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Null Parallel p-Equidistant B-Scrolls *

A. Zeynep AZAK, Murat TOSUN and Melek MASAL

ABSTRACT: In this paper, null parallel p-equidistant B-scrolls are defined in 3-
dimensional Minkowski space R?. We prove necessary and sufficient conditions for
these B-scrolls to be equivalent of their Cartan frames. The relations between matri-
ces of the shape operators and the algebraic invariants (Gaussian, mean curvatures,
principal curvatures) of these B-scrolls are shown. Besides we give the relations
between second Gaussian curvatures, mean curvatures and the distribution param-
eters of non-developable null parallel p-equidistant B-scrolls. Finally, an example is
given related to the null parallel p-equidistant B-scrolls in R?.
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1. Basic Concepts

The Minkowski 3-space R3 is the Euclidean 3-space R® provided with the stan-
dard flat metric
h = —da? + dzj + da3 (1.1)

where (21,79, 73) is a rectangular coordinate system of R$. Since h is an indefi-
nite metric, recall that a vector v € R} can have one of three Lorentzian causal
characters: it can be spacelike if h (v,v) > 0 or v = 0, timelike if & (v,v) < 0 and
null(lightlike), if h (v,v) = 0 and v # 0. The norm of a vector v € R3 is defined
as ||v]| = v/|h (v,v)|. Therefore, v is a unit vector if h (v,v) = £1. Furthermore,
vectors v and w are said to be orthogonal if h (u,w) = 0, [11]. For any vectors
v = (v1,v2,v3),w = (w1, ws,w3) € R}, the Lorentzian product v A w of v and w is
defined as [1]

v A w = (Vaws — V3Wa, VIW3 — V3W1, V2l — V1W3) . (1.2)

Similarly an arbitrary curve a = «(s) in R} can locally be spacelike, timelike
or null (lightlike) if all of its velocity vectors o (s) are spacelike, timelike or null
(lightlike), respectively. If h (a/ (s),a’ (s)) = £1 then « is a unit speed curve and s
is arc-length parameter of a, [10]. Let M be a surface in 3-dimensional Minkowski
space R3. The surface M is called a timelike surface if the induced metric on the
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surface is a Lorentzian metric. Therefore, the normal of this timelike surface is a
spacelike vector, [4]. Let us suppose that h(Py, P2) = 0. The following table is
valid for the plane 7 which is spanned by the vectors P; and P, according to being
the vectors Py and P spacelike, timelike or null vectors, [8].

f
Pﬂ spacelike timelike null

\ ST spacelike T timelike T null
spacelike
_ AT timelike —_— J—
tmelike
null T hull - -

Table 1

Let M be a Lorentz manifold and o be a null curve on the manifold M in R3.
The frame in R} is positively oriented triple (¢,7,u) of vectors which satisfies the
following conditions

0,£) =h(n,n) =0, h(t,n)=-1
u) = = h(u,u) =1 (1.3)

S
~
>
—~
3
£
<o

A null frame for a null curve o (s) is a frame field F (¢ (s) ,n (s) , u (s)) such that 4
is positive scalar multiple of ¢, [9]. In this situation, (a, F') couple is called framed
null curve. Frames of null curves are not unique. Moreover, frames are changed
under reparametrization of a curve. Therefore, the curve and the frame must be
given together. The Frenet formulas of a with respect to the frame F' are given by

19]:

4 — |0+ ku,
ot =—kn+Tu, (1.4)
9 = 7l + Ku.

The functions k, x and 7 are called the curvature functions of . There always

exists a parameter s of a such that k¥ = 0 in (1.5). This parameter is called a
distinguished parameter of a [6]. Then the Frenet formula of a can be written by

2 = ku,
an = ru, (1.5)

Se =Tl + kn.

Here, /¢ is the tangent vector (rather than its direction) and u is analogous to the
principal normal in the standard Frenet frame for a curve in E3, [9]. The null
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frame F (£ (s),n(s),u(s)) is called Cartan frame of a. A parametrized null curve
parametrized by distinguished parameter s together with its Cartan frame is called
a Cartan framed null curve [6]. In addition to that

{An=u, nAu=-n, LAu=/, (1.6)

A ruled surface is a surface swept out by a straight line Y moving along a curve a.
The various positions of the generating line Y are called the rulings of the surface.
Such a surface has a parametrization in ruled form as follows:

o(s,v) =a(s)+vY (s). (L.7)

We call a to be the base curve and Y to be the director vector. If the tangent
plane is constant along a fixed ruling, then the ruled surface is called a developable
surface. The remaining ruled surfaces are called skew surfaces. If there exists a
common perpendicular to two preceding rulings in the skew surface, then the foot
of the common perpendicular on the main ruling is called a central point. The
locus of the central points is called the curve of striction [4], [11].

In 3-dimensional Minkowski space R? if the base curve o and the director vector
Y are chosen as a null curve and a null line, respectively, then the ruled surface is
called null scroll and denoted by M. It is easily seen that the null scroll M is a
timelike surface. Especially when « (s) # 0 and 7 (s) = constant, the null scroll
M is called a B-scroll and parametric equation is given as follows [7]:

¢ (s,0) = a(s)+on(s)

B-scrolls were first introduced by Graves [5] and used to classify the codimension
one isometric immersion between Lorentz surfaces. Then some authors studied and
developed the geometry of B-scroll [13].

Let M be a B-scroll. Then the tangent planes along a ruling of M coincide if and
only if 7 =0, [3].

The striction curve and drall (distribution parameter) of non-developable B-scroll
in R}, respectively, is given as follows [3]:

8 =aly - MO (19)
and

_det(¢,n,n")

MW o

Let M be a surface in R3. If D and N be Levi-Civita connection and the unit
normal vector field on M, respectively then the shape operator of M which is
obtained from NV is defined by

S(X)=—DxN, VX € x (M) (1.10)
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where x (M) is the space of the vector fields of M, [11].
Let S (P) is the shape operator of M at the point P. Therefore,

K:M—=IR (1.11)
P — K (P)=detS(P) '
the function is called as Gaussian curvature function and also the value of K (P)
is the Gaussian curvature of M at the point P. Similarly

H:M—IR

rS(P
P—H (P) = tboy(]\/f)

(1.12)

the function is called as mean curvature function and also the value of H (P) is
called as mean curvature of M at the point P. If M is a non-developable surface
and E, F,G are the coefficients of the first fundamental form I, then E, F,G are
as follows [12]:

E=h(ps0,), F =h(p,, ¢,), G="h(p,,¢,)- (1.13)

If we take D = EG — F?, then the coefficients of the second fundamental form e, f
and g of M are given as

o = 1(0se 05 N 20) f:h(sosmosA%) g:h(%www%) (1.14)
D ’ D ’ D ' '

Besides, the second Gaussian curvature of the surface M is given as, [12].

1 _%euv + fov — %gss %es fs — %ev 0 %eu %gs
K= — 1 7 T, c J S I I v N L SNERTS
(legl = £2) 1 2
9 590 f g 39s f g

Let M be a non-developable surface in R}. If K and H denote the mean curva-
ture and the Gaussian curvature of the surface M, respectively, then the second
fundamental form 71 can be written as

11 = Ludl'ldl']

So, the second mean curvature Hy; of M is given by

(Vi o2 (wviK))) )

Hyyp

1 0
2/|det I z]: o’

where L% is the inverse of the matrix representation L;; of the second fundamental
form and u', u? correspond to the parameters s and v, respectively, [12].
Throughout this paper, we consider n and « as a null vector and a null curve,
respectively.
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2. Null Parallel p-equidistant B-scrolls in R}

Let o be a null curve and {£(s),n(s),u(s)} be a Cartan frame of the null
curve . If the null vector n (s) moves along the null curve «, then the B-scroll is
given by the following parametrization

w(s,v) =a(s)+vn(s) (2.1)

where, the curve « and the vector n (s) are called base curve and the director
vector of B-scroll, respectively. This B-scroll is denoted by M (k(s) #0, 7(s)=
constant, see [7]). Considering equation (2.1) we have

v, =L (s)+vTu(s),p, =n(s). (2.2)
Therefore, the unit normal vector Ny of B-scroll M is

Ny s NPy u(s) +ovrn(s). (2.3)

los Aol
It is obvious that the unit normal vector of M is spacelike vector. It means that
the B-scroll M is a timelike surface.
The planes corresponding to the sub-spaces Sp {¢,n}, Sp{n,u} and Sp {u, ¢} along
the base curve a of B-scroll M are called central plane, polar plane and asymptotic
plane, respectively. From table 1, the central plane is timelike, the polar and the
asymptotic planes are null planes.
Let o™ be another null curve with Cartan frame
F* = (0% (s*),n* (s*),u” (s*)) so that

(') =% h(n*,n*)=h(*,0) =0, (2.4)
h(*;u*)=h(n*u*)=0, h{*n*)=-1, h(u*u*)=1. '

In addition to that, Frenet formulas of a* with respect to Cartan frame F* (¢*,n*,
u*) are
de

- — k*u*

dfz* %,k

s =Tu (2.5)
w® sk px Kk

T =T 0¥ 4+ k*n*.

Let M* be a B-scroll. Thus, the B-scroll M* is parametrically given by as

©* (s*,0%) = a* (s*) + v*n* (s*). (2.6)

Definition 2.1. Let M and M* be two B-scrolls in R} and p be the distance
between the asymptotic planes of M and M*. If

1) The generator vectors of M and M* are parallel,

2)The distance p is constant, then the pair of B-scrolls M and M* are called
the null parallel p-equidistant B-scrolls in R3.

Thus, the parametric representation of null parallel p-equidistant B-scrolls are
given as follows
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M :p(s,v) =a(s)+wvn(s)

M* - (,0* (S*,’U*) = ot (S*) + v n* (S*) ) (27)

Throughout this paper, the base curves of null parallel p-equidistant B-scrolls M
and M™ are also striction curves.

Theorem 2.2. Let M and M* be two null parallel p-equidistant B-scrolls in R3.
The Cartan frames {{,n,u} and {€*,n*,u*} of the base curves a(s) and o (s*)
are equivalent at the corresponding points in M and M™, respectively if and only if

* __ __ds * __ .. ds
T =745 and K = Rk

Proof: Firstly, suppose that the Cartan frames {¢,n,u} and {¢*,n* u*} of
base curves of a(s) and o* (s*) are equivalent at the corresponding points of M
and M™*, respectively.

This means that
(=0*, n=n*, u=u*. (2.8)

daer
= ur )
=)

Considering the last equation together with hypothesis we easily see that

From equation (2.5) we reach

kY =r (42, (2.9)

Using equation (2.5) and following similar way, we get

_Tds
T dst

*

T

(2.10)

Conversely, let the relationship between the curvature and torsion of M and M*
be k* = njsi and 7F =171 ddsi, respectively.
Since M and M™ are null parallel p-equidistant B-scrolls, the generator vectors n

and n* of M and M™*, respectively are parallel. Therefore, we can choose

n* =n. (2.11)
From the last equation, we have

dn  dn* ds*
— . 2.12
ds ds* ds ( )

Substituting the equations (1.6) and (2.5) into the last equation, by routine calcu-
lation, one can obtain

uw=u

In addition to that, we can write from the last equation

du _ du”  ds*
R (213)
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Using the equation (1.6) and (2.5) together with the equation (2.13), it is seen that
=4
This completes the proof.

Theorem 2.3. In R}, let M and M* be null parallel p-equidistant B-scrolls, S and
S* be the matrices corresponding to the shape operators of M and M*, respectively.
Then, there is a relation between the matrices S and S* as follows

« [ ds
= ()5

Proof: Let us find the matrices of S and S*, which is correspond to shape
operators of null parallel p-equidistant B-scrolls M and M*, respectively. From
equations (1.6) and (2.3), we obtain

dN
S(p,) = =Dy, No = T do 0 — —1n(s) (2.14)
v
and N
S(p,) =Dy No = _d—o = —7L(s) — K(s)n(s) — vru(s). (2.15)
s
Considering the equations (2.14) and (2.15) together with the equation (2.2), we
reach
S (i) = =T, + 0p,
and

S(ps) = —K(s)p, — TP,

In this case, the matrix which is correspond to shape operators of M as follows,

S{ 0 } (2.16)

—k(s) -1
Using the equations (2.3) and (2.5) and following similar way, we can get
5 () = =77 ¢y —0 5.
and
S%(p5e) = —=R"(s") e =77 P

Thus, the matrix corresponding to shape operator of M* is

= ey 2]

Substituting the equations (2.9) and (2.10) into the last equation, we obtain

=B -] =10

ds* ds*
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From the equations (2.16) and (2.17), it is obvious that

s = (). 2.18
() (2.18)

Theorem 2.4. Let M and M* be null parallel p-equidistant B-scrolls in R3.
i) If K and K* denote Gaussian curvatures of M and M*, respectively. In this
case, there is following relation between K and K*:

ds \?
K=K .
(i)
41) The mean curvature of M and M* is denoted by H and H*, respectively. There-
fore, there is a relation between H and H* as follows:

ds
H*=H .
(i)

Proof: i)To calculate the Gaussian curvatures K and K* of M and M*, re-
spectively, considering the equations (1.12),(2.16) and (2.17) we have

K =7? (2.19)

and
2

K* =7 (2.20)
From equations (2.10), (2.19) and (2.20), we obtain the relation between K and

K* as,
o (Y (2.21)
- ds* ) '

ii)Now, we compute the mean curvatures H and H* of M and M*, respectively.
Using the equations (1.13), (2.16) and (2.17), it is easy to see that the mean
curvatures H and H* are given by

H=—7 (2.22)

and
H* = —7* (2.23)

respectively. Considering the equations (2.10) and (2.22) together with the last

equation, it is clear that
ds
H " =H ) 2.24
(ds* ) ( )

Theorem 2.5. In R3, let M and M* be null parallel p-equidistant B-scrolls and
ki and k', 1 <1i <2 be the principal curvatures of M and M*, respectively. In this
case, the relations between k; and ki are as,

k;:ki(ﬁ)Jgigz
ds*
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Proof: Since the principal curvatures of M are the roots of the characteristic
polynomial which is given by "det (S — kI3) = 0", we have
k/’l = k/’g = —T. (225)

Similarly, the principal curvatures of M™* are
ki =ki=—1" (2.26)

Thus, from the equation (2.10) together with the equations (2.25) and (2.26), we
reach

ds
=k (22 1<i<?2 9.27
Pk () <i< (2:27)

Theorem 2.6. In R3, let us assume that M and M* are non-developable null
parallel p-equidistant B-scrolls, A and \* are the distribution parameters of M and
M*, respectively. Then the following relation satisfy

ds*
A=)\ .
(%)

Proof: Taking into consideration the equations (1.10) and (2.10) the following
relation can be obtained between the distribution parameters A and \* of M and
M*, respectively.

1 1 ds* ds*
AN=—=- =A—.
™ T ds ds
Theorem 2.7. Let M and M* be non-developable null parallel p-equidistant B-
scrolls in R3.

i) There is the relation between the second Gaussian curvatures Krr and Ki; of M
and M* as follows
ds
K, =K —
11 H (ds*)

4i) There is the following relation between Hrr and H;y,

ds
Hif, =H
11 H (ds*)

where Hry and Hj; are the second mean curvatures of M and M™, respectively.

(2.28)

Proof: Suppose that M and M* are non-developable null parallel p-equidistant
B-scrolls in R. Now we compute the coefficients of the first fundamental form E, F
and G and the second fundamental form e, f and g of M. Using the equations
(1.14), (1.15) and (2.2), we obtain that

E=v’1?, F=-1, G=0 (2.29)

Also
e=r(s)—v*r3, f=71, g=0. (2.30)
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Following similar way, the first and second fundamental forms of non-developable
null parallel B-scroll M* are as

E* =o*% F*=_1

)

, G"=0 (2.31)
and
e =k (s*) =0, fr=1" gt =0. (2.32)
respectively.
i) Substituting e, f, ¢ into the second Gaussian curvature matrix form, Kjs
which is given by equation (1.16), we get
K[[ = —T

Similarly, we see that
Ki =—-1".

From the equation (2.10) and the last two equations, it is easily to see that

ds*

ii) Taking into consideration the equations (2.30), (2.32), (1.12) and (1.13) with
the equation (1.17), we obtain

ds
K, =Ky < ) . (2.33)

Hip=H

and
Hi; = H".

ds
Hi, =H —
11 H (ds*)

The results in the study are confirmed by the following example.

From theorem 2.3, we have

Example 2.8. In R}, let us assume that the null parallel p-equidistant B-scrolls
M and M* are parametrically given by

. 11 . 1
¢ (s,v) = (s,coss,sins) +v (5, 5 sins, —5 coss)

and

11 1
©* (s, 0") = (8" + 2,cos 8" + 2,sins* + 2) + v* <§, 5 sin 8™, —3 coss*)
respectively(Figure 1 and Figure 2). In this case, using the equations (1.6) and
(2.5) we find
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Thus, substituting the last equations into the equations (2.16) and (2.17), the ma-
trices corresponding to shape operators of M and M* are to be

5 =

1
2
A

Nl= O

|-s

In addition to that, from the equations (1.16) and (1.17), there is a relation between
the second Gauss curvature and the second mean curvature as follows, respectively

N 1
KII =K = 57

. 1
Hj;=Hir = 5.

Lastly, considering the equations (2.16) and (2.17), the principal curvatures of M

and M™ are as

Figure 1. ¢ (s,v) = (s,coss,sins) + v (

N
N

D

g

sin s, 7% cos s) null parallel p-equidistant B-scroll

*, —% coss™) null parallel

p-equidistant B-scroll
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