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A unifying approach to the difference operators and their applications

P. Baliarsingh and S. Dutta

abstract: In the present paper, we introduce the idea of difference operators ∆α

and ∆(α)(α ∈ R) and establish certain results which have several applications in
Functional as well as Numerical analysis. Indeed, the operator ∆α generalizes several
difference operators defined by Kızmaz [1], Et [2], Et and Çolak [3], Malkowsky
and Parashar [4], Et [5], Malkowsky et al. [6], Baliarsingh [7] and many others.
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1. Introduction and definitions

By Γ(p), we denote the Gamma function of a real number p and p /∈ {0,−1,−2,
−3, . . . }. By the definition, it can be expressed as an improper integral i.e.

Γ(p) =

∫ ∞

0

e−ttp−1dt. (1.1)

From the equation (1.1), we observe that

(i) For any natural number p, Γ(p+ 1) = p!.

(ii) For any real number p and p /∈ {0,−1,−2,−3 . . .}, Γ(p+ 1) = pΓ(p).

(iii) For particular cases, we have Γ(1) = Γ(2) = 1, Γ(3) = 2!, Γ(4) = 3! ....
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Let w be the space all real valued sequences. For a real number α and x ∈ w,
we define difference operators ∆α,∆(α),∆−α and ∆(−α) as follows:

(∆αx)k =

∞
∑

i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk+i, (1.2)

(∆(α)x)k =
∞
∑

i=0

(−1)i
Γ(α+ 1)

i!Γ(α− i+ 1)
xk−i, (1.3)

(∆−αx)k =

∞
∑

i=0

(−1)i
Γ(1− α)

i!Γ(1− α− i)
xk+i, (1.4)

(∆(−α)x)k =
∞
∑

i=0

(−1)i
Γ(1− α)

i!Γ(1− α− i)
xk−i. (1.5)

We assume throughout that the summation defined in (1.2-1.5) are convergent for
x ∈ w. In particular, for α = 1

2 , we obtain that

• ∆1/2xk = xk−
1

2
xk+1−

1

8
xk+2−

1

16
xk+3−

5

128
xk+4−

7

256
xk+5−

21

1024
xk+6+

. . . ,

• ∆(1/2)xk = xk−
1

2
xk−1−

1

8
xk−2−

1

16
xk−3−

5

128
xk−4−

7

256
xk−5−

21

1024
xk−6+

. . . ,

• ∆−1/2xk = xk+
1

2
xk+1+

3

8
xk+2+

5

16
xk+3+

35

128
xk+4+

63

256
xk+5+

231

1024
xk+6+

. . . ,

• ∆(−1/2)xk = xk+
1

2
xk−1+

3

8
xk−2+

5

16
xk−3+

35

128
xk−4+

63

256
xk−5+

231

1024
xk−6+

. . . .
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It is natural to show that the operators ∆α,∆(α),∆−α and ∆(−α) can be ex-
pressed as triangles as follows :

∆α =















1 −α α(α−1)
2! −α(α−1)(α−2)

3! . . .

0 1 −α α(α−1)
2! . . .

0 0 1 −α . . .
0 0 0 1 . . .
...

...
...

...
. . .















,

∆(α) =















1 0 0 0 . . .
−α 1 0 0 . . .

α(α−1)
2! −α 1 0 . . .

−α(α−1)(α−2)
3!

α(α−1)
2! −α 1 . . .

...
...

...
...

. . .















,

∆−α =















1 α α(α+1)
2!

α(α+1)(α+2)
3! . . .

0 1 α α(α+1)
2! . . .

0 0 1 α . . .
0 0 0 1 . . .
...

...
...

...
. . .















,

∆(−α) =















1 0 0 0 . . .
α 1 0 0 . . .

α(α+1)
2! α 1 0 . . .

α(α+1)(α+2)
3!

α(α+1)
2! α 1 . . .

...
...

...
...

. . .















,

In our observations, the following special cases which are included in the general-
izations of the operators ∆α and ∆(α) :

(i) If α = 1, then the operator ∆α reduces to ∆ and (∆x)k = xk −xk+1, defined
by Kızmaz [1].

(ii) If α = m ∈, then the operator ∆α reduces to ∆m and (∆mx)k =

m
∑

i=0

(−1)m

(

m
i

)

xk+i, defined by Et and Çolak [2].

(iii) If α = 1, then the operator ∆(α) reduces to ∆(1) and (∆(1)x)k = xk − xk−1,
defined by Malkowsky an Parashar [3].

(iv) If α = m ∈, then the operator ∆(α) reduces to ∆(m) and (∆(m)x)k =
m
∑

i=0

(−1)m
(

m

i

)

xk−i, studied by Malkowsky et al. [4] and Et [5].
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Recently, different classes of difference sequences have been introduced and their
different properties including topological structures, duals, and matrix transforma-
tions have been studied by Tripathy [8], Et and Basarir [9], Dutta and Baliarsingh
[10,12], Mursaleen [11], Tripathy et al. [13,15], Asma and Çolak [14] and many
others (see [16]- [23]). In this article, we unify most of the difference operators stud-
ied by earlier authors and extend their results in a more general and comprehensive
way.

2. Main results

In this section, we state some interesting results concerning the linearity prop-
erty of the difference operators ∆α,∆(α),∆−α and ∆(−α). Also, we discuss certain
relations among these operators.

Theorem 2.1. The operators X : w → w for X ∈ {∆α,∆(α),∆−α,∆(−α)} are
linear over C.

Proof: Proof is trivial, hence omitted. ✷

Theorem 2.2. If α and β are two real numbers, then

(i) ∆α ◦∆β ≡ ∆β ◦∆α ≡ ∆α+β.

(ii) ∆(α) ◦∆(β) ≡ ∆(β) ◦∆(α) ≡ ∆(α+β).

Proof: Proof follows from Theorem 2.1, so we omit the details. ✷

Theorem 2.3. If α is a real number, then

(i) ∆α ◦∆−α ≡ ∆−α ◦∆α ≡ Id.

(ii) ∆(α) ◦∆(−α) ≡ ∆(−α) ◦∆(α) ≡ Id,

where Id is the identity operator in w.

Proof: (i) The proof of this theorem is divided into two parts. First we prove
the theorem for any positive integer α which can be obtained by using inductive
principle. Suppose x ∈ w and for α = 1, we have

(∆ ◦∆−1x)k = (∆(∆−1x))k

= ∆(xk + xk+1 + xk+2 + . . . )

= xk − xk+1 + xk+1 − xk+2 + xk+2 − xk+3 + xk+3 − xk+4 + . . .

= xk.

This shows that ∆ ◦ ∆−1 ≡ Id in w. By principle of induction one can establish
∆r ◦∆−r ≡ Id in w. Similarly, for a fraction α, we can show that ∆α ◦∆−α ≡ Id
in w.

(ii) In view of the proof of (i), that of (ii) is similar, so we omit it. ✷
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Theorem 2.4. For a positive integer α and x ∈ w,

(i) (∆αx)k = (−1)α(∆(α)x)k+α.

(ii) (∆(α)x)k = (−1)α(∆αx)k−α

Proof: (i) We prove the theorem by induction principle. For α = 1 and x ∈ w, we
have

(∆x)k = xk − xk+1 = (−1)(xk+1 − xk) = (∆(1)x)k+1.

This completes the Basis step. Let us assume that the theorem is true for a natural
number r, i.e. (∆rx)k = (−1)r(∆(r)x)k+r . Now, we take

(∆r+1x)k = (∆(∆rx))k

= ∆(∆rx)k

= ∆((−1)r(∆(r)x)k+r), (by the assumption).

= (−1)r(∆(r)x)k+r − (−1)r(∆(r)x)k+r+1,

= (−1)r+1[(∆(r)x)k+r+1 −∆(r)x)k+r ] = (−1)r+1(∆(r+1)x)k+r+1,

(by Theorem 2.2).

This completes the proof.
(ii) The proof is similar to that of (i). ✷

Theorem 2.5. For any real α and x ∈ w, we have

((∆α +∆−α)x)k = 2xk +
∞
∑

i=1

(α+)i−1 + (−1)i(α−)i−1

i
xk+i,

where (α+)i−1 = α(α+1)(α+2) . . . (α+i−1) and (α−)i−1 = α(α−1)(α−2) . . . (α−
i+ 1).

Proof: The proof is straightforward from the definition, so we omit it. ✷

Let x = (xk) and y = (yk) be two sequences in w. We define the product
of x and y as xy = (xkyk). Now, the first forward and backward differences of
xy are given by ∆(xy) = (xkyk − xk+1yk+1) and ∆(1)(xy) = (xkyk − xk−1yk−1),
respectively. The basic objective of this part is to find the α-th difference of product
sequence xy where α is a positive integer. So, we state the following theorems.

Theorem 2.6. (Leibnitz Theorem). Let α = n be a positive integer and x, y ∈ w,
then

((∆n)xy)k = xk∆
n
yk + n∆xk∆

n−1
yk+1 +

n(n− 1)

2!
∆2

xk∆
n−2

yk+2 + · · ·+∆n
xkyk+n,
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Proof: This proceeds by induction on natural numbers n, the result being trivial
for n = 0 and reducing for n = 1 to the well-known rule for differentiating a product
(once). Suppose n = 1 and x, y ∈ w, we obtain that

xk∆yk+∆xkyk+1 = xk(yk−yk+1)+(xk−xk+1)yk+1 = xkyk−xk+1yk+1 = (∆(xy))k.

Let us assume that the theorem holds for a positive integer r which can be stated
as

((∆r)xy)k =

(

r

0

)

xk∆
ryk +

(

r

1

)

∆xk∆
r−1yk+1 +

(

r

2

)

∆2xk∆
r−2yk+2 + . . .

+

(

r

r

)

∆rxkyk+r,

Now,

((∆r+1)xy)k =

(

r

0

)

∆(xk∆
ryk)+

(

r

1

)

∆(∆xk∆
r−1yk+1)+

(

r

2

)

∆(∆2xk∆
r−2yk+2)

+ · · ·+

(

r

r

)

∆(∆rxkyk+r)

=

(

r

0

)

xk∆
r+1yk +

[(

r

0

)

+

(

r

1

)]

∆xk∆
ryk+1

+

[(

r

1

)

+

(

r

2

)]

∆2xk∆
r−1yk+2 + . . .

+

[(

r

r − 1

)

+

(

r

r

)]

∆rxk∆yk+r +

(

r

r

)

∆r+1xkyk+r+1

=

(

r + 1

0

)

xk∆
r+1yk +

(

r + 1

1

)

∆xk∆
ryk+1

+

(

r + 1

2

)

∆2xk∆
r−1yk+2 + . . .

+

(

r + 1

r

)

∆rxk∆yk+r +

(

r + 1

r + 1

)

∆r+1xkyk+r+1

This leads to the completion of the proof. ✷

3. Application to the numerical analysis

In this section, we discuss some numerical applications of the difference opera-
tors ∆α,∆(α),∆−α and ∆(−α). In fact, these calculations are often used in finding
interpolating polynomial, numerical differentiation and integration of a function
where we write f = (fk) as a sequence of functional values of f(x) at x1, x2, x3, . . . .
The well known Newton’s forward and backward interpolation formula for f(x) can
be explained with the help of these operators. Now, we consider some particular
cases.
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Corollary 3.1. (i) If x = (1, 1, 1, . . . ), then (∆αx)k = (∆(α)x)k = 0.

(ii) If x = (1, 0, 1, 0, . . . ), then (∆αx)k = (∆(α)x)k = (−1)k2α−1.

(iii) If x = ( 1
2k
), then (∆αx)k = (∆(α)x)k = 1

2α+k . In particular, (∆−1x)k = 1
2k−1 .

(iv) If x = (ak) for |a| < 1, then (∆αx)k = (∆(α)x)k = ak(1−a)α and (∆−αx)k =

(∆(−α)x)k = ak

(1−a)α .

Theorem 3.2. (Newton’s forward difference formula). Let f = (f1, f2, f3, . . . ) be
the sequence of the functional values of f(x) at x = (x1, x2, x3, . . . )(equally spaced
with common difference h > 0), then the interpolating polynomial p(x) at a point
z = x1 + th can be expressed as

p(z) = f1 + t(∆(1)f)2 + t(t− 1)
(∆(2)f)3

2!
+ t(t− 1)(t− 2)

(∆(3)f)4
3!

+ . . . ,

where t =
z − x1

h
.

Theorem 3.3. (Newton’s backward difference formula). Let f = (f1, f2, f3, . . . , fn,
. . . ) be the sequence of the functional values of f(x) at x = (x1, x2, x3, . . . , xn, . . . )
(equally spaced with common difference h > 0), then the interpolating polynomial
p(x) at a point z = xn + ht, (n ∈) can be expressed as

p(z) = fn + t(∆(1)f)n + t(t+ 1)
(∆(2)f)n

2!
+ t(t+ 1)(t+ 2)

(∆(3)f)n
3!

+ . . . ,

where t =
z − xn

h
.

Example 3.4. Let f = (10, 28, 62, 118, 202, 320, . . .) be the given sequence of the
functional values of f(x) at x = (1, 2, 3, 4, 5, 6, . . . ), then clearly, h = 1, t = (z −
1), (∆(1)f)2 = 18, (∆(2)f)3 = 16, (∆(3)f)4 = 6 and (∆(4)f)5 = (∆(5)f)6 = 0 . . . .
By Theorem 3.2, the interpolating polynomial of f(x) is given by

p(z) = 10+ (z − 1)18+ (z − 1)(z − 2)8+ (z − 1)(z − 2)(z − 3) = z3 + 2z2 +5z + 2.

Again for backward difference formula, let us take n = 6 and also h = 1, t =
z−6, (∆(1)f)6 = 118, (∆(2)f)6 = 34, (∆(3)f)6 = 6 and (∆(4)f)6 = (∆(5)f)6 = 0 . . . .
By Theorem 3.3, the interpolating polynomial of f(x) is given by

p(z) = 320+(z−6)118+(z−6)(z−5)17+(z−6)(z−5)(z−4) = z3+2z2+5z+2.

Conclusion: The main objective of the present investigation is to obtain cer-
tain results involving the generalized fractional and integral difference operators
which have several applications in the field of analysis and applied sciences.
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