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On the spectrum of one dimensional p-Laplacian for an eigenvalue

problem with Neumann boundary conditions

Ahmed Dakkak, Siham El Habib and Najib Tsouli

abstract: This work deals with an indefinite weight one dimensional eigenvalue
problem of the p-Laplacian operator subject to Neumann boundary conditions. We
are interested in some properties of the spectrum like simplicity, monotonicity and
strict monotonicity with respect to the weight. We also aim the study of zeros points
of eigenfunctions.
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1. Introduction

This paper is devoted to the study of the following problem:

PNe(m, I)

{

−(|u′|p−2u′)′ = λm|u|p−2u in I =]a, b[,
u′(a) = u′(b) = 0,

where a, b ∈ R and m an indefinite weight function satisfying mes(I+) 6= 0 where
I+ = {x ∈ I/m(x) > 0}.

It’s well known that the spectrum of Neumann problem in dimension N ≥ 1,
considered in a smooth bounded domain with indefinite weight (cf. [7,8]) contains
a sequence of nonnegative eigenvalues (λNe

n (m, I))n∈N∗ given by:

1

λNe
n

= sup
K∈Γn

min
K

∫

I
m(x)|u|p
∫

I
|u′|p

, (1.1)

where Γn = {K ⊂ S / K compact symmetric and γ(K) ≥ n} and S is the unit
sphere of W 1,p(I). The sequence (λNe

n (m, I))n∈N∗ verify:
• λNe

n (m, I) → +∞, n → +∞.
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• If m change its sign in I and
∫

I
m(x)dx < 0 then the first eigenvalue (cf. [8])

defined by

λNe
1 (m, I) = inf{‖u′‖pp ;u ∈ W 1,p(I) /

∫

I

m(x)|u|pdx = 1} > 0 (1.2)

is strictly positive, simple, isolated and any eigenfunction u1 associated to λNe
1 (m, I)

is of constant sign in I, i.e u1 has no zero in I.
The purpose of this paper is the study of some properties of the spectrum of

PNe(m, I). We prove the following assertions:
⊲ Any eigenfunction corresponding to an eigenvalue λNe

n has exactly (n−1) unique
zeros in I.
⊲ Eigenvalues in the spectrum are simple.
⊲ λNe

n (m, I), n ≥ 1, satisfies the strict monotonicity property (SMP) with respect
to the weight.

Since the 80’s, the study of eigenvalue problems of the p-Laplacian operator
subject to different kinds of boundary conditions has attracted the interest of sev-
eral authors (cf. [1,6,15,13,7,8,3,10,5,11,2,12,16,4,9] and the references therein). In
particular, we present here some results that motivated this work:
First, we mention the result in [8], that we consider as a principal key for the
development of our results. It allowed us passing from one eigenvalue problem of
Neumann, studied in I, to a Dirichlet problem in an extension of I. We state this
result later in this paper (cf. lemma 2.1).
Other, thanks to this transformation, one can use the interesting results of A.Anane,
O.Chakrone and M.Moussa [3] (see preliminary section, theorem 2.2), who have
studied the spectrum of one dimensional p-Laplacian for Dirichlet problem, espe-
cially the property of strict monotonicity with respect to the domain. Furthermore,
one cannot forget the important results in [8,4,9] like multiplicity property and
monotonicity, that will be announced later, which were particularly useful for the
proof of simplicity and for the investigation of zeros points.

This paper is organized as follow: In section 2, we collect some results which are
necessary in what follows. Section 3 is concerned with the simplicity of eigenvalues.
In section 4, we investigate the number of zeros points of eigenfunctions. Finally,
in section 5, we prove the strict monotonicity property (SMP) with respect to the
weight.

2. Preliminaries

Throughout this paper, we adopt the following notations:
• (u, λNe(m, I)) will design a solution of problem PNe(m, I) where u ∈ W 1,p(I),
u 6= 0.
• We denote by λD(m, I) a solution of Dirichlet problem in I.
• Z(u) the set of zero points associated to u defined by:

Z(u) = {u ∈ I / u(x) = 0}.

• To simplify, we sometimes denote λ(m, I) by λ and λ(m|A, A) by λ(m|A).
In this section, we state some useful results. We begin by the following lemma
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which presents a transformation of the Neumann problem PNe(m, I) to a Dirichlet
problem in an extension of I (cf. [7] or [8])

Lemma 2.1. [8,4] Let (u, λNe) be a solution of problem PNe(m, I). Assume that
Z(u) = {z1, z2, ....., zk} then (ū, λNe) is a solution of the following Dirichlet prob-
lem:

PD(m̄u, Īu)

{

−(|u′|p−2u′)′ = λm̄u|u|
p−2u in Īu,

u(2a− z1) = u(2b− zk) = 0,

where Īu =]2a− z1, 2b− zk[ and ū, m̄u are defined as follows:

ū(x) =







u(2a− x) if x ∈]2a− z1, a[,
u(x) if x ∈ [a, b],
u(2b− x) if x ∈]b, 2b− zk[.

And

m̄u(x) =







m(2a− x) if x ∈]2a− z1, a[,
m(x) if x ∈ [a, b],
m(2b− x) if x ∈]b, 2b− zk[.

Consider the following Dirichlet problem:

PD(m, I)

{

−(|u′|p−2u′)′ = λm|u|p−2u in I =]a, b[,
u(a) = u(b) = 0,

where m ∈ L∞(I) such that mes(I+) 6= 0; I+ = {x ∈ I/m(x) > 0}.
In [3], the authors showed the results in following theorem, which are essential for
our work.

Theorem 2.2. [3]
Let m ∈ M(I) = {m ∈ L∞(I)/ mes({x ∈ I,m(x) > 0}) 6= 0} such that: m 6≡ 0
and p 6= 2. We have the following results:
1) Every eigenfunction corresponding to the k-th eigenvalue λD

k (m, I) of the problem
PD(m, I) has exactly (k − 1) zeros in ]a, b[. Moreover, if any eigenfunction u
corresponding to some eigenvalue λD(m, I) has (k− 1) zeros in I then λD(m, I) =
λD
k (m, I).

2) For any k, 1 ≤ k ≤ n, λD
k (m, I) is simple and verify the strict monotonicity

property with respect to the weight and the domain.
3) Let m ∈ M(I), there exists a sequence λD

k (m, I), k = 1, 2, ....... of eigenvalues
associated to the problem PD(m, I) ordered as:

0 < λD
1 (m, I) < λD

2 (m, I) < ..... < λD
k (m, I) → +∞ quand k → +∞.

4) For any integer n, λD
n (m, I) can be written:

1

λD
n (m, I)

= sup
F∈Fn

inf
F∩S

∫ b

a

m|v|pdx,

where Fn = {F / F is a n dimensional subspace of W 1,p
0 (I)}.



12 Ahmed Dakkak, Siham El Habib and Najib Tsouli

The following propositions represents a multiplicity result corresponding to Neu-
mann problem PNe(m, I) and a caracterisation of the second eigenvalue λNe

2 .

Proposition 2.3. (cf. [8])
Let n ≥ 2, the following result hold:

If λNe
n = λNe

n+1 = ......... = λNe
n+q then γ(KλNe

n
) ≥ q + 1,

where
KλNe

n
= {u ∈ S / (u, λNe

n ) is a solution of PNe(m)}.

Proposition 2.4. (cf. [8])

inf{λNe > λNe
1 / λNe is an eigenvalue of PNe(m)} = λNe

2 . (2.1)

Before closing this section, we prove the following result:

Proposition 2.5.

If (u, λNe) is a solution of PNe(m, I) then the set of zeros points Z(u) of u is finite.

Proof: Let (u, λNe) be a solution of PNe(m, I). Suppose by contradiction that
Z(u) is infinite then there exists a sequence (xn)n∈N in I such that u(xn) = 0, for
every n. For a subsequence still denoted by (xn)n∈N, we can assume that:

xn → x in I; xn 6= x, ∀n.

Since u ∈ C1(I) then :

u′(x) = lim
n→∞

u(xn)− u(x)

xn − x
= 0.

However, according to the maximum principle of Vasquez, we obtain u′(x) 6= 0.
This, is a contradiction; hence Z(u) is finite. ✷

3. Simplicity of eigenvalues

This section is concerned with the simplicity of eigenvalues corresponding to
PNe(m, I).

Proposition 3.1. For any k 6= 1, λNe
k associated to PNe(m, I) is simple.

Proof: If (u, λNe) is a solution of PNe(m, I) such that λNe 6= λNe
1 then Z(u)

is finite.
Assume that Z(u) = {z1(u), z2(u), ....., zn(u)} verify z1(u) < z2(u) < ....... < zn(u).
Then according to lemma 2.1, (ū, λNe) is a solution of Dirichlet problem PD(m̄u, Īu)
where Īu =]2a− z1(u), 2b− zn(u)[,

ū(x) =







u(2a− x) if x ∈]2a− z1(u), a[,
u(x) if x ∈ [a, b],
u(2b− x) if x ∈]b, 2b− zn(u)[,
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and

m̄u(x) =







m(2a− x) if x ∈]2a− z1(u), a[,
m(x) if x ∈ [a, b],
m(2b− x) if x ∈]b, 2b− zn(u)[.

Using theorem 2.2, we conclude that λNe = λD
n+1(m̄u, Īu).

Let (v, λNe) be another solution of PNe(m, I), v 6= u, such that: Z(v)={z1(v), z2(v),
....., zk(v)}. Taking Īv =]2a− z1(v), 2b− zk(v)[. We show firstly that Īu = Īv = Ī .
Indeed, If z1(u) < z1(v) ( the case z1(u) > z1(v) can be treated similarly ), then

]2a− z1(u), z1(u)[ ( ]2a− z1(v), z1(v)[.

Since λD
1 (m, I) verify the SMP with respect to the domain (cf. Theorem 2.2), we

get
λD
1 (m̄u|]2a−z1(u),z1(u)[) = λD

1 (m̄v|]2a−z1(u),z1(u)[)

> λD
1 (m̄v|]2a−z1(v),z1(v)[).

However, it follows

λNe = λD
1 (m̄u|]2a−z1(u),z1(u)[) = λD

1 (m̄v |]2a−z1(v),z1(v)[),

we obtain
λNe = λD

1 (m̄u|]2a−z1(u),z1(u)[)

> λD
1 (m̄v|]2a−z1(v),z1(v)[)

= λNe.

Contradiction! then z1(u) = z1(v).
A similar argument, applied to zn, leads to zn(u) = zk(v). Thus

Īu = Īv = Ī and m̄u = m̄v = m̄.

Consequently,
λNe = λD

n+1(m̄, Ī) = λD
k+1(m̄, Ī).

So, making use of theorem 2.2 (cf. [3]), one obtain n = k, Z(ū) = Z(v̄) and there
exists α ∈ R such that ū = αv̄, i.e {u ∈ W 1,p

0 (Ī) / (ū, λNe) a solution of PD(m̄, Ī)}
is a vector space of dimension 1. It follows then that Z(u) = Z(v) and u = αv;
what implies that {u ∈ W 1,p(I)/(u, λNe) a solution of PNe(m, I)} is a vector space
of one dimension. Then λNe is simple. ✷

Proposition 3.2. The eigenvalues of PNe(m, I) are ordered as follows

0 ≤ λNe
1 (m, I) < λNe

2 (m, I) < ........ < λNe
n (m, I) → +∞ ; n → +∞.

Proof: If m changes its sign on I and verify
∫

I
m(x)dx < 0 then λNe

1 (m, I) >

0. Moreover, from proposition 2.4, we have λNe
1 (m, I) < λNe

2 (m, I).
If n ≥ 2, from the simplicity of λNe

n (m, I) and the multiplicity property (see propo-
sition 2.3), we have λNe

n (m, I) < λNe
n+1(m, I). Indeed, if not, one gets γ(KλNe

n
) ≥ 2.

Which leads to a contradiction with the simplicity of λNe
n . ✷
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4. On zeros points of eigenfunctions

In this section, we investigate the number of zeros points of an eigenfunction
associated to an eigenvalue λNe. For this end, we use a recurrence argument.
The result is well known for n = 1.
For n = 2, we have the following result for λNe

2 (m, I)

Proposition 4.1. Any eigenfunction associated to λNe
2 (m, I) has a unique zero

z1 in I. Moreover, if (u, λNe) is a solution of PNe(m, I) satisfying Z(u) = {z} then
λNe = λNe

2

Proof: If (u, λNe
2 (m)) is a solution of PNe(m, I). Assume that u has q zeros

points in I, q ≥ 2.
Let Z(u) = {z1, z2, ........, zq} with z1 < z2, ........ < zq and define the functionals
(ϕi)0≤i≤q as follows :

ϕ0(x) =

{

u(x) if a ≤ x ≤ z1,
0 if z1 < x ≤ b,

ϕ1(x) =

{

u(x) if z1 ≤ x ≤ z2,
0 if not,

...

...

ϕq(x) =

{

u(x) if zq ≤ x ≤ b,
0 if not.

Taking Kq =< ϕ0, ϕ1, . . . , ϕq > ∩S so that γ(Kq) = q+1, one can easily verify
the following equality:

1

λNe
2 (m)

= min
Kq

∫ b

a
m|u|pdx

∫ b

a
|u′|pdx

,

which implies

1

λNe
q+1(m)

= sup
K∈Γq+1

min
K

∫ b

a
m|u|pdx

∫ b

a
|u′|pdx

≥
1

λNe
2 (m)

,

and consequently λNe
q+1(m) ≤ λNe

2 (m).

On the other hand, one has λNe
2 (m) ≤ λNe

3 (m) ≤ . . . ≤ λNe
q+1(m), from where we

get
λNe
2 (m) = λNe

3 (m) = ...... = λNe
q+1(m).

So, making use of multiplicity property (cf. proposition 2.3), one has γ(KλNe
2

) ≥

q ≥ 2. Which contradicts the fact that λNe
2 (m) is simple. Hence q = 1 and the
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conclusion then follows: " λNe
2 has a unique zero in I".

It remains to prove that if (v, λNe) is a solution of PNe(m, I) which has one
zero in I, i.e Z(v) = {z} then λNe(m, I) = λNe

2 (m, I).
We proved that for any eigenfunction u corresponding to λNe

2 (m), Z(u) = {z1}
(uniqueness of the zero). So, assume that z1 < z.
Since (v̄, λNe) (resp. (ū, λNe

2 (m))) is a solution of Dirichlet problem PD(m̄v, Īv)
(resp. PD(m̄u, Īu)), then using the SMP of λD

1 with respect to the domain. One
deduces firstly that

λNe(m, I) = λD
1 (m̄v|]2a−z,z[) < λD

1 (m̄v |]2a−z1,z1[)

= λD
1 (m̄u|]2a−z1,z1[)

= λNe
2 (m, I).

i.e λNe(m, I) < λNe
2 (m, I).

Secondly, since ]z, 2b− z[ ( ]z1, 2b− z1] then

λNe
2 (m, I) = λD

2 (m̄u, Īu)

= λD
1 (m̄u|]z1,2b−z1[)

< λD
1 (m̄u|]z,2b−z[) = λD

1 (m̄v |]z,2b−z[)

= λD
1 (m̄v |]z,2b−z[)

= λNe(m, I).

Which leads to the required result. ✷

In order to show that the proposition result remains true for n > 2, we use a
recurrence argument. Assume that for any k, 1 ≤ k ≤ n, the following hypothesis
holds:
Recurrence hypothesis For any eigenfunction u corresponding to λNe

k (m, I),
there exists unique zi; 1 ≤ i ≤ k−1 such that Z(u) = {z1, z2, ......., zk−1}. Moreover,
if (v, λNe) is a solution of PNe(m, I) that has (k− 1) zeros points in I then λNe =
λNe
k (m, I).

In the following proposition, we prove the result for λNe
n+1(m, I).

Proposition 4.2. For any eigenfunction u corresponding to λNe
n+1(m, I), there

exists a family of unique (zi)1≤i≤n such that Z(u) = {z1, z2, ......., zn}. Moreover,

if (v, λNe) is a solution of PNe(m, I) which has n zeros points in I then λNe =
λNe
n+1(m, I).

Proof: Typically, as for λNe
2 (m, I). Let u be an eigenfunction corresponding to

λNe
n+1(m, I) which has q zeros in I: Z(u) = {z1, z2, ............., zq}.

To prove that q = n, we distinguish two cases.
Case 1: If q > n. We construct a compact symmetric Kq such that γ(Kq) = q+1.
Indeed, taking Kq =< ϕ0, ϕ1, . . . , ϕq > ∩S where (ϕi)1≤i≤q are defined as above
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and S the unit sphere of W 1,p(I), one has γ(Kq) = q + 1 and we verify easily that

1

λNe
n+1(m)

= min
Kq+1

∫ b

a
m|u|pdx

∫ b

a
|u′|pdx

≥ sup
K∈Γq

min
K

∫ b

a
m|u|pdx

∫ b

a
|u′|pdx

=
1

λNe
q+1(m)

,

i.e

λNe
q+1(m) ≤ λNe

n+1(m).

However, since λNe
n+1(m) ≤ λNe

n+2(m) ≤ . . . ... ≤ λNe
q+1(m), then λNe

n+1(m) =

λNe
n+2(m) = ...... = λNe

q+1(m).
Using the multiplicity property ( cf. Proposition 2.3), one deduces that γ(KλNe

n+1
) ≥

q−n+1 ≥ 2, where KλNe
n+1

= {u ∈ S / (u, λNe
n+1) is a solution of PNe(m, I)}, which

contradicts the fact that λNe
n+1 is simple.

Case 2: If q < n then q ≤ n − 1. From the recurrence hypothesis, u has q
zeros in I and so it correspond to the (q+1)-th eigenvalue of PNe(m, I) and verify
λNe
n+1(m) = λNe

q+1(m).

Since q < n then λNe
n+1(m) = λNe

q+1(m) ≤ λNe
n (m). Contradiction! Hence q = n and

the uniqueness of (zi)1≤i≤n holds.

It remains now to prove that if (v, λNe) is a solution of PNe(m, I) with n zeros
points in I then λNe = λNe

n+1(m, I).

Let u be an eigenfunction associated to λNe
n+1(m, I) such that Z(u) = {z1, z2, .......,

zn}. Suppose that Z(v) = {z′1, z
′
2, ......., z

′
n}. We know that (ū, λNe

n+1(m, I)) (resp.

(v̄, λNe)) is a solution of PD(m̄u, Īu) (resp. PD(m̄v, Īv)) where Īu =]2a−z1, 2b−zn[,
Īv =]2a − z′1, 2b − z′n[ and m̄u ( resp. m̄v) is defined on Īu (resp. Īv) as above.
Then

λNe
n+1(m, I) = λD

n+1(m̄u, Īu) and λNe(m, I) = λD
n+1(m̄v, Īv). (4.1)

Suppose now that z1 < z′1 then ]2a− z1, z1[ ( ]2a− z′1, z
′
1[. Firstly, by the SMP

of λD
1 with respect to the weight, one gets :

λNe(m, I) = λD
n+1(m̄v, Īv)

= λD
1 (m̄v |]2a−z′

1
,z′

1
[)

< λD
1 (m̄v |]2a−z1,z1[)

< λD
1 (m̄u|]2a−z1,z1[)

= λNe
n+1(m, I)

i.e λNe(m, I) < λNe
n+1(m, I).

Secondly, for zn and z′n, we distinguish 3 cases :
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1st case: zn = z′n. In this case ]z′1, 2b − z′n[ ( ]z1, 2b − zn[. Since λD
n verify the

SMP with respect to the weight then

λNe
n+1(m, I) = λD

n+1(m̄u, Īu)

= λD
n (m̄u|]z1,2b−zn[)

< λD
n (m̄u|]z′

1
,2b−z′

n[
)

= λD
n (m̄v|]z′

1
,2b−z′

n[
)

= λD
n+1(m̄v, Īv)

= λNe(m, I).

i.e λNe(m, I) > λNe
n+1(m, I).

2nd case: zn < z′n. Since ]z′n, 2b− z′n[ ( ]zn, 2b− zn[ then

λNe
n+1(m, I) = λD

n+1(m̄u, Īu)

= λD
1 (m̄u|]zn,2b−zn[)

< λD
1 (m̄u|]z′

n,2b−z′

n[
)

= λD
1 (m̄v |]z′

n,2b−z′

n[
)

= λD
n+1(m̄v, Īv)

= λNe(m, I).

Consequently: λNe(m, I) > λNe
n+1(m, I).

3rd case: zn > z′
n
. In this case, ]z′1, z

′
n[ ( ]zn, zn[ ; n > 1 then

λNe
n+1(m, I) = λD

n+1(m̄u, Īu)

= λD
n−1(m̄u|]z1,zn[)

< λD
n−1(m̄u|]z′

1
,z′

n[
)

= λD
n−1(m̄v|]z′

1
,z′

n[
)

= λD
n+1(m̄v, Īv)

= λNe(m, I).

i.e λNe(m, I) > λNe
n+1(m, I).

Finally, according to previous results, one deduces the desired result:

λNe(m, I) = λNe
n+1(m, I).

✷

5. Strict monotonicity with respect to the weight

In this section, we look for the strict monotonicity property of eigenvalues with
respect to the weight.
Note that for λNe

1 (m, I), the SMP with respect to the weight holds ( see a detailed
proof in [8] for m ∈ L∞ or [10] for a weight function in Lr).
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Remark 5.1. 1. In [9], the authors showed an important result concerning the
strict monotonicity property of the second eigenvalue for the p-laplacian prob-
lem with weight: " If m1,m2 are two weight functions in L∞ such that
m1(x) ≤ m2(x) a.e and meas({x ∈ I/m1(x) = m2(x)} < C where C a
well defined constant then λ2(m1) > λ2(m2).

2. In [4], A.Anane and A.Dakkak established a nonexistence result for an assym-
metric one dimensional p-Laplacian under different kinds of boundary condi-
tions ( Dirichlet, Neumann and periodic one). They proved that if m ∈ L∞(I)
verify λk ≤ m ≤ λk+1 a.e in I and λk < m < λk+1 on some subset of nonzero
measure, then 1 is not an eigenvalue of the p-Laplacian.

For λNe
2 (m, I), we state the following result:

Proposition 5.2. λNe
2 (m, I) verify the strict monotonicity property with respect

to the weight.

Proof: Let m,m′ ∈ L∞(I) such that mes{x ∈ I/m(x) > 0} 6= 0 and
mes({x ∈ I/m′(x) > 0}) 6= 0.
Assume that m(x) ≤ m′(x) a.e in I and m < m′ in some subset of nonzero measure.
Let us consider (u, λNe

2 (m, I)) (resp. (v, λNe
2 (m′, I)) ) a solution of PNe(m, I) (resp.

PNe(m
′, I)) such that Z(u) = {z1} (resp. Z(v) = {z′1}). We know that ū (resp.

v̄) is a solution of Dirichlet problem PD(m̄, ]2a− z1, 2b− z1[) (resp. PD(m̄′, ]2a−
z′1, 2b−z′1[)) associated with λD

2 (m̄, ]2a−z1, 2b−z1[) (resp. λD
2 (m̄′, ]2a−z′1, 2b−z′1[))

and Z(ū) = {z1} and Z(v̄) = {z′1}.
We proceed here similarly as in [3]. So, we distinguish three cases:

1st case: If z1 = z′1 = z Then, we have m̄, m̄′ are defined in Ī =]2a− z, 2b− z[
and satisfy m̄(x) ≤ m̄′(x) a.e in Ī and m̄ < m̄′ in some subset of nonzero measure
of Ī.
Since λD

2 verify the SMP, then

λNe
2 (m′, I) = λD

2 (m̄′, Īz)

< λD
2 (m̄, Īz)

= λNe
2 (m, I)

The result then follows.
2nd case: z1 < z′1. In this case, m̄u(x) ≤ m̄′

v(x) a.e in ]2a − z1, z1[ and ]2a −
z1, z1[ ( ]2a− z′1, z

′
1[ then by using the monotonicity property and the SMP with

respect to the weight of λD
1 , we obtain

λNe
2 (m, I) = λD

1 (m̄u|]2a−z1,z1[)

≥ λD
1 (m̄′

v|]2a−z1,z1[)

> λD
1 (m̄′

v|]2a−z′

1
,z′

1
[)

= λNe
2 (m′, I).

The result then holds.
3rd case: z′

1
< z1. Since m̄u(x) ≤ m̄′

v(x) a.e in ]z1, 2b − z1[ and ]z1, 2b −
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z1[ ( ]z′1, 2b − z′1[ then similarly to the second case, we deduce that λNe
2 (m, I) >

λNe
2 (m′, I). ✷

Now, we have to prove that the above result is valid for λNe
n (m, I), n > 2.

Proposition 5.3. For n > 2, λNe
n (m, I) verify the SMP with respect to the

weight.

Proof: Let m,m′ ∈ L∞(I) such that mes{x ∈ I/m(x) > 0} 6= 0 and mes{x ∈
I/m′(x) > 0} 6= 0.
Suppose that m(x) ≤ m′(x) a.e in I and m < m′ in some subset of nonzero measure.
Let (u, λNe

n (m, I)) (resp. (v, λNe
n (m′, I))) a solution of PNe(m, I) (resp. PNe(m

′, I))
such that Z(u) = {z1, z2, ........., zn−1} (resp. Z(v) = {z′1, z

′
2, ........, z

′
n−1}).

ū (resp. v̄) is a solution of Dirichlet problem PD(m̄u, Īu) (resp. PD(m̄′
v, Īv))

corresponding to λD
n (m̄u, Īu) (resp. λD

n (m̄′
v, Īv)) where m̄u (resp. m̄′

v) is defined
on Īu =]2a − z1, 2b − zn−1[ (resp. Īv =]2a − z′1, 2b − z′n−1[ ). As previously,

we have Z(ū) = Z(u) (resp. Z(v̄) = Z(v)) and λNe
n (m, I) = λD

n (m̄u, Īu) (resp.
λNe
n (m′, I) = λD

n (m̄′
v, Īv)).

To prove the result, we use mainly the SMP with respect to the weight and domain
of Dirichlet problem eigenvalues. We distinguish three cases for z1 and z′1: (z1 =
z′1 = z), (z1 < z′1) and (z1 > z′1). For each case, we study three sub-cases related
to zn−1 and z′n−1.
1st case: z1 = z′1 = z .
(1) If zn−1 = z′

n−1
= z′. By the definition of m̄u and m̄′

v, one has m̄u(x) ≤
m̄′

v(x) a.e in Ī = Īu = Īv and m̄u < m̄′
v on some subset of nonzero measure. Then

λNe
n (m, I) = λD

n (m̄u, Ī)

> λD
n (m̄′

v, Ī)

= λNe
n (m′, I)

(2) If zn−1 < z′n−1. Then m̄u(x) ≤ m̄′(x) a.e in ]2a−z, zn−1[ and ]2a−z, zn−1[ (
]2a− z, z′n−1[ which implies the following result:

λNe
n (m, I) = λD

n−1(m̄u|]2a−z,zn−1[)

≥ λD
n−1(m̄

′
v|]2a−z,zn−1[)

> λD
n−1(m̄

′
v|]2a−z,z′

n−1
[)

= λD
n (m̄′

v, Īv)

= λNe
n (m′, I)

(3) If zn−1 > z′
n−1

. We obtain

λNe
n (m, I) = λD

1 (m̄u|]zn−1,2b−zn−1[)

≥ λD
1 (m̄′

v|]zn−1,2b−zn−1[)

> λD
1 (m̄′

v|]z′

n−1
,2b−z′

n−1
[)

= λNe
n (m′, I)
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2nd case: z1 < z′
1
.

(1) If zn−1 = z′n−1 = z′. Like the 1st case: (2), we have

λNe
n (m, I) = λD

n−1(m̄u|]2a−z1,z′[)

≥ λD
n−1(m̄

′
v |]2a−z1,z′[)

> λD
n−1(m̄

′
v |]2a−z′

1
,z′[)

= λNe
n (m′, I)

(2) If zn−1 < z′
n−1

. In this case, m̄u(x) ≤ m̄′
v(x) a.e in ]2a− z1, z1[ and ]2a−

z1, z1[ ( ]2a− z′1, z
′
1[ then

λNe
n (m, I) = λD

1 (m̄u|]2a−z1,z1[)

≥ λD
1 (m̄′

v|]2a−z1,z1[)

> λD
1 (m̄′

v|]2a−z′

1
,z′

1
[)

= λNe
n (m′, I)

(3) If zn−1 > z′
n−1

. This case can be proved exactly like the second case: (2).
3rd case: z′1 < z1.
(1) If zn−1 = z′

n−1
= z′. Since m̄u(x) ≤ m̄′

v(x) a.e in ]z1, 2b−z′[ and ]z1, 2b−z′[ (
]z′1, 2b− z′1[ then

λNe
n (m, I) = λD

n−1(m̄u|]z1,2b−z′[)

≥ λD
n−1(m̄

′
v|]z1,2b−z′[)

> λD
n−1(m̄

′
v|]z′

1
,2b−z′[)

= λNe
n (m′, I)

(2) If zn−1 < z′
n−1

. One has: m̄u(x) ≤ m̄′
v(x) a.e in ]z1, zn−1[, ]z1, zn−1[ (

]z′1, z
′
n−1[ and n > 2, so

λNe
n (m, I) = λD

n−2(m̄u|]z1,zn−1[)

≥ λD
n−2(m̄

′
v |]z1,zn−1[)

> λD
n−2(m̄

′
v |]z′

1
,z′

n−1
[)

= λNe
n (m′, I)

(3) If zn−1 > z′n−1. The same proof as for first case: (3).

Finally, λNe
n (m, I) > λNe

n (m′, I); ∀n > 2. The proof is complete. ✷
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