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Approximation for Inextensible Flows of Curves in E
3

Talat Körpinar and Essin Turhan

abstract: In this paper, we construct a new method for inextensible flows of
curves in E3. Using the Frenet frame of the given curve, we present partial dif-
ferential equations. We give some characterizations for curvatures of a curve in
E3.
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1. Introduction

Flows has received considerable recent attention because of its relatively simple
geometry and its relevance to a large variety of engineering applications [20]. It
enables direct insight into fundamental turbulence physics, as well as direct ver-
ification by local (such as profiles of mean velocity, Reynolds stress, fluctuation
intensities, etc.) and integral measurements (such as skin friction and heat trans-
fer). The fundamental challenge is to predict the mean flow properties, including
the mean velocity profile (MVP), the Reynolds stress, the kinetic energy, etc; how-
ever, a deductive theory of this kind is still missing, [17].

In the past two decades, for the need to explain certain physical phenomena
and to solve practical problems, geometers and geometric analysis have begun to
deal with curves and surfaces which are subject to various forces and which flow
or evolve with time in response to those forces so that the metrics are changing.
Now, various geometric flows have become one of the central topics in geometric
analysis. Many authors have studied geometric flow problems, [12].

This study is organised as follows: Firstly, we study inextensible flows of
curves in Euclidean 3-space. Secondly, using the Frenet frame of the given curve,
we present partial differential equations. Finally, we give some characterizations
for curvatures of a curve in Euclidean 3-space.
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2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the
theory of curves in the space E

3 are briefly presented; a more complete elementary
treatment can be found in [8].

The Euclidean 3-space E
3 provided with the standard flat metric given by

〈, 〉 = dx2

1
+ dx2

2
+ dx2

3
,

where (x1, x2, x3) is a rectangular coordinate system of E3. Recall that, the norm
of an arbitrary vector a ∈ E

3 is given by

‖a‖ =
√

〈a, a〉.

α is called a unit speed curve if velocity vector v of α satisfies ‖v‖ = 1. Let
α = α(s) be a regular curve in E

3. If the tangent vector of this curve forms a
constant angle with a fixed constant vector U , then this curve is called a general
helix or an inclined curve. The sphere of radius r > 0 and with center in the origin
in the space E

3 is defined by

S
2 =

{

p = (p1, p2, p3) ∈ E
3 : 〈p, p〉 = r2

}

.

Denote by {T,N,B} the moving Frenet-Serret frame along the curve α in the
space E

3. For an arbitrary curve α with first and second curvature, κ and τ in
the space E

3, the following Frenet-Serret formulae are given in [8] written under
matrix form





T
′

N
′

B
′



 =





0 κ 0
−κ 0 τ

0 −τ 0









T

N

B



 ,

where

〈T,T〉 = 〈N,N〉 = 〈B,B〉 = 1,

〈T,N〉 = 〈N,B〉 = 〈T,B〉 = 0.

Let u = (u1, u2, u3), v = (v1, v2, v3) and w = (w1, w2, w3) be vectors in E
3

and e1, e2, e3 be positive oriented natural basis of E3. Cross product of u and v is
defined by

u× v =

∣

∣

∣

∣

∣

∣

e1 e2 e3

u1 u2 u3

v1 v2 v3

∣

∣

∣

∣

∣

∣

.

Mixed product of u, v and w is defined by the determinant

[u,v,w] =

∣

∣

∣

∣

∣

∣

u1 u2 u3

v1 v2 v3
w1 w2 w3

∣

∣

∣

∣

∣

∣

.
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Torsion of the curve α is given by the aid of the mixed product

τ =
[α′, α′′, α′′′]

κ2
.

3. Inextensible Flows of Curves in E
3

Physically, inextensible curve and surface flows give rise to motions in which no
strain energy is induced. The swinging motion of a cord of fixed length, for example,
or of a piece of paper carried by the wind, can be described by inextensible curve
and surface flows. Such motions arise quite naturally in a wide range of physical
applications, [11,12,13].

Let α (u, t) is a one parameter family of smooth curves in E
3.

Any flow of α can be represented as

∂α

∂t
= f1T+ f2N+ f3B, (3.1)

where f1, f2, f3 are smooth functions.
Letting the arclength variation be

s(u, t) =

u
∫

0

vdu.

In the E
3 the requirement that the curve not be subject to any elongation or

compression can be expressed by the condition

∂

∂t
s(u, t) =

u
∫

0

∂v

∂t
du = 0.

Definition 3.1. The flow
∂α

∂t
in E

3 are said to be inextensible if

∂

∂t

∥

∥

∥

∥

∂α

∂u

∥

∥

∥

∥

= 0. (3.2)

Theorem 3.2. Let
∂α

∂t
= f1T + f2N + f3B be a smooth flow of α. The flow is

inextensible if and only if
∂f1

∂u
= κf2v. (3.3)
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Proof: Assume that
∂α

∂u
is inextensible.Then,

∂

∂t
σ(u, t) =

u
∫

0

∂v

∂t
du =

u
∫

0

[
∂f1

∂u
− κf2v]du = 0. (3.4)

Substituting (3.2) in (3.4) complete the proof of the theorem. ✷

We now restrict ourselves to arc length parametrized curves. That is, v = 1
and the local coordinate u corresponds to the curve arc length s. We require the
following lemma.

Lemma 3.3.
∂T

∂t
= [f1κ+

∂f2

∂s
− f3τ ]N+ [

∂f3

∂s
+ f2τ ]B, (3.5)

where f1, f2, f3 are smooth functions of time and arc length.

Proof: Using definition of α, we have

∂

∂t
T = [

∂f1

∂s
− κf2]T+ [f1κ+

∂f2

∂s
− f3τ ]N+ [

∂f3

∂s
+ f2τ ]B. (3.6)

Substituting (3.3) in (3.6), we obtain (3.5). This completes the proof. ✷

Now we give the characterization of evolution of curvature as below:

Theorem 3.4. Let
∂α

∂t
be inextensible. Then, the evolution of curvature

∂κ

∂t
=

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]− τ [

∂f3

∂s
+ f2τ ],

where f1, f2, f3 are smooth functions of time and arc length.

Proof: Assume that
∂α

∂t
is inextensible in E

3.

Thus it is easy to obtain that

∂

∂s

∂

∂t
T = −κ[f1κ+

∂f2

∂s
− f3τ ]T (3.7)

+[
∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]− τ [

∂f3

∂s
+ f2τ ]]N

+[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]B.

On the other hand, we have

∂κ

∂t
=

∂

∂t
<

∂

∂s
T,N > .
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Also,
∂κ

∂t
=<

∂

∂t

∂

∂s
T,N > + <

∂

∂s
T,

∂

∂t
N > .

From definition of flow, we have

< N,
∂

∂t
N >=0.

Combining these we have

∂κ

∂t
=

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]− τ [

∂f3

∂s
+ f2τ ].

Thus, we obtain the theorem. This completes the proof. ✷

From the above theorem, we have

Theorem 3.5.

∂N

∂t
= −[f1κ+

∂f2

∂s
− f3τ ]T+

1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]B.

Proof: Using Frenet equations, we have

∂

∂t

∂

∂s
T =

∂

∂t
(κN) =

∂κ

∂t
N+κ

∂N

∂t
. (3.8)

Substituting (3.7) into Eq. (3.8) , we have

∂N

∂t
= −[f1κ+

∂f2

∂s
− f3τ ]T

+
1

κ
[
∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]− τ [

∂f3

∂s
+ f2τ ]−

∂κ

∂t
]N

+
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]B.

On the other hand, using above equation we have

∂N

∂t
= −[f1κ+

∂f2

∂s
− f3τ ]T+

1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]B,

which completes the proof. ✷

Now we give the characterization of evolution of torsion as below:

Theorem 3.6. Let
∂α

∂t
be inextensible. Then, the evolution of curvature

∂τ

∂t
=

∂

∂s
[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]] + κ[

∂f3

∂s
+ f2τ ],

where f1, f2, f3 are smooth functions of time and arc length.
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Proof:

∂

∂s

∂

∂t
N = −

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]T+

∂

∂s
[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ]

+τ [f1κ+
∂f2

∂s
− f3τ ]]]B− [κ[f1κ+

∂f2

∂s
− f3τ ]

+τ [
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]N.

On the other hand, we have

∂

∂t

∂

∂s
N = −

∂

∂t
κT+

∂

∂t
τB

−κ[f1κ+
∂f2

∂s
− f3τ ]N− κ[

∂f3

∂s
+ f2τ ]B+τ

∂

∂t
B

Also,
∂τ

∂t
= − <

∂

∂t

∂

∂s
B,N > − <

∂

∂s
B,

∂

∂t
N > .

From definition of flow, we have

< B,
∂

∂t
B >=0.

Thus, we obtain the theorem. The proof of theorem is completed. ✷

Theorem 3.7. Let
∂α

∂t
be inextensible. Then,

∂B

∂t
=

1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]T (3.9)

−[[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]N,

where f1, f2, f3 are smooth functions of time and arc length.

Proof: Using Frenet equations, we have

∂B

∂t
=

1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]T+

1

τ
[κ[

∂f3

∂s
+ f2τ ] (3.10)

−
∂τ

∂t
+

∂

∂s
[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]B

−
1

τ
[τ [

1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]N.

From definition of flow, we have

< B,
∂

∂t
B >=0. (3.11)

Substituting (3.11) to (3.10), we have (3.9) as desired. This completes the proof.
✷



Approximation for Inextensible Flows of Curves in E
3 51

Theorem 3.8. Let
∂α

∂t
be inextensible. Then,

κ[
1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]]

= 2
∂

∂s
[[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]],

where f1, f2, f3 are smooth functions of time and arc length.

Proof: Differentiating Eq. (3.9) with respect to s,

∂

∂s

∂B

∂t
= [

∂

∂s
[
1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]]

+κ[[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]]T

+[κ[
1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]]

−
∂

∂s
[[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]]N

−τ [[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]]B.

Also,

∂

∂t

∂

∂s
B = −

∂

∂t
τN− τ [f1κ+

∂f2

∂s
− f3τ ]T

−τ
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]B.

Hence, the proof is complete. ✷

Corollary 3.9.

−τ [f1κ+
∂f2

∂s
− f3τ ] =

∂

∂s
[
1

τ
[
∂κ

∂t
−

∂

∂s
[f1κ+

∂f2

∂s
− f3τ ]]]

+κ[[
1

κ
[
∂

∂s
[
∂f3

∂s
+ f2τ ] + τ [f1κ+

∂f2

∂s
− f3τ ]]]],

where f1, f2, f3 are smooth functions of time and arc length.

Proof: It is obvious from Theorem (3.8). ✷

Example 3.10. The helix is parametrized by

γ (u, t) = (A (t) cos (u) , A (t) sin (u) , B (t)u), (3.12)

where A, B are functions only of time. The arc-length derivative is

(

A2 +B2
)

1

2
∂

∂s
=

∂

∂u
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and the evolution of γ is explicity given by

(
∂A

∂t
cos (u) ,

∂A

∂t
sin (u) ,

∂B

∂t
u) =

1

A2 +B2
(−A cos (u) ,−A sin (u) , 0).

Hence
∂A

∂t
= −A

(

A2 +B2
)−1

,
∂B

∂t
= 0

and solitions are given by

A (t)
2

2
+B2 log (A (t)) = −t+

A (0)
2

2
+B2 log (A (0)) .

Note that, for positive B, A (t) converges to, but never reaches, zero.

Figure 1:The equation Eq. (3.12) is illustrated colour Red, Blue, Purple,
Orange, Magenta, Cyan, Green at the time t = 1, t = 1.2, t = 1.4, t = 1.6,

t = 1.8, t = 2, t = 2.2, respectively.
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(a) (b) (c)

Figure 2: Projections of γ to yz, xy, xz planes are illustrated in (a), (b), (c),
respectively.
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