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Integral Transform Method for Solving Time Fractional Systems and
Fractional Heat Equation

A. Aghili and M.R. Masomi

ABSTRACT: In the present paper, time fractional partial differential equation is
considered, where the fractional derivative is defined in the Caputo sense. Laplace
transform method has been applied to obtain an exact solution. The authors solved
certain homogeneous and nonhomogeneous time fractional heat equations using inte-
gral transform. Transform method is a powerful tool for solving fractional singular
Integro - differential equations and PDEs. The result reveals that the transform
method is very convenient and effective.
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1. Introduction and Definitions

Time fractional partial differential equations, obtained from the standard par-
tial differential equations by replacing the integer order time derivative by a frac-
tional derivative have been studied and treated in different contexts by several
research workers. The fractional diffusion equation, the fractional wave equation,
the fractional advection-dispersion equation, the fractional kinetic equation and
other fractional PDEs have been studied and explicit solutions have been achieved
by Mainardi, Pagnini and Saxena [1], Langlands [2], Mainardi, Pagnini and Goren-
flo [3], Mainardi and Pagnini [4,5], Yu and Zhang [6], Liu, Anh, Turner and Zhang
[7], Saichev and Zaslavsky [8], Saxena, Mathai and Haubold [9], Wyss [10], Schnei-
der and Wyss [11] and several other research works can be found in the literature
[15,16]. In these works, the techniques of using integral transforms were used to
obtain the formal solutions of fractional PDEs. Integral transforms are extensively
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used in solving boundary value problems and integral equations. The problem
related to partial differential equations can be solved by using a special integral
transform thus many authors solved the boundary value problems by using single
Laplace transform. Laplace transform is very useful in applied mathematics, for
instance for solving some differential equations and partial differential equations,
and in automatic control, where it defines a transfer function. The left Riemann-
Liouville fractional integral of order o > 0 is defined as

i L[
IS0 =1 | G e

The left Caputo fractional derivatives of order &« >0 (n—1 < a <n,n € N) is
defined by

1 DA
C na _
o Dif(t) = T(n—a) /a (t — z)o—ntl dz.
Laplace transform of function f(¢) is given as
LF®Y = [ e e = F(s)
0

If L{f(t)} = F(s), then L7'{F(s)} is given by

$0= o [ etrisyas,
2mi c—100
where F'(s) is analytic in the region Re(s) > ¢. For n — 1 < a < n, one gets
n—1
L{TDY (1)} = s"F(s) = > s** 1 f (0.
k=0

Two-parameter function of the Mittag-Leffler type is defined by the series ex-
pansion

Eepl?) = 3 S s 3y

The simplest Wright function is given by the series

o0 Zn
W(a, B; 2) :;m’

when «, 3,z € C. We have the following relationship

a—p

_ a S 1
L{t’7 E, g(+at™)} = pro—, (Re(s) > |a|~).
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Definition 1.1. The Fresnel integrals are defined through the following integral
representations

Fresnelc(z):/ cos £2dE,
0

Fresnels(ac):/ sin £2d¢.

0
They arise in the description of near field Fresnel diffraction phenomena.

Theorem 1.2. (Schouten-Van der Pol Theorem) Consider a function f(t)
which has the Laplace transform F(s) which is analytic in the half-plane Re(s) >
s0. We can use this knowledge to find g(t) whose Laplace transform G(s) equals
F(4(s)), where ¢(s) is also analytic for Re(s) > so. This means that if

G(s) = F(o(s)) = / " J() expl(—d(s)r)dr

and
1 c+ioco
o) =55 [ Pl expits)ds,
then
e’} c+ioco
g9(t) :/0 f(r) (2%” /,_. exp(—¢(s)T) exp(ts)ds) dr.
Proof: See [13]. O

2. Singular Integral Equations of Fractional Order

Laplace transform can be used to solve certain types of singular integral equa-
tions. The mathematical formulation of physical phenomena often involves Cauchy
type, or more severe, singular integral equations. There are many applications in
many important fields, like fracture mechanics, elastic contact problems, the theory
of porous filtering contain integral and integro - differential equation with singular
kernel.

Lemma 2.1. The following class of Fredholm singular integral equation of second
kind of the following type

)2 Jn(2Vat)p(t)dt, n=0,1,2, .. (2.1)

18

¢<x>=f<w>+x/0°°<

has the formal solution as

_ @) A1 /C*i“’
C1-X 0 (1=AY)2mi ),

e F(é)ds. (2.2)

¢(x)

—100
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Solution: Let L(f(t)) = F(s) and L(¢(t)) = ®(s) be the Laplace transforms
of f(t) and ¢(t), respectively, then by using the Laplace transform of (2.1) we have,

B(s) = F(s) + Aﬂ%@(é) (2.3)

Now, in relation (2.3) we replace s with 1, to obtain

1 1

(=) = F(=) + As"T10(s). (2.4)

s s

Combination of (2.3) and (2.4) and calculation of ®(s) leads to the following,
F(s) + o F(3)

B(s) = T (2.5)

Upon using complex inversion formula, relation (2.5) leads to the following,

f(z) A 1 /0“00 et 1
= — F(=)ds.
o) 1—\° * (1= X)) 2mi Jo o, s"F! (s)ds

Example 2.2. Solve the following singular integral equation

¢(x) = coshx + A/OOO \/§J1(2\/E)¢(t)dt.

Solution: Laplace-transform of the above integral equation, leads to the fol-
lowing

6(z) = cosh x . A i /CH"O es?
T1=A (1= )2 ),

—100
thus, the final solution is

(I =X)coshz + A
1=2%

¢(z) =

Lemma 2.3. The following fractional Fredholm singular integro-differential equa-
tion of the form,

18

€DeG(a) = f(x) + A / T ()2 g,V (), (2.6)

where $(0) =0 and 0 < a < 1, has the formal solution as

estds. (2.7)

o) =5 [ T )
o f i 1—\?
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Solution: Let L(¢p(t)) = ®(s) and L(f(t)) = F(s) be the Laplace transforms
of ¢(t) and f(t), respectively, then by using the Laplace transform of (2.6) we have
the following relation,

SB(s) = F(s) + Ay ®(0), (2.8)

now, in relation (2.8) we replace s by %, to obtain

1 1

sTOB(=) = F(=) + As"T! ®(s). (2.9)
s s

Combination of (2.8) and (2.9) and calculation of ®(s) leads to the following,

sTF(s) + s7 F(2)
1—\2

B(s) = (2.10)

Upon using complex inversion formula, relation (2.10) leads to the following,

e®tds.

ctico —a A 1
d)(t) 1 / ’ 5 F(S) + sntl F(s)

T2 o 1- A2
Example 2.4. Solve the following fractional singular integral equation
. >
3D3¢@):smw%:/ (?L5@v65¢umm
0

where ¢(0) =0 and 0 < o < 1.

Solution: Upon using relation (2.11) leads to the following

1 fetiee 1 A
- ISd .
Y= o e T2 <sa<s2+1>+s<s2+1>>e ’

1

= 12 (oIS sinx + A(1 — cosx)) .

Special case: When a = 0.5, we get

1 1
o(z) = T (OIJC2 sinz + A(1 — cosx))

V2sinzFresnelc(y/2) — V2 cosaFresnels(y/22) A

= +
1— )2 1— )2

(1 —cosx).
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3. A Method for Obtaining Inverse Laplace Transform

Let us recall a theorem developed by Bobylev and Cercignani [13,14] concerning
the inversion of multivalued transforms that are analytic everywhere in the s— plane
except along the negative real axis. The theorem is as follows:

Theorem 3.1. (Bobylev - Cercignani Theorem) Let f(t) denote a real-valued
function, where its Laplace transform F(s) exists. Let F(s) satisfy the following
hypothesis:

1) F(s) is a multi valued function which has no singularities in the cut s—
plane. The branch cut lies along the negative real axis (—o0,0].

2) F*(s) = F(s*), where the star denotes the complex conjugate.

8) FE(n) = lim F(ne™*') and F*(n) = (F-(n)"-

— T

4) F(s) = o(1) as |s| = oo and F(s) = o(ﬁ) as |s| — 0, uniformly in any
sector |arg(s)| <m—mn, 0 <n < 7.
T i
5) There exists € > 0, such that for every m —e < ¢ < m, Ere?) ¢ Li(RT)

1+r
and |F(re*?)| < a(r), where a(r) does not depend on ¢ and a(r)e™°" € Li(R")
for any 6 > 0.
then
1 [ o
10 =2 [~ rm(r=(a))e~na,
0

We now present some interesting applications of the above theorem.

Lemma 3.2. The following relationship holds true

Lt {Wi—f—b) exp (.CC %)} _ %/OOO Im(F~ (U))e_t’ﬂdn,

where 0 < a < 1, a,b> 0 and

671,/% cos(%fe)
X

(=) =

{\/ﬁcos (mﬁSin(WQQQ) +m) + bsin (m@sin(ﬁ(ge)—i—ﬂa)}.

Proof: Clearly, F(s) satisfies all of the conditions listed in the Theorem 3.1, So
that

= lim e = - - ex L] .
n e n nae—wm(_\/ﬁl +b) p Nee~T 4 g

Now, we have
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mor i+ b @ xa, 6
F~(n) = £ Wty (V7 ) exp <:L' 77_621692) ,
p

n*(n +b*)
where
p = /12" + 2an° cos Ta + a2,
= tant (T (0o <)
n*cosam +a
Thus
B e™ (/1 + b) ( no 0 — 7o . 0 —Ta )
F = ————"¢exp| —x4/—(cos + 7 sin ,
) = g o~y (cos( ) 4 asin(—5)

as a consequence, we get

n Ta—0
e—m./T cos( ™%
X

Im(Ff(U)) = 770‘(77+b2)

{\/ﬁcos (x@sin(FQQ_ 9) + m) + bsin <x\/§sin(ﬂa2_ 9) + m> } .

Therefore, the inverse Laplace transform is as following

fiy =1 / " Im(F (n))e~"dn,

™
O

Problem 3.3: Let us consider the following partial fractional differential equa-
tion

0 8au(z,t)} aaﬁu(z,t) er@u(:c,t)
Ox ote ot Ox
where 0 < a < 1,0 < < 1,0 < x < o0, t,a,b > 0 with the boundary
conditions

=0,

u(0,4) = %

and the initial conditions u(z,0) = u,(z,0) = 0.
Solution: The Laplace transform of the fractional PDE and boundary and

initial conditions yields
1 axs?
U =— - .
= Lo ()
U(z, s) satisfies all of the conditions listed in the Theorem 3.1, therefore

i u(z, 1)] < oo,
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_ . i 1 aznﬁef’rﬁi
U (z,n) = lim U(z,ne “”):WGXP (m

d—T

eﬂ'ai ( axnﬁefwﬂi (naeﬂ'ai 4 b) )
= exp | — y
ne P

where p = %% 4 2bn® cos ma + b%. Then

aban? cos B + axn®TP cos(B — a)ﬂ'}
p
abxn? sin B + azn®tP sin(B — a)m }
5 :

(U~ (o) = o {

X sin {Woz +
Finally, the solution is obtained as

u(z,t) = %/OOO Im(U™ (z,n))e”"dn.

4. Fractional PDE with Moving Boundary

In fractional PDE problems, we showed that Laplace transforms are particularly
- useful when the boundary conditions are time dependent. Consider now the case
when one of the boundaries is moving. This type of problem arises in combustion
problems where the boundary moves due to the burning of the fuel [13].

Problem 4.1: Let us solve the following time-fractional heat equation

ot ox2
where 0 < a < 1, ft < x < oo, t >0 and subject to the boundary conditions

Ou(w,t) _ 2 0%u(x,t) (4.1)

1 1
_)a lim |U(.T,t)| < 0,
T—00

u(z, )| gt = \/—7r—tf>><l)(—41f

and the initial condition

u(z,0) =0(0 <z < 00).
Solution: By introducing the new coordinate n = x — (¢, then the problem
can be reformulated as

2 w(n, t)

0% 0
grwint) _ 56_77 (oI} “w(n,t)) =a “ar (4.2)

ot
where 0 < n < 0o, t > 0 and subject to the boundary conditions

1 1
’LU(O,t) = = eXp(i_)anh*}H;o |w(777t)| < 09,

vt 4t
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and the initial condition

w(n,0) =0(0 <n < o).
Taking the Laplace transform of the equation (4.2), we obtain

O°W(n,s) B oW(ns) s*

1 =0 4.3
8772 a2gl— 877 a2 (775 S) ( )
with
e~V
W(0,s) = 7 » Jim [W(n, t)] < oo.

The solution to the equation (4.3) is

s 3 2
€ n U cay B
Wn.s) = NG P Togrsima T gsla ST 4a?

Case 1: If o = 1, then the solution is obtained as [13]

¢ -1
_ B(z—pBt) e -7

u(z,t) = e 2a2 ; 7T(t = 7_)¢(

x — Br,7)dT,

where

d(—Br,7) = %(eﬁ(zafﬂ”f C(% - ﬂzf pretders C(xzaf; ' ﬂf )>'

Case 2: If a # 1, we apply the Bobylev-Cercignani Theorem 3.1. Therefore

W (n,€) = lim Wn.ge™”)
. GV <_ﬂne“(1“”
Ve Fi 2a2¢1
m(l—a)i 2
_ne 2-a,—n(2—a)i ﬂ_
g \/5 ‘ T 1z

VEe & 2q2¢' " ¢
where
2 4
4—2« /3 2—a /3
\/ R A S TS
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2—a s 9
0 =tan"' | — 5 ¢ sin@ = ) = | (0<0<m).
& %cos(2 —a)m + 457

Hence

- 1ex i Bner(1—a)i em(l-a)i o
W (n,ﬁ)ZMeXp(_ U " |

\/E 2a2§1—o¢ - a&l_a \/ﬁe7
that yields

Im(W~(n,§)) =
Lex 7BUCOS(1 _ Oé)ﬂ' — n\/ﬁ COS Q — Q)T

X COS (577 sin(l — am + U sin(g +(1—a)m) — \/E) .

2a2§1—a aé-l—a

The formal solution is as following,

[\]

u(z,t) = 1 /000 Im(W~(x — ﬂf,&))eftgdf.

T
5. A Problem of Fractional Order System with Three Variables

In this section, the authors considered certain non-homogeneous time fractional
system of heat equations which is a generalization to the problem of heat transfer-
ring from metallic bar through the surrounding media studied by V.A. Ditkin, P.A.
Prudnikov [12]. In this work, only the Laplace transformation is considered as it
is easily understood and being popular among engineers and scientists. The basic
goal of this work has been to employ the Laplace transform method for studying
the above mentioned problem. The goal has been achieved by formally deriving
exact analytical solution.

Problem 5.1: We consider the following system of fractional order

@:8215 )\a’U

S = TG, Tl (5.1)
0%  0%v 10w
G ~az tra T (5:2)

where 0 < a < 1,t >0, -l <x<Il,r>aand §,v € R with the boundary
conditions

u(z,0) = v(x,r,0) = 0,u(—1,t) =u(l,t) =0

and

v(z,a,t) = u(z,t), im v(z,rt) =0.

T—00



INTEGRAL TRANSFORM METHOD 317

Solution: By taking the Laplace transform of relation (5.2), we have

2V 4+ 1V + (in/5% — B)*r?V = 0.

Let us assume that L{v(z,r,t)} = V(x,r,s), then one has

Vix,r,s) = c1do(i/s* — Br) + c2Yo(in/ s — pr),

where Jy and Y| are Bessel functions of the first and second kind of order zero,
respectively. Using the fact that lim v(z,r,t) =0, we get
T— 00

Vix,r,s) = c1do(i/s* — Br).

But v(z, a,t) = u(z,t), therefore

Jo(iv/s — Br)
Jo(iv/s® — Ba)’
where L{u(z,t)} = U(x,s). On the other hand, one has

ov _ Uta.s) [ —in/sa =g alivs® — Ba)
3| =a =0 B =)

Taking the Laplace transform of relation (5.1), we will have

V(x,r,s) =U(x,s)

) J1(iv/s* — Ba) 1
U =Ugy —idan/sY — f————U+ - — U,
s iAay/s ﬂJo(i 55 = Ba) +S 0l

so that
Upw — h(s)U = ——, (5.3)

where

J1 (1 [
h(s) = s+ v +ila\/s ﬂ%.

Differential equation (5.3) has the following solution

U(x,s) = ¢y cosh(y/h(s)z) + cgsinh(\/h(s)z) + shl(s)'

By using the boundary conditions u(—I,t) = u(l,t) = 0, we obtain

Uz, s) = 1 (1 B cosh(ﬂh(s)x)) .

sh(s) cosh(y/h(s)l)

~—

For simplicity, let us assume that

Flah(s) = 1— cosh(y/h(s)x)

cosh(y/h(s)l)

3
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thus
Uls,s) = F(:;LZS()S))
Now, if
z,s e—Eh(s)
pefot 0y = T8 pgie =
therefore
u(e,t) = LU (2, 5)) = L1 22D / BE )z, €)d

Finally, we get

0 = e o )
- 1Ltl{%}1L {ﬂw l>%}
_ 1_ZL {eXp (2nt1)l—x)\/§)_exp(—((znt1)l+x)\/§)}
- 12@#4%)6#0(%)).

On the other hand

h(s) = s* + v +iXay/s* — ﬂz\/_vgz)

hence

YED) = L exp(-gh(s)

L;l {6_57 e‘js exp <i§)\am—Jl(i S ﬂa))}

Jo(iv/s® a)
o —&(s%=p) J- a
o R o )

Case 1: For a = 1, we have
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fi&t) = Ltl{%/s_;)exp< zf)\a\/sﬂw)}

J
= PtL;t {ejg exp <¢§Aa\/§‘];@7\/§a;>

|
— eﬁtH(t—f)Lt_l{%exp (—z&Aaﬁ%\\/fia))H Pyt

where H(t) is Heaviside unit step function. By complex inversion formula, the
inverse Laplace transform is given by

Lt {% exp (—lf)‘“\/_JOE ?Z )}

1o A(v50)\
o - —exp <z§)\a\/_J0( \/_a)>et ds.

The integrand has a branch point at the origin and it is thus necessary to choose
a contour which does not enclose the origin. We deform the Bromwich contour so
that the circular arc BDFE is terminated just short of the horizontal axis and the
arc LN A starts just below the horizontal axis. In between the contour follows a
path EH which is parallel to the axis, followed by a circular arc HJK enclosing
the origin and a return section KL parallel to the axis meeting the arc LN A (see
figure). As there are no poles inside this contour C', we have

[ (o)

y
[ 2
B
_\Cf—f:’.
R
lff
E H )\J I
L K |/
c—iw
4
N

Now on BDE and LN A
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o o)

so that the integrals over these arcs tend to zero as R — oo.
Over the circular arc HJK as its radiuse — 0, we have s = get? ,m<0< —m.

Thus
1 J1(i
lim / — exp (—if)\a\/EM) et¥ds = 0.
R — 00 JHIK VS Jo(i/sa)

e—0

Along EH, s = ze'™,\/s = iy/z and as s goes from —R to —¢, z goes from R
to . Hence

[ (Com)

e—=0

R JWEa)) g
2o L p( S i) )

e—0

/0 > i exp (mﬁ%) e e

Similarly, along KL, s = ze~"™, /s = —iy/z and as s goes from —¢ to —R, z
goes from € to R. So

o[ e o)

e—0

-R

lim \/_ exp (—zf)\a\/_

R— o0 J-¢
e—0

/O LT (mﬁ%) ez

:
i) e

Consequently

27”/ \/_exp( iEAavs E?i)etsdsZ% ABdS—i_%/BDEdS

1 1 1 1
+— ds + — ds + — ds + — ds = 0.
21 EH 211 HIK 21 KL 211 LNA
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So that, the final result is
1 et q Ji(iv/sa)\ .
—iEN tsd —
o /C_ioo \/geXp( iEhavs TG Ty ) €T

L[ o (omEt)

Thus we obtain

A&t = L;l{ef—? exp(l'@aﬂ ”—ﬁim

= - | N T e (—&aﬁ ﬂég) (=002 g

In case of 0 < @ < 1, we get

e—f(sa—ﬂ) 14/ S a
R e e G e )
%/000fl(EaT)W(—aa()?_Tt_a)dT'

Finally, for 0 < a < 1,

po = i LB o - gt

S

i 1 N i 1 ron—=5
_ _a\n 2 -1 S—om-i-g—l — _A\n 2 —
;f f) (H)Lt{ ' ;( 2 (n)F(om%Jrl)
Consequently
YED) = L exp(—gh(s)

{ e~0H8) [T fo () f3(t —m)dn 1 0 < a < 1
—€OHB) [T (&) f3(t —n)dn s a =1

Therefore, we obtain u(z,t) as follows
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we) = [t oa o
J5= e (5 a(,m) fo(t — m)dn)
x (1= 0o (erfel B0 — enfe( 08 ) ) de 0 < a< 1

JyZ €€ ([ (6 m) folt — m)dn)

(1 - Zn 0 (erfc( (Qn;ygl_m) TfC(@nH)Hm ))) ¢ a=1

B Jo(iv/s* — Br)
V(z,r s) =Ulx, S)—Jo(ima)'
If o =1, we have
_ -1 Jo(iv's — Br) AeJo(2k A7
gl(Tv t) =1, { ( \/s—a } - ag Z Jl )\k *(ﬁ - ﬂ)t),

where A1, Ao, A3, ... are roots of Jy(iv/s — fa). For 0 < a < 1,

ga(rt) = Ltl{ﬁ:j—\/@}

)\kJO (2er) [ A _
= LA —(ZE ~ B )W (~a,0; -7t *)d
aQtZ = / exp(~(25 — B)7)W(~a, 0; —7t~*)dr

AieJo (2k o
= aQtZ A )\k L{W —a,0; —7t ),7’4)8}

7 )\kJOf > (7a2)"t_om
: Z 1) (Z F(—aN)(Ai—a%)”“>

n=0
2 & A Jo( —5“7") a’t=®
- 7 Z 2 ~a0(— 73 23):
t = (AR (AR — a?B) A —a?p

Consequently
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v(x,r,t)

LYV (z,r, )} = L7 (U( Joliv/s® — Br) )

SOt
SOt

Jo(iv/5® — fa)

fo (z,m)g2(r,t —m)dn: 0 < a <1

fo (x,m)g1(r,t —m)dn: =1
6. Conclusion

The paper is devoted to study and application of Laplace transform. The main

purpose of this work is to develop a method for finding formal solution of certain
Fredholm fractional singular integral equations of second kind, analytic solution
of the time fractional heat equation and system of partial fractional differential
equations, which is a generalization to certain types of problems in the literature
.We hope that it will also benefit many researchers in the disciplines of applied
mathematics, mathematical physics and engineering.

10.
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