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Foliation by G-orbits ∗

José Rosales-Ortega

abstract: We study the properties of the normal bundle defined by the bundle
of the G-orbits of the action of a semisimple Lie group G on a pseudo-Riemannian
manifold M , as a consequence we obtain that the foliation induced by the normal
bundle is integrable and totally geodesic.
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1. Introduction

It is known that locally free G-actions preserving pseudo-Riemannian metrics
induce bi-invariant metrics on the orbits which define bi-invariant forms when lifted
to the Lie group G, ( [9]). Therefore to study the geometry of the orbits for actions
on pseudo-Riemannian manifolds it is important to understand the properties of
bi-invariant metrics on Lie groups.

In a previous paper ( [8]) we inquired about the relationship of the pseudo-
riemannian invariants of G and M , where G is a semisimple Lie group and M

is a pseudo-Riemananian manifold. We restricted our attention to the signature,
which we denoted with (m1,m2) and (n1, n2) for M and G, respectively. We
obtained an estimate between the signatures of M and G, in the case G = G1 · · ·Gl

and each Gi a connected simple Lie group. If we denote ni
0 = min (ni

1, n
i
2) and

m0 = min (m1,m2), then n1
0 + · · ·+ nl

0 ≤ m0.
If we assume that n1

0+ · · ·+nl
0 = m0 and the G-action is topologically transitive

on M , then the G-orbits are nondegenerate with respect to the metric on M . This
is the key to consider a normal foliation on M .

We consider the transverse or normal bundle T∆⊥ to the orbits and we obtain
certain properties of this bundle by using Gromov’s machinery on G-actions( [2],
[7]).
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2. G-orbits

Let G be a Lie group and let F be a symmetric bilinear form on g. For g ∈ G

and X,Y ∈ g , we define

(Ad(g)F )(X,Y ) = F (Ad(g−1)X,Ad(g−1)Y ).

We say that F is Ad(g)-invariant, if Ad(g)F = F . Let Symm2(g) be the space
of symmetric bilinear forms on g. Now we define a map φ : M → Symm2(g) by
φ(m)(X,Y ) = 〈X∗

m, Y ∗
m〉m for X,Y ∈ g, where 〈· | ·〉 is the pseudo Riemannian

metric on M . For X ∈ g, we denote with X∗ the vector field on the manifold M

whose one-parameter group of diffeomorphisms is given by (exp (tX))t through the
action on M . The map φ is smooth, and equivariant with respect to the adjoint
action of G on Symm2(g).

Lemma 2.1. Let G be a connected Lie group with Lie algebra g and M a connected

pseudo-Riemannian manifold acted upon smoothly and isometrically by G. Then

φ(g ·m) = g · φ(m), for each m ∈ M .

Proof: Let 〈· | ·〉 be the pseudo Riemannian metric on M . For X,Y ∈ g, and
g ∈ G we have:

φ(g ·m)(X,Y ) =〈X∗
gm,Y ∗

g m〉gm

=〈dg−1
gm(X∗

gm), dg−1
gm(Y ∗

gm)〉m

=〈Ad(g−1)(X)∗m,Ad(g−1)(Y )∗m〉m

=φ(m)(Ad(g−1)(X),Ad(g−1)(Y ))

=(Ad(g)φ(m))(X,Y )

=(g · φ(m))(X,Y ),

at every m ∈ M . ✷

The following lemma, taken from [5], will be usefull in the next theorem.

Lemma 2.2. Let F : g × g → R be a symmetric bilinear form that is Ad(G)-
invariant, then F ([W,X ], X) = 0 for W,X ∈ g. The converse holds if G is con-

nected.

Let Symm2(g)Ad(G) be the space of Ad(G)-invariant symmetric bilinear forms
on g. We want to impose conditions on G and M under which the image of the
map φ lies in Symm2(g)Ad(G).

The following result is due to Zimmer (see [12]) but we present a extended
version. Also this result appears in [9] but our proof is totally diferent.

Theorem 2.1. Let M be a pseudo-Riemannian manifold with a finite volume, and

let G be a connected semisimple Lie group without compact factors acting smoothly

by isometries on M . If any normal subgroup acts nontrivially on M and G has

finite center, then the map φ is Ad(G)-invariant.
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Proof: By Corollary 3.2.4 from [7] there is a dense subset S of M such that for
every m ∈ S, there is an open neighborhood Um of m, and a Lie subalgebra Lm,
of smooth vector fields on Um, such that Lm is isomorphic, as Lie algebra, with g.
This isomorphism, ρm, for each m ∈ S, satisfies the following condition:

(ad(ρm(X))Y )∗ = [X,Y ∗],

for each Y ∈ g, and X ∈ Lm.
For all X,W ∈ g, we have:

φ(m)(ad(W )X,X) = 〈(ad(W )X)∗m, X∗
m〉m

= 〈(ad(W ∗)X∗)m, X∗
m〉m

= −〈X∗
m, (ad(W )X)∗m〉m

= −φ(m)(ad(W )X,X).

The result follows from lemma 2.2 for each m ∈ S. By the density of S in M , we
conclude that φ(m) ∈ Symm2(g)Ad(G) for each m ∈ M . ✷

Note that φ(m) may be degenerate. If we impose the extra condition that the
G-action on M has a dense orbit, then φ(m) is always non degenerate. This gives
us a bi-invariant pseudo-Riemannian metric on G that does not depend on the
G-orbit. Our method employs results contained in the beautiful book of Zimmer
(see [10]).

Corollary 2.1. Let M be a pseudo-Riemannian manifold with a finite volume, and

let G be a connected semisimple Lie group without compact factors acting smoothly

by isometries on M . If any normal subgroup acts nontrivially on M , G has finite

center, and there is a dense orbit, then φ(m) = φ(n), for all n,m ∈ M .

Proof: Suposse that φ is constant on G-orbits, i.e, φ(g ·m) = φ(m) for all g ∈ G

and m ∈ M . Note that φ is a continuous function and M is connected, then φ is
constant on M .

We know that φ is G-equivariant and φ(M) lies in G-fixed points, then φ is
G-invariant, i.e, φ(g ·m) = φ(m) for all m ∈ M . ✷

Definition 2.1. A tangent vector v ∈ Tm(M) is spacelike if 〈v|v〉 > 0, or v = 0.
If 〈v|v〉 < 0 we say that v is timelike. The signature of the pseudo-Riemannian

metric on M depends on the index of the pseudo-Riemannian metric. This index

is the largest integer that is the dimension of a subspace on which the pseudo -

Riemannian metric is negative definite. We denote with (m1,m2) the signature for

M. It is convenient for us to denote with m0 = min{m1,m2}. This number is the

dimension of maximal lightlike tangent subspace for M .

On G we have that the signature (n1, n2) depends on the choice of the metric.
If we take the Killing-Cartan form, then any other pseudo-Riemannian metric on
G has a signature (n1, n2) or (n2, n1). This was remarked in [2].
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From now on G = G1 · · ·Gl will be a connected noncompact semisimple Lie
group with Lie algebra g = g1 ⊕ g2 ⊕ · · · ⊕ gl. We know that G admits bi-invariant
pseudoRiemannian metrics and all of them can be described in terms of the Killing-
Cartan form on each gi.

If M is a connected compact smooth manifold, and G acts smoothly, faithfully
and preserving a finite measure on M , then we are interested in comparing the num-
bers m0 and n1

0+ · · ·nl
0, where for each i = 1, . . . , l the numbers ni

0 = min (ni
1, n

i
2).

Theorem 2.2. If n1
0 + · · · + nl

0 = m0 , no factor of G acts trivially, and the G-

action is topologically transitive on M , then the G-orbits are nondegenerate with

repect to the metric on M .

Proof: By theorem 2.1, for every m ∈ M we obtain an Ad(G)-invariant form in g

from the metric restricted to Tm(Gm). Let A be the kernel of such a form. It is
clear that A is an ideal of g. In particular, the metric 〈·, ·〉 restricted to Tm(Gm) is
either zero or nondegenerate. Since G is semisimple only one of these possibilities
is true. By theorem 5 from [8], for every m ∈ M , the metric restricted to Tm(Gm)
is nondegenerate. We can conclude the G-orbits are nondegenerate with repect to
the metric on M . ✷

3. The Normal Bundle

We recall the definition of a foliation as found in ( [4]).

Definition 3.1. Let M be a smooth manifold. A codimension-k foliation F of M

is a decomposition of M into a union of disjoint connected codimension-k subman-

ifolds M = ∪L∈FL, called the leaves of the foliation, such that for each m ∈ M ,

there is a neighborhood U of M and a smooth submersion fU : U → R
k with f−1

U (x)
a leaf of FU for each x ∈ R

k.

We obtain a foliation of M by orbits from the action of G on M which we
denote with F.

If we restrict the given metric on M to each orbit of M we obtain a nondegen-
erate metric by using theorem 2. We denote with T∆ the tangent bundle to the
orbits of the G-action on M , i.e

T∆ =
⋃

m∈M

Tm(G ·m).

The following is the first property about the normal bundle T∆⊥, i.e,

T∆⊥ =
⋃

m∈M

Tm(G ·m)⊥.

Proposition 3.1. If n1
0 + · · · + nl

0 = m0 , no factor of G acts trivially, and the

G-action is topologically transitive on M , then:

1. for each m ∈ M , Tm(M) = Tm(Gm)⊕ Tm(Gm)⊥, and
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2. the normal bundle T∆⊥ is Riemannian or antiRiemannian.

Proof: The first part is obvious because the G-orbits are nondegenerate. For the
second part we use the first one. If Tm(Gm)⊥ has a nullvector, then it follows
easily that m0 ≥ n0 +1. This contradicts our hypothesis and the following lemma.

✷

Lemma 3.1. Let (V, g) be a scalar product space, i.e, V is a finite dimensional

vector space and g a nondegenerate symmetric bilinear form. Suppose that V =
V1 ⊕ · · · ⊕Vl, where each Vi is a subspace of V and g = g1 ⊕ · · · ⊕ gl, where each gi
is a scalar product in Vi, for i = 1, . . . , l. Let n0 be the dimension of the maximal

subspace of null vectors with respect to g in V , and ni
0, for i = 1, . . . , l, is defined in

a similar way for each Vi. Then the following inequality holds: n0 ≥ n1
0 + · · ·+ nl

0

Proof: The idea for this is to realize that for each i we have ni
0 = min{ni

−, n
i
+},

where ni
− is the number of −1 and ni

+ the number of +1 when g is diagonalized.
Without loss of generality we can suppose that for i = 1, . . . , k we have that
ni
0 = ni

−, and for j = k + 1, . . . , l also n
j
0 = n

j
+. It follows that

n− = n1
− + · · ·+ nl

−

≥ n1
0 + · · ·+ nl

0,

and in a similar way we have

n+ = n1
+ + · · ·+ nl

+

≥ n1
0 + · · ·+ nl

0.

From this it follows that n0 = min{n−, n+} ≥ n1
0 + · · ·+ nl

0. ✷

The following theorem is dued to Gromov, and its proof is based in a version
of the Gromov’s Centralizer Theorem, see [7].

Theorem 3.1. Suppose G is a semisimple Lie group acting topologically transitive

on M preserving its pseudo-Riemannian metric and satisfying n1
0 + · · ·nl

0 = m0.

Then T∆⊥ is integrable.

Proof: Let ω : TM → g1 ⊕ g2 ⊕ · · · ⊕ gl be the g-valued 1-form on M given by

TM = T∆⊕ T∆⊥

→ T∆
∼= M × g1 ⊕ g2 ⊕ · · · ⊕ gl

→ g1 ⊕ g2 ⊕ · · · ⊕ gl,

where the two arrows are the natural projections.
Define the curvature of ω by the 2-form Ω = dω |T∆⊥×T∆⊥ .
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It is very easy to show that T∆⊥ is integrable if and only if Ω = 0, where Ω is
the curvature form. From [3, Ch.I] we obtain

2Ω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]),

for X,Y ∈ Tx(G ·x)⊥, then ω([X,Y ]) = 0 if and only if Ω(X,Y ) = 0. We conclude
that [X,Y ] ∈ Tx(G · x)⊥ if and only if Ω(X,Y ) = 0. Using the Frobenius theorem
[3, Ch.I]) it is clear that T∆⊥ is integrable if and only if Ω = 0

We are going to use the local version of the Gromov’s Centralizer theorem (see
[7, Ch.III]) to obtain a dense subset S of M so that for every x ∈ S there is an
open neighborhood Ux and a Lie subalgebra Lx of Killing vector fields on Ux such
that:

• if Z ∈ Lx, then Zx = 0.

• Lx ≃ g, as Lie algebras.

• the local one-parameter subgroups of Lx preserve the G-orbits of x.

• Tx(G · x) ≃ g, as g-modules.

Let X be an element of Lx. If φt is the flow of X , then it is easy to see that
φt(x) = x, and dφt conmutes with ωx. For every pair of sections X1, X2 of T∆⊥

we have:

2Ω(dφtX1, dφtX2) = dφtX1(ω(dφtX2))− dφtX2(ω(dφtX1))

− ω([dφtX1, dφtX2])

= −ω([dφtX1, dφtX2])

= −dφt(ω([X1, X2]))

= dφt(X1(ω(X2)))− dφt(X2(ω(X1)))

− dφt(ω([X1, X2]))

= dφt2Ω(X1, X2),

thus showing that Ωx(dφtX1, dφtX2) = dφtΩx(X1, X2). Differentiating with re-
spect to t and using the Lie derivation it follows that Ωx is a g-module homomor-
phism, for each x ∈ S.

On the other hand, we have:

Ωx(ρ1(X)(X1, X2)) = ρ1(X)Ωx(X1, X2).

It follows that every projection Ωi
x : T∆⊥ × T∆⊥ → gi is zero for every x in S,

and then Ωx is zero, for every x in the same set. Hence, Ω = 0 on all M and T∆⊥

is integrable. ✷
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4. Main result

In [6] are introduced the fundamental tensors T and A associated to a Rieman-
nian submersion π : M → B. The properties stated for these tensor also hold for
pseudo-Riemannian manifolds. We denote by ∇ the Levi-Civita connection of M
and ∇∗ the Levi-Civita connection of B. For E,F ∈ X(M)

1. TEF := H∇VE(VF ) + V∇VE(HF ).

2. AEF := V∇HE(HF ) +H∇HE(VF ).

The main property of the fundamental tensors that we are going to use is the
following:

Lemma 4.1. Let X,Y horizontal vector fields on a pseudo Riemannian manifold

M . Then

AXY =
1

2
V[X,Y ].

Proof: Since [X,Y ] = ∇XY −∇Y X , we have

AXY −AY X = V∇XY − V∇Y X = V(∇XY −∇Y X) = V[X,Y ].

Using polarization is sufficient to show that AXX = 0 for X horizontal vector
field.

Suppose X is the horizontal lift of Z ∈ X(B). Hence

X < X,V >=< V, [X,X ] >=< X, [X,V ] >= 0,

for any vertical V , and then by Koszul’s formulae

2 < ∇V X,X >= V < X,X >,

but V < X,X >= V (< Z,Z,> ◦ π) = 0 < Z,Z,> ◦ π = 0, hence < ∇V X,X >=
0.

The field [V,X ] = ∇V X − ∇XV is vertical because of dφm[V,X ]m = 0, and
then

< ∇V X,X >= < [V,X ] +∇XV,X >

= < ∇XV,X >

=X < V,X > − < V,∇XX >

=− < V,∇XX >

=− < V,V∇XX >

=− < V,AXX >

=0.

Since AXX is vertical, then AXX = 0, and the result follows. ✷

The following definiton is taken from [4].
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Definition 4.1. The metric 〈·|·〉 is said to be bundle-like for the foliation F it is

has the following property: for any open set U of M and for all vectors fields Y, Z

on U that are foliated and perpendicular to the leaves, the function 〈Y |Z〉 is basic

on U .

We note that the results in [4] are stated for Riemannnian metric only, but
those we use here extended to pseudo-Riemannian metrics without change.

Theorem 4.1. Suppose G is a semisimple Lie group acting topologically transitive

on preserving its pseudo-Riemannian metric and satisfying n1
0 + · · · + nl

0 = m0.

Then the foliation induced by T∆⊥ is totally geodesic.

Proof:

By theorem 3.1 the normal bundle T∆⊥ is integrable. By Frobenius’s theorem
there exist a induced foliation F⊥.

We will prove that its leaves are totally geodesic submanifolds of M .

With h we will denote the metric on M preserved by G. If X ∈ g, we define
X∗ the infinitesimal generator as the vector field on M induced by X ,(see [1]). We
consider Y, Z horizontal vector fields or local sections of T∆⊥ that preserve the
foliation, then [X∗, Y ] and [X∗, Z] are vertical vector fields or local sections of T∆.
Hence, h([X∗, Y ], Z) = h(Y, [X∗, Z]) = 0.

Now note that the function h(Y, Z) is constant along the G-orbits because
X∗(h(Y, Z)) = 0. We conclude that the metric h is bundle-like metric for the
foliation F.

By results in [4] we obtain a transverse metric to the foliation F⊥ from h. From
[ [4], Prop.2.1] we can get at every point of M a pseudo-riemannian submersion
π : U → B, where U is a open set in M , such that the fibers of π define the
foliation F⊥.

We will use Lemma 4.1 in order to conclude the proof. Let A the associated
fundamental tensor as define above. The second fundamental tensor for the leaves
of the foliation F⊥ is given by AXY , for X,Y tangent vector fields to F. Using
Lemma 4.1 we obtain that AXY take values in T∆.

By Theorem 3.1 we know that T∆⊥ is integrable and hence A vanishes on
vertical vector fields to F⊥, and therefore the leaves of the foliation F⊥ are totally
geodesic. ✷

We obtain the following corollary.

Corollary 4.1. If M is complete, then the leaves of the foliation F⊥ are complete.
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