every A ∈ ℘(X), ΨH(A) = {x ∈ X | there exists a
M ∈ µ such that x ∈ M and M − A ∈ H}. The following Theorem 2.1 gives a
characterization of the function ΨH which is γ⋆

µ
in [5]. Throughout the paper, we

use the notation ΨH.

Theorem 2.1. Let (X,µ) be a space with a hereditary class H. Then ΨH(A) =
X − (X −A)⋆.

Proof: Suppose x ∈ X − (X − A)⋆. Then x /∈ (X − A)⋆ and so there exists
M ∈ µ containing x such that M ∩ (X −A) ∈ H which implies that M −A ∈ H.
Therefore, X−(X−A)⋆ ⊂ {x ∈ X | there exists M ∈ µ(x) such that M−A ∈ H}.
Conversely, assume that y ∈ ΨH(A). Then there exists M ∈ µ containing x such
that M − A ∈ H. Since M − A ∈ H,M ∩ (X − A) ∈ H which implies that
y /∈ (X −A)⋆. Therefore, y ∈ X − (X −A)⋆. Thus, ΨH(A) = X − (X −A)⋆. ✷

The following Theorem 2.3 gives the properties of the operator ΨH, where (a)
confirms that the range of ΨH is a subfamily of µ and (e) is a generalization of
Theorem 3.3 of [5]. In Example 3.5 of [5], it is established that the other direction
of Theorem 2.3(f) is not true, but H stated in the above example is not a hereditary
class and µ is not even a generalized topology. The following Example 2.2 shows
that the inequality will not be an equality in Theorem 2.3(f).
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Example 2.2. Consider the generalized topological space (X,µ) with a heredi-
tary class H where X = {a, b, c, d}, µ = {∅, {a}, {a, b}, {b, c}, {a, b, c}, X} and
H = {∅, {b}, {c}}. If A = {a, d}, then ΨH(A) = X − {b, c}⋆ = X − {c, d} = {a, b}
and ΨH(ΨH(A)) = ΨH({a, b}) = X − {c, d}⋆ = X − {d} = {a, b, c} and so
ΨH(ΨH(A)) 6= ΨH(A).

Theorem 2.3. Let (X,µ) be a space with a hereditary class H and A, B ⊂ X.
Then the following hold.
(a) ΨH(A) is µ−open [5, Theorem 3.1(ii)].
(b) A⋆ = X −ΨH(X −A) [5, Theorem 3.1(iii)].
(c) If A ⊂ B, then ΨH(A) ⊂ ΨH(B) [5, Theorem 3.1(i)].
(d) ΨH(A ∩B) ⊂ ΨH(A) ∩ΨH(B).
(e) If U ∈ µ⋆, then U ⊂ ΨH(U).
(f) ΨH(A) ⊂ ΨH(ΨH(A)) [5, Theorem 3.4(i)].
(g) ΨH(A) = ΨH(ΨH(A)) if and only if (X −A)⋆ = ((X −A)⋆)⋆.
(h) A ∩ΨH(A) = i⋆µ(A).
(i) If H ∈ H, then (A ∪H)⋆ = A⋆ and hence ΨH(A−H) = ΨH(A).
(j) ΨH(∅) = Mµ −X⋆.

Proof: (d) The proof follows from (c).
(e) If U ∈ µ⋆, then X − U is µ⋆−closed. Therefore, (X − U)⋆ ⊂ X − U which
implies that X − (X − U) ⊂ X − (X − U)⋆ and so U ⊂ ΨH(U).
(g) Suppose that (X −A)⋆ = ((X −A)⋆)⋆. Then ΨH(A) = X − (X −A)⋆ implies
that ΨH(ΨH(A)) = X − (X − ΨH(A))⋆ = X − (X − (X − (X − A)⋆))⋆ = X −
((X−A)⋆)⋆ = X− (X−A)⋆ = ΨH(A). Hence ΨH(A) = ΨH(ΨH(A)). Conversely,
ΨH(A) = ΨH(ΨH(A)) implies that X − (X − A)⋆ = X − (X − ΨH(A))⋆ = X −
(X − (X − (X −A)⋆))⋆ = X − ((X −A)⋆)⋆. Therefore, (X −A)⋆ = ((X −A)⋆)⋆.
(h) Let x ∈ A∩ΨH(A). Then x ∈ A and x ∈ ΨH(A). Since x ∈ ΨH(A), there exists
Mx ∈ µ containing x such that Mx −A ∈ H. Therefore, x ∈ Mx − (Mx −A) ⊂ A.
Since β is a basis for µ⋆ and Mx − (Mx − A) ∈ β, x ∈ i⋆

µ
(A), where i⋆

µ
is the

interior operator in (X,µ⋆). Conversely, assume that x ∈ i⋆
µ
(A). Then there exists

a µ−open set Mx containing x and H ∈ H such that x ∈ Mx − H ⊂ A. Now
Mx −H ⊂ A implies that Mx − A ⊂ H which in turn implies that Mx − A ∈ H

and so x ∈ ΨH(A). Therefore, x ∈ A ∩ΨH(A). Hence A ∩ΨH(A) = i⋆
µ
(A).

(i) Suppose that H ∈ H. Then by Lemma 1.1(a), (A ∪ H)⋆ = A⋆ ∪ H⋆ = A⋆ ∪
(X − Mµ) = A⋆, since X − Mµ is the smallest µ−closed set contained in every
µ−closed set. Again, ΨH(A−H) = X − (X − (A−H))⋆ = X − ((X −A)∪H)⋆ =
X − (X −A)⋆ = ΨH(A).
(j) By Theorem 2.1, ΨH(∅) = X −X⋆ = (Mµ ∪ (X −Mµ))−X⋆ = (Mµ −X⋆) ∪
((X−Mµ)−X⋆) = Mµ−X⋆, since X⋆ is µ−closed by Lemma 1.1(d) and X−Mµ

is the smallest µ−closed set contained in every µ−closed set. ✷

Theorem 2.4 shows that ΨH preserves finite intersection under some additional
conditions. The proof also follows from Theorem 3.4 of [8] using the fact that
(A ∪B)⋆ = A⋆ ∪B⋆.
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Theorem 2.4. Let (X,µ) be a quasi-topological space and H be an ideal on X. If
A, B ⊂ X, then ΨH(A ∩B) = ΨH(A) ∩ΨH(B).

Proof: Let x ∈ ΨH(A)∩ΨH(B). Then there exist µ−open sets U and V containing
x such that U − A ∈ H and V − B ∈ H. If G = U ∩ V, then G is a µ−open
set containing x such that G − A ∈ H and G − B ∈ H. Now G − (A ∩ B) =
(G−A)∪(G−B) ∈ H and so x ∈ ΨH(A∩B). Hence ΨH(A∩B) = ΨH(A)∩ΨH(B).✷

Example 2.5 below shows that the conditions quasi-topology on X and ideal on
H cannot be dropped in Theorem 2.4.

Example 2.5. (a) Consider the space (X,µ) where X = {a, b, c}, µ = {∅, {a, b},
{a, c}, X} and H = {∅, {a}}. Clearly, µ is not a quasi-topology on X. If A =
{b} and B = {a, c}, then ΨH(A) = {a, b} and ΨH(B) = {a, c} which implies
ΨH(A) ∩ΨH(B) = {a}. But ΨH(A ∩B) = ΨH(∅) = ∅ 6= ΨH(A) ∩ΨH(B).
(b) Consider the space (X,µ) with a hereditary class H where X = {a, b, c, d},
µ = {∅, {a}, {d}, {a, c}, {a, d}, {a, c, d}, X} and H = {∅, {a}, {c}}. Here H is not
an ideal. If A = {b, c, d} and B = {a, b}, then ΨH(A) = X and ΨH(B) = {a, c}
and so ΨH(A) ∩ΨH(B) = {a, c}. Also, ΨH(A ∩B) = {a} 6= ΨH(A) ∩ΨH(B).

Theorem 2.6. [8, Theorem 3.3] Let (X,µ) be a space with a hereditary class H.
If σ = {A ⊂ X | A ⊂ ΨH(A)}, then σ is a generalized topology on X and σ = µ⋆.

Proof: Let A ∈ σ. Then A ⊂ ΨH(A) = X−(X−A)⋆ which implies that (X−A)⋆ ⊂
X − A. Therefore, X − A is µ⋆−closed and so A is µ⋆−open. Therefore, σ ⊂ µ⋆.
Conversely, A ∈ µ⋆ and x ∈ A. Then there exists M ∈ µ and H ∈ H such that
x ∈ M −H ⊂ A. Now M −H ⊂ A implies that M −A ⊂ H which in turn implies
that M −A ∈ H and so x ∈ ΨH(A). Therefore, µ⋆ ⊂ σ. Hence σ = µ⋆. Since µ⋆ is
a generalized topology [3], it follows that σ is a generalized topology. ✷

Corollary 2.7. Let (X,µ) be a space with a hereditary class H. Then the following
hold.
(a) Mµ = Mµ⋆ [8, Corollary 3.1].
(b) If B ⊂ X −Mµ, then i⋆

µ
(B) = ∅.

Theorem 2.8. Let ( X, µ) be a space with a hereditary class H and A ⊂ X. Then
the following properties hold.
(a) ΨH(A) =

⋃
{U ∈ µ | U −A ∈ H} [5, Theorem 3.2].

(b) ΨH(A) =
⋃
{U ∈ µ | (U −A) ∪ (A− U) ∈ H}, if A is µ−open.

Proof: (a) follows immediately from the definition of ΨH.
(b) Denote

⋃
{U ∈ µ | (U − A) ∪ (A − U) ∈ H} by A. Since H is hereditary,

ΨH(A) ⊃ A for every A ⊂ X. Assume A ∈ µ and x ∈ ΨH(A). Then there exists
M ∈ µ such that x ∈ M and M − A ∈ H. If U = M ∪ A, then U ∈ µ and x ∈ U.
Now (U −A) ∪ (A− U) = (M −A) ∪ ∅ = M − A implies (U −A) ∪ (A− U) ∈ H

and so x ∈ A. Therefore, ΨH(A) ⊂ A. Hence ΨH(A) = A. ✷
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The following Theorem 2.9 characterizes µ−codense hereditary classes in quasi-
topological spaces.

Theorem 2.9. Let (X,µ) be a quasi-topological space with a hereditary class H.
Then the following conditions are equivalent.
(a) H is µ−codense.
(b) ΨH(∅) = ∅.
(c) If A ⊂ X is µ−closed, then ΨH(A)−A = ∅.
(d) If A ⊂ X, then iµcµ(A) = ΨH(iµcµ(A)).
(e) If A is µr−open, then A =ΨH(A).
(f) If U ∈ µ, then ΨH(U) ⊂ iµcµ(U) ⊂ U⋆.

Proof: (a)⇒(b). ΨH(∅) = ∪{U ∈ µ | U − ∅ = U ∈ H} = ∅, since µ ∩H = {∅}.
(b)⇒(c). Suppose A ⊂ X is µ−closed. If x ∈ ΨH(A) − A, then there exists a
Ux ∈ µ containing x such that Ux −A ∈ H. But Ux−A ∈ µ implies that Ux −A ∈
{U | U ∈ H} and so ΨH(∅) 6= ∅, a contradiction. Therefore, ΨH(A)−A = ∅.
(c)⇒(d). Since iµcµ(A) ∈ µ for every subset A of X, by Theorem 2.3(e), iµcµ(A) ⊂
ΨH(iµcµ(A)). By (c), ΨH(cµ(A)) ⊂ cµ(A) and so ΨH(cµ(A)) = iµ(ΨH(cµ(A))) ⊂
iµcµ(A). By Theorem 2.3(b), ΨH(iµcµ(A)) ⊂ ΨH(cµ(A)) ⊂ iµcµ(A) and so
ΨH(iµcµ(A)) = iµcµ(A).
(d)⇒(e). Let A be a µr−open subset of X. Then A = iµcµ(A) and so ΨH(A) =
ΨH(iµcµ(A)) = iµcµ(A) = A.
(e)⇒(a). Since ∅ is µr−open, ∅ = ΨH(∅) = ∪{U ∈ µ | U ∈ H}, by Theorem 2.8(a).
Hence µ ∩H = {∅}.
(c)⇒(f). If U ∈ µ, then X − U is µ−closed and so ΨH(X − U) = X − U which
implies that X − (X − (X − U))⋆ = X − U so that X − U⋆ = X − U. Hence
U⋆ = U. Also, cµ(U) is µ−closed implies that ΨH(cµ(U))−cµ(U) = ∅ which implies
that ΨH(cµ(U)) ⊂ cµ(U). Therefore, ΨH(U) = iµ(ΨH(U)) ⊂ iµ(ΨH(cµ(U))) ⊂
iµcµ(U) ⊂ cµ(U) = U⋆, by Lemma 1.1(b). Hence ΨH(U) ⊂ iµcµ(U) ⊂ U⋆.
(f)⇒(a). Suppose U ∈ µ. Then U ⊂ ΨH(U) ⊂ iµcµ(U) ⊂ U⋆ which implies that
H is strongly µ−codense, by Lemma 1.3 and so H is µ−codense. ✷

The following Example 2.10 shows that the condition quasi-topology on µ cannot
be dropped in Theorem 2.9.

Example 2.10. Consider the space (X,µ) with hereditary class H as in Example
2.2. Clearly, µ is not a quasi-topology on X and H is µ−codense. If A = {a, d},
then A is µ−closed and ΨH(A)−A = {a, b} − {a, d} = {b} 6= ∅.

A hereditary class H is said to be ⋆ − strongly µ − codense [5] if for M, N ∈
µ, (M ∩N)∩A ∈ H and (M ∩N)−A ∈ H, then M ∩N = ∅. Nothing is mentioned
about the set A. In the proof of Lemma 3.9(i) of [5], A = X, in the proof of Lemma
3.9(ii) of [5], A = ∅ and in Example 3.10 of [5], A is a nonempty proper subset
of X. Hence the set A in the definition of ⋆−strongly µ−codense hereditary class
is any subset A of X. Also, in [5], it is proved that every ⋆−strongly µ−codense
hereditary class is strongly µ−codense but the converse is not true [5, Example
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3.10]. However, the converse holds if H is an ideal as shown by Theorem 2.12 below.
Corollary 2.14 follows from Theorem 2.12 and Theorem 3.12 of [5]. If µ = {∅},
the trivial generalized topology, in a space (X,µ), then every hereditary class H is
a ⋆−strongly µ − codense hereditary class. In this context, we have the following
Theorem 2.11.

Theorem 2.11. Let (X,µ) be a space where µ = {∅}. Then the following hold.
(a) Every hereditary class is a ⋆−strongly µ− codense hereditary class.
(b) A⋆ = X for every subset A of X.
(c) ΨH(A) = ∅ for every subset A of X.

Remark 2.1. If µ = {∅}, Theorem 2.11 shows that every hereditary class
is ⋆−strongly µ−codense and ΨH(A) = ∅ and so the results established in
Corollary 3.11, Theorem 3.12, Corollary 3.13, Theorem 3.14, Corollary 3.15,
Theorem 3.17 and Theorem 3.18 of [5] are vacuously true.

Theorem 2.12. Let (X,µ) be a space with an ideal H. If H is strongly µ−codense,
then H is ⋆−strongly µ−codense.

Proof: Let M,N ∈ µ and A ⊂ X with (M ∩N)−A ∈ H and (M ∩N) ∩ A ∈ H.
Now M ∩N = ((M ∩N)−A) ∪ ((M ∩N) ∩A) ∈ H, since H is an ideal. Since H

is strongly µ−codense, M ∩N = ∅. Hence H is ⋆−strongly µ−codense. ✷

Corollary 2.13. Let (X,µ) be a quasi-topological space with an ideal H. If H is
µ−codense, then H is ⋆−strongly µ−codense.

Corollary 2.14. Let (X,µ) be a space with an ideal H. If H is strongly µ−codense,
then ΨH(A) ⊂ A⋆ for every subset A of X.

Proof: Follows from Theorem 2.12 and Theorem 3.12 of [5]. ✷

Corollary 2.15. Let (X,µ) be a space with a strongly µ−codense ideal H and
A ⊂ X. If A ∈ H, then ΨH(A) = ∅.

Proof: Follows from Corollary 2.14 and Lemma 1.1(a). ✷

The following Example 2.16 shows that the above Corollary 2.14 is not true for
µ−codense ideals.

Example 2.16. Consider the space (X,µ) where X={a, b, c}, µ={∅, {a, b}, {a, c},
X} and H = {∅, {a}}. Clearly, H is a µ−codense ideal. If A = {a, c}, then
A⋆ = {c} and ΨH(A) = {a, c} which implies that ΨH(A) * A⋆.

In [5], before Lemma 3.9, it is stated that in a space (X,µ), every ideal H is
⋆−strongly µ−codense. But this statement is not true, even if H is a µ−codense
ideal, as shown by the following Example 2.17.
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Example 2.17. Consider the space (X,µ) with hereditary class H where X =
{a, b, c}, µ = {∅, {a}, {a, c}, {b, c}, X} and H = {∅, {c}}. Clearly, H is a µ−codense
ideal. If M = {a, c} and N = {b, c}, then M ∩ N = {c}. Also, for every A ⊂
X, (M ∩ N) ∩ A ∈ H and (M ∩ N) − A ∈ H. But M ∩ N 6= ∅. Hence H is
not ⋆−strongly µ−codense. Note that an ideal need not be a strongly µ−codense
hereditary class.

In the rest of this section, we derive some properties of the ΨH−operator. The
following Theorem 2.18 gives characterizations of µ−codense hereditary classes
which is a generalization of Lemma 1.1(c).

Theorem 2.18. Let (X,µ) be a space with a hereditary class H. Then the following
are equivalent.
(a) H is µ−codense.
(b) M

⋆
µ
= X.

(c) ΨH(X −Mµ) = ∅.

Proof: (a)⇔(b). Suppose x ∈ X and x /∈ M
⋆
µ. Then there exists M ∈ µ such

that x ∈ M and M ∩ Mµ ∈ H which implies that M ∈ H and so M = ∅,
since H is µ−codense. Therefore, x ∈ M

⋆
µ
. Hence M

⋆
µ
= X. Conversely, suppose

M ∈ µ ∩H. If M 6= ∅, then there exists x ∈ M and so x ∈ M
⋆
µ which implies that

M ∩Mµ = M 6∈ H, a contradiction. Therefore, µ ∩H = {∅}.
(b)⇔(c). ΨH(X −Mµ) = X − (X − (X −Mµ))

⋆ = X −M
⋆
µ. So (b) and (c) are

equivalent. ✷

The following Example 2.19 shows that the converse of Theorem 2.9(e) is not
true and Theorem 2.20 gives a partial converse.

Example 2.19. Consider the space (X,µ) where X = {a, b, c}, µ = {∅, {a}, {a, b},
{a, c}, X} and H={∅, {b}}. Clearly, H is a µ−codense ideal. Here Hr={∅,{b},{c},
{b, c}} so that H ⊂ Hr. If A = {a, b}, then ΨH(A) = X −{c}⋆ = X −{c} = {a, b}
and so ΨH(A) = A. But iµcµ(A) = iµ(X) = X 6= {a, b} and so A is not µr−open.

Theorem 2.20. Let (X,µ) be a quasi-topological space with a hereditary class H

and A ⊂ X. If Hr ⊂ H, then A = ΨH(A) implies that A is µr−open.

Proof: Suppose that A = ΨH(A). Then A is µ−open and so A = iµ(A) ⊂ iµcµ(A).
Let x ∈ iµcµ(A). Then there exists G ∈ µ containing x such that G ⊂ cµ(A) which
implies that G − A ⊂ cµ(A) − A. Now iµcµ(cµ(A) − A) ⊂ iµ(cµ(A) − iµ(A)) =
iµ(cµ(A) − A) = iµcµ(A) − cµ(A) = ∅ and so cµ(A) − A ∈ Hr which implies that
cµ(A) − A ∈ H, since Hr ⊂ H. Therefore, G − A ∈ H so that x ∈ ΨH(A). Hence
iµcµ(A) ⊂ ΨH(A) = A. Thus, A is µr−open. ✷

Corollary 2.21. Let (X,µ) be a quasi-topological space with a µ−codense heredi-
tary class H such that Hr ⊂ H. Then for every A ⊂ X, A = ΨH(A) if and only if
A is µr−open.
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Proof: Follows from Theorem 2.9(e) and Theorem 2.20. ✷

The following Theorem 2.22 gives characterizations of µ−codense hereditary
classes in terms of the generalized topology of semiopen sets σ(µ) of the generalized
topology µ.

Theorem 2.22. Let (X,µ) be a space with a hereditary class H. Then the following
are equivalent.
(a) H is strongly µ−codense.
(b) If A is σ(µ)−closed, then ΨH(A) ⊂ A.
(c) ΨH(cµ(A)) = iµcµ(A) for every A ⊂ X.
(d) ΨH(A) = iµ(A) for every µ−closed set A.
(e) ΨH(cσ(A)) ⊂ iσcσ(A) for every subset A of X.
(f) ΨH(A) ⊂ iσ(A) for every σ(µ)−closed set A.

Proof: (a)⇒(b). Suppose A is σ(µ)−closed. By Lemma 1.3(c), X−A ⊂ (X−A)⋆.
Therefore, X − (X −A)⋆ ⊂ A which implies that ΨH(A) ⊂ A.
(b)⇒(a). If A ∈ σ, then X−A is σ−closed. Therefore, by (b), ΨH(X−A) ⊂ X−A
and so A ⊂ A⋆. By Lemma 1.3(c), H is strongly µ−codense.
(a)⇒(c). If A ⊂ X, ΨH(cµ(A)) = X − (X − cµ(A))

⋆ = X − cµ(X − cµ(A)), by
Lemma 1.3(e) and so ΨH(cµ(A)) = iµcµ(A).
The equivalence of (c) and (d) is clear.
(c)⇒(b). If A is σ(µ)−closed, by (c), ΨH(cµ(A)) = iµcµ(A) ⊂ A. Since ΨH is
monotonic, it follows that ΨH(A) ⊂ A which proves (b).
Clearly, (e) and (f) are equivalent.
(b)⇒(f) follows from the fact that ΨH(A) ∈ µ and (e)⇒(b) is clear. ✷
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