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abstract: Let R be a 6−torsion free semiprime *-ring, τ an endomorphism of
R, σ an epimorphism of R and f : R → R an additive mapping. In this paper we
proved the following result: f is a generalized Jordan (σ, τ)∗ −derivation if and only
if f is a generalized Jordan triple (σ, τ)∗ −derivation.
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1. Introduction

Throughout R will represent an assosiative ring with center Z. Recall that a
ring R is prime if xRy = 0 implies x = 0 or y = 0, and semiprime if xRx = 0
implies x = 0. An additive mapping x 7→ x∗ satisfying (xy)

∗
= y∗x∗ and (x∗)

∗
= x

for all x, y ∈ R is called an involution, or a *-ring.
An additive mapping d : R → R is called a derivation (resp. Jordan derivation)

if d (xy) = d (x) y + xd (y) (resp. d
(

x2
)

= d (x)x + xd (x)) holds for all x, y ∈ R.

Let σ and τ be two endomorphisms of R. An additive mapping d : R → R is said
to be a (σ, τ )−derivation (resp. Jordan (σ, τ )−derivation) if d (xy) = d (x) σ (y)+
τ (x) d (y) ( resp. d

(

x2
)

= d (x)σ (x) + τ (x) d (x)) holds for all x, y ∈ R. One
can easily prove that every derivation is a Jordan derivation, but converse is in
general not true. A famous result due to Herstein [7, Theorem 3.3] asserts that a
Jordan derivation of a 2−torsion free prime ring is a derivation. A brief proof of
this result can be found in [2]. A Jordan triple derivation d : R → R is an additive
mapping satisfying d (xyx) = d (x) yx+ xd (y)x+ xyd (x) , for all x, y ∈ R. In [8],
Herstein showed that every Jordan derivation of 2−torsion free ring is a Jordan
triple derivation. Bresar proved that every Jordan triple derivation of a 2−torsion
free semiprime ring is a derivation in [4].

Recently, M. Bresar defined the following notation in [5]. An additive mapping
f : R → R is called a generalized derivation if there exists a derivation d : R → R

such that
f(xy) = f(x)y + xd(y), for all x, y ∈ R.
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One may observe that the concept of generalized derivation includes the concept of
derivations, also of the left multipliers when d = 0. Similarly, an additive mapping
f : R → R is called a generalized Jordan derivation if there is a Jordan derivation
d : R → R such that f

(

x2
)

= f (x) x + xd (x) , for all x ∈ R and is called a
generalized Jordan triple derivation if there exists a derivation d : R → R such
that f (xyx) = f (x) yx+ xd (y)x+ xyd (x) , for all x, y ∈ R.

Let R be a ring with involution *. An additive mapping d : R → R is
said to be a *-derivation (resp. Jordan *-derivation) if d(xy) = d(x)y∗ + xd(y)
(resp. d

(

x2
)

= d (x) x∗ + xd (x)) holds for all x, y ∈ R. The concept of Jordan
*-derivations introduced by Bresar and Vukman in [3]. Also, a Jordan triple
*-derivation is an additive mapping d : R → R with the property d (xyx) =
d (x) y∗x∗ + xd (y)x∗ + xyd (x) , for all x, y ∈ R. In [13], Vukman proved the
following result: Let R be a 6−torsion free semiprime *-ring and d : R → R

be an additive mapping satisfiying d (xyx) = d (x) y∗x∗ + xd (y)x∗ + xyd (x) ,
for all x, y ∈ R, then d is a Jordan *-derivation. In [1], Shakir and Fosner in-
troduced (σ, τ )

∗
-derivation, Jordan (σ, τ)

∗
-derivation and Jordan triple (σ, τ)

∗
-

derivation as follows: An additive mapping d : R → R is called a (σ, τ)∗ −derivation
( resp. Jordan (σ, τ )

∗
−derivation) if d (xy) = d (x)σ (y∗) + τ (x) d (y) ( resp.

d
(

x2
)

= d (x) σ (x∗) + τ (x) d (x)), for all x, y ∈ R. Also d is called a Jordan triple
(σ, τ)∗ −derivation if d (xyx) = d (x)σ (y∗x∗) + τ (x) d (y)σ (x∗) + τ (xy) d (x) , for
all x, y ∈ R. Shakir and Fosner extended the above mentioned Vukman’s Theorem
in the setting of Jordan triple (σ, τ )

∗
−derivation.

We study more general concept of Jordan *-derivations. An additive mapping
f : R → R is called a generalized Jordan *-derivation if there exists a Jordan
*-derivation d : R → R such that f

(

x2
)

= f (x) x∗ + xd (x) , for all x ∈ R. An
additive mapping f : R → R is called a generalized Jordan triple *-derivation if
there exists a Jordan triple *-derivation d : R → R such that f (xyx) = f (x) y∗x∗+
xd (y)x∗ + xyd (x) , for all x, y ∈ R. Inspired by the above definitions, the notion
of generalized Jordan (σ, τ)∗−derivation was extended as follows: Let σ and τ be
two endomorphisms of R. An additive mapping f : R → R is called a generalized
Jordan (σ, τ)

∗
-derivation if there exists a Jordan (σ, τ )

∗
-derivation d : R → R

such that f
(

x2
)

= f (x) σ (x∗) + τ (x) d (x) , for all x ∈ R. We call f a generalized
Jordan triple (σ, τ)

∗
−derivation if there exists a Jordan triple (σ, τ)

∗
−derivation

d : R → R such that f (xyx) = f (x) σ (y∗x∗) + τ (x) d (y)σ (x∗) + τ (xy) d (x) , for
all x, y ∈ R.

In [3], Bresar and Vukman studied some algebraic properties of Jordan *-
derivations. These mappings are closely connected with a question of representabil-
ity of quadratic forms by bilinear forms. This is shown by Zalar in [14]. Also,
Bresar and Zalar obtained a representation of Jordan *-derivations in terms of left
an right centralizers on the algebra of compact operators on a Hilbert space in [6].
It turns out that the question whether each quadratic form can be represented by
some bilinear form is intimately connected with the question whether every Jordan
*-derivation is inner, as shown by Semrl [10]. For results concerning this theory
we refer to [11], [12], [15].

The major purpose of this paper is to prove the theorem [1, Theorem 2.1] for
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a generalized Jordan (σ, τ )
∗
−derivation of R.

2. Results

Theorem 2.1. Let R be a 6−torsion free semiprime *-ring, τ an endomorphism
of R, σ an epimorphism of R and f : R → R an additive mapping. Then f is a

generalized Jordan (σ, τ )
∗
−derivation if and only if f is a generalized Jordan triple

(σ, τ)
∗
−derivation.

Proof: Assume that f is a generalized Jordan (σ, τ )
∗
−derivation. That is

f
(

x2
)

= f (x) σ (x∗) + τ (x) d (x) , for all x ∈ R. (2.1)

The linearization of the relation below

f
(

x2 + xoy + y2
)

= f (x+ y)σ (x∗ + y∗) + τ (x+ y) d (x+ y) .

where xoy = xy + yx. By the additive mapping of f in the above relation, we see
that

f
(

x2
)

+ f (xoy) + f
(

y2
)

= f (x)σ (x∗) + τ (x) d (x) + f (x)σ (y∗) + f (y)σ (x∗)

+ τ (x) d (y) + τ (y)d (x) + f (y)σ (y*) + τ (y) d (y) .

By the equation (2.1), we obtain that

f (xoy) = f (x) σ (y∗)+f (y)σ (x∗)+τ (x) d (y)+τ (y) d (x) , for all x, y ∈ R. (2.2)

Using d is a Jordan (σ, τ)
∗
−derivation, we get

d (xoy) = d (x)σ (y∗)+d (y)σ (x∗)+τ (x) d (y)+τ (y) d (x) , for all x, y ∈ R. (2.3)

Also, x2oy + 2xyx = xo (xoy) , we arrive at

f
(

x2oy + 2xyx
)

= f (xo (xoy)) , for all x, y ∈ R.

Using (2.2), we see that

f
(

x2oy + 2xyx
)

= f
(

x2
)

σ (y∗) + f (y)σ(
(

x2
)∗
) + τ

(

x2
)

d (y)

+ τ (y) d
(

x2
)

+ f (2xyx)

= f (x)σ (x∗)σ (y∗) + τ (x) d (x)σ (y∗) + f (y)σ(
(

x2
)∗
)

+ τ
(

x2
)

d (y) + τ (y)d (x)σ (x∗) + τ (y) τ (x) d (x) + f (2xyx) .

Appliying (2.3) in the last equation, we have

f (xo (xoy)) = f (x)σ
(

(xoy)
∗)

+ f (xoy)σ (x∗) + τ (x) d (xoy) + τ (xoy) d (x)

= f (x)σ (x∗y∗) + f (x)σ (y∗x∗) + f (x)σ (y∗)σ (x∗)

+ f (y)σ (x∗) σ (x∗) + τ (x) d (y)σ (x∗) + τ (y) d (x)σ (x∗)

+ τ (x) d (x)σ (y∗) + τ (x) d (y)σ (x∗) + τ (x) τ (x) d (y)

+ τ (x) τ (y) d (x) + τ (xy) d (x) + τ (yx) d (x) .
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Last two equations imply that

2f (xyx) = 2f (x) σ (y∗x∗) + 2τ (x) d (y)σ (x∗) + 2τ (xy) d (x) , for all x, y ∈ R.

Since R is 2−torsion free, we get

f (xyx) = f (x) σ (y∗x∗) + τ (x) d (y)σ (x∗) + τ (xy) d (x) , for all x, y ∈ R.

Hence, we obtain that f is a generalized Jordan triple (σ, τ )
∗
−derivation.

Let us prove the reverse. We have

f (xyx) = f (x) σ (y∗x∗) + τ (x) d (y)σ (x∗) + τ (xy) d (x) , for all x, y ∈ R. (2.4)

Taking y by xyx in (2.4) and using (2.4), [1, Theorem 2.1], we obtain

f
(

x2
)

σ(y∗ (x∗)
2
) + τ

(

x2
)

d (y)σ((x∗)
2
) + τ

(

x2y
)

d (x) σ (x∗) + τ
(

x2yx
)

d (x)

= f (x)σ(x∗y∗ (x∗)
2
) + τ (x) d (x) σ(y∗ (x∗)

2
) + τ

(

x2
)

d (y)σ((x∗)
2
)

+ τ
(

x2y
)

d (x) σ (x∗) + τ
(

x2yx
)

d (x)

and so,
(

f
(

x2
)

− f (x) σ(x∗)− τ (x) d (x)
)

σ(y∗ (x∗)
2
) = 0.

The relation above reduces to

A (x) σ(y∗)σ((x∗)2) = 0, for all x, y ∈ R,

where A (x) stands for f
(

x2
)

−f (x) σ(x∗)− τ (x) d (x) . Since σ is an epimorphism
of R, we find that

A (x)Rσ((x∗)
2
) = 0, for all x ∈ R. (2.5)

If we multiplying (2.4) from the left side by σ((x∗)
2
) and from the right side by

A (x) , we get

σ((x∗)2)A (x)Rσ((x∗)2)A (x) = 0, for all x ∈ R.

Since R is semiprime ring, it follows that

σ((x∗)2)A (x) = 0, for all x ∈ R. (2.6)

Similarly, we see that

A (x) σ((x∗)2) = 0, for all x ∈ R. (2.7)

Writing x by x+ y in (2.7), we have

0 = A (x+ y)σ((x∗ + y∗)
2
)

= (f
(

x2 + xoy + y2
)

− f (x+ y)σ(x∗ + y∗)− τ (x+ y) d (x+ y))σ((x∗ + y∗)
2
)

= (f
(

x2
)

− f (x) σ(x∗)− τ (x) d (x) + f
(

y2
)

− f (y)σ(y∗)− τ (y) d (y)

+ f (xoy)− f (x)σ(y∗)− f (y)σ(x∗)− τ (x) d (y)− τ (y) d (x))σ((x∗ + y∗)2).



Notes On Generalized Jordan (σ, τ)∗ −Derivations 261

That is,

(A (x) +A (y) +B (x, y))σ((x∗ + y∗)2) = 0, for all x, y ∈ R,

where B (x, y) stands for f (xoy)−f (x) σ(y∗)−f (y)σ(x∗)−τ (x) d (y)−τ (y)d (x) .
Appliying equation (2.7), we get

0 = A (y)σ((x∗)
2
) +A (x)σ((y∗)

2
) +A (x) σ(x∗oy∗) +A (y)σ(x∗oy∗) (2.8)

+B (x, y) σ((x∗)
2
) +B (x, y)σ((y∗)

2
) +B (x, y)σ(x∗oy∗).

Putting −x for x in (2.8) and using A (−x) = A (x) and B (−x, y) = −B (x, y) , we
obtain that

0 = A (y)σ((x∗)
2
) +A (x)σ((y∗)

2
)−A (x) σ(x∗oy∗)−A (y)σ(x∗oy∗) (2.9)

−B (x, y) σ((x∗)
2
)−B (x, y)σ((y∗)

2
) +B (x, y)σ(x∗oy∗).

By comparing (2.8) and (2.9), we arrive at

2A (x)σ(x∗oy∗) + 2A (y)σ(x∗oy∗) + 2B (x, y)σ((x∗)2) + 2B (x, y)σ((y∗)2) = 0.

Since R is 2−torsion free, we have

A (x) σ(x∗oy∗) +A (y)σ(x∗oy∗) +B (x, y)σ((x∗)2) +B (x, y)σ((y∗)2) = 0. (2.10)

Replacing x by 2x in (2.8), we see that

0 = 4A (y)σ((x∗)
2
) + 4A (x) σ((y∗)

2
) + 8A (x)σ(x∗oy∗) + 2A (y)σ(x∗oy∗)

+ 8B (x, y)σ((x∗)2) + 2B (x, y)σ((y∗)2) + 4B (x, y)σ(x∗oy∗).

Using (2.8) and (2.10) in the last equation, we get

6A (y)σ(x∗oy∗) + 6B (x, y)σ((y∗)
2
) = 0, for all x, y ∈ R.

Since R is 6−torsion free, we have

A (y)σ(x∗oy∗) +B (x, y)σ((y∗)
2
) = 0, for all x, y ∈ R.

Again appliying equation (2.10), we find that

A (x) σ(x∗oy∗) +B (x, y)σ((x∗)
2
) = 0, for all x, y ∈ R. (2.11)

Right multiplication of (2.11) by A (x) , we obtain that

A (x)σ(x∗oy∗)A (x) +B (x, y)σ((x∗)
2
)A (x) = 0.

Using (2.6) gives that

A (x)σ(x∗y∗)A (x) +A (x)σ(y∗x∗)A (x) = 0, for all x, y ∈ R.
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By the surjectivity of σ, it follows that

A (x)σ(x∗)yA (x) +A (x) yσ(x∗)A (x) = 0, for all x, y ∈ R. (2.12)

Replacing y by yσ(x∗) in the above relation, we get

A (x)σ(x∗)yσ(x∗)A (x) +A (x) yσ((x∗)
2
)A (x) = 0, for all x, y ∈ R.

Again using (2.6) implies that

A (x) σ(x∗)yσ(x∗)A (x) = 0, for all x, y ∈ R,

and so
σ(x∗)A (x)σ(x∗)yσ(x∗)A (x) σ(x∗) = 0, for all x, y ∈ R.

By the semiprimeness of R, we have

σ(x∗)A (x) σ(x∗) = 0, for all x ∈ R.

Multiplying (2.12) by σ(x∗) from right and using the last equation, we see that

A (x)σ(x∗)yA (x)σ(x∗) = 0, for all x, y ∈ R,

and so
A (x) σ(x∗) = 0, for all x ∈ R. (2.13)

Substitution x+ y for x, we have

0 = A (x+ y)σ(x∗ + y∗)

= (A (x) +A (y) +B (x, y)) σ(x∗ + y∗).

In view of equation (2.13) the last equation reduces to

A (x) σ(y∗) +A (y)σ(x∗) +B (x, y)σ(x∗) +B (x, y)σ(y∗) = 0

Replacing x by −x in the above relation and comparing the relation so obtained
with the above relation we get

A (x)σ(y∗) +B (x, y)σ(x∗) = 0, for all x, y ∈ R. (2.14)

Right multiplication of (2.14) by σ(x∗)A (x) , we conclude that

A (x)σ(y∗)σ(x∗)A (x) +B (x, y) σ((x∗)
2
)A (x) = 0.

Using (2.6), we obtain that

A (x)σ(y∗)σ(x∗)A (x) = 0

and so
σ(x∗)A (x) yσ(x∗)A (x) = 0.
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Since R is semiprime ring, we have

σ(x∗)A (x) = 0, for all x ∈ R.

We right multiple in relation (2.14) by A (x) and then use the above relation to get

A (x)σ(y∗)A (x) = 0, for all x, y ∈ R.

By the surjectivity of σ and semiprimeness of R, we arrive at A (x) = 0, for all
x ∈ R. This means that f

(

x2
)

= f (x) σ(x∗) + τ (x) d (x) , for all x ∈ R, and so f

is a generalized Jordan (σ, τ)
∗
−derivation, which completes the proof. ✷

Corollary 2.2. Let R be a 6−torsion free semiprime *-ring and f : R → R an

additive mapping. Then f is a generalized Jordan*-derivation if and only if f is a

generalized Jordan triple-derivation

The following corollary which is proved Vukman in [13], is a direct consequence
of Theorem 2.1.

Corollary 2.3. Let R be a 6−torsion free semiprime *-ring and d : R → R an

additive mapping. Then d is a Jordan*-derivation if and only if

d (xyx) = d (x) y ∗ x∗ + xd (y)x∗ + xyd (x) , for all x, y ∈ R.

In particular, if we take f = d in Theorem 2.1, then we have the following result
which is a generalization of [1, Theorem 2.1] even without σ an automorphism
assumption on ring.

Corollary 2.4. Let R be a 6−torsion free semiprime *-ring, τ an endomorphism
of R, σ an epimorphism of R and d : R → R an additive mapping. Then d is a

Jordan (σ, τ)
∗
−derivation if and only if

d (xyx) = d (x) σ (y∗x∗) + τ (x) d (y)σ (x∗) + τ (xy) d (x) , for all x, y ∈ R.

We can give a following corollary in view of Corollary 2.4, which is a general-
ization of [9, Theorem 2].

Corollary 2.5. Let R be a 6−torsion free semiprime ∗−ring, θ an epimorphism

of R. An additive mapping T : R → R is a Jordan left θ∗−centralizer on R if and
only if T (xyx) = T (x) θ (y∗x∗) , for all x, y ∈ R.
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