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ABSTRACT: In this paper we investigate the influence of some subgroups of Sy-
low subgroups with semi cover-avoiding property and FE-supplementation on the
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1. Introduction

All groups considered in this paper will be finite.

A subgroup H of a group G is said to be S-quasinormal in G if H permutes
with every Sylow subgroup of G. This concept was introduced by Kegel. In 2007,
Skiba (see [22]) introduced the concept of S-supplemented subgroup. A subgroup
H of G is said to be S-supplemented in G if there is a subgroup K of G such that
G = HK and HN K < Hyg, where Hyg denotes the subgroup of H generated by
all those subgroups of H which are S-quasinormal in G. As another generalization
of the S-quasinormality, the concept of S-quasinormally embedded subgroup was
given by Ballester-Bolinches and Pedraza-Aguilera (see [2]). A subgroup H is said
to be S-quasinormally embedded in G if for each prime p dividing |H|, a Sylow
p-subgroup of H is also a Sylow p-subgroup of some S-quasinormal subgroup of G.
In 2012, Li (see [4]) proposed the definition of E-supplemented subgroup which
covers properly both S-quasinormally embedding property and Skiba’s weakly S-
supplementation. A subgroup H is said to be E-supplemented in G if there is a
subgroup K of GG such that G = HK and H N K < H.g, where H.c denotes the
subgroup of H generated by all those subgroups of H which are S-quasinormally
embedded in G.

On the other hand, we say that a subgroup H of a group G covers G-chief
factor A/B if HA = HB, and H avoids A/B if HNA = HnN B. If H covers or
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avoids every chief factor of G, then H is said to have the cover-avoiding property
in G. This conception was first studied by Gaschiitz (see [2]) to study the solvable
groups, later by Gillam (see [3]) and Ezquerro (see [5]), et al. As a generalization
of the cover-avoiding property, Fan, Guo and Shum (see [8]) defined the semi
cover-avoiding property. A subgroup H of a group G is said to have the semi
cover-avoiding property in G, if there exists a chief series of G such that H either
covers or avoids every G-chief factor of this series.

A subgroup that satisfies the cover-avoiding property does not necessary need
to be E-supplemented and vice-versa. In this paper, we will focus on the two
kinds of subgroups and establish the structure of groups under the assumption
that all maximal subgroups of a Sylow subgroup either have the semi cover-avoiding
property or are E-supplemented subgroups. A series of previously known results
are generalized, such as in [6,9,11,13,15,16,17,18,19,21,23,24,25].

2. Preliminaries

In this section, we list some lemmas which will be useful for the proofs of our
main results.

Lemma 2.1 ([11, Lemmas 2.5 and 2.6]). Suppose that H has the semi cover-
avoiding property in G.

(1) If H < L <G, then H has the semi cover-avoiding property in L.

(2) If NAG and N < H <G, then H/N has the semi cover-avoiding property
in G/N.

(3) If H is a w-subgroup and N is a normal ©’'-subgroup of G, then HN/N has
the semi cover-avoiding property in G/N.

Lemma 2.2 ([4, Lemma 2.3]). Let H be a E-supplemented subgroup of a group
G.

(1) If H < L <@, then H is E-supplemented in L.

(2) If N< G and N < H < G, then H/N is E-supplemented in G/N.

(3) If H is a w-subgroup and N is a normal ©’'-subgroup of G, then HN/N s
E-supplemented in G/N.

Lemma 2.3 ([11, Lemma 3.1]). Let p be a prime dividing the order of the group
G with (|G|,p—1) =1 and let P be a p-Sylow subgroup of G. If there is a mazimal
subgroup Py of P such that Py has the semi cover-avoiding property in G, then G
s p-solvable.

Lemma 2.4 ([18, Lemma 2.8]). Let M be a maximal subgroup of G and P a
normal p-subgroup of G such that G = PM, where p is a prime. Then PN M is a
normal subgroup of G.

Lemma 2.5 ([19, Lemma 2.7]). Let G be a group and p a prime dividing |G| with
(Glp—1) =1.
(1) If N is normal in G of order p, then N < Z(G).
(2) If G has cyclic Sylow p-subgroup, then G is p-nilpotent.
B)IfM<Gand|G: M| =p, then M IG.
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Lemma 2.6 ([20, Main Theorem]). Suppose that G has a Hall 7w-subgroup where
7w is a set of odd primes. Then all Hall w-subgroups of G are conjugate.

Lemma 2.7 ([21, Lemma 2.6]). Let H # 1 be a solvable normal subgroup of a
group G. If every minimal normal subgroup of G which is contained in H is not
contained in ®(G), then the Fitting subgroup F(H) of H is the direct product of
minimal normal subgroups of G- which are contained in H.

Lemma 2.8 ([22, Lemma 2.16]). Let F be a saturated formation containing U.
Suppose that G is a group with a normal subgroup N such that G/N € F. If N is
cyclic, then G € F.

Lemma 2.9 ([27, Lemma 2.3]). Suppose that H is S-quasinormal in G, and let
P be a Sylow p-subgroup of H. If Hz = 1, then P is S-quasinormal in G.

Lemma 2.10 ([28, Lemma A]). If P is an S-quasinormal p-subgroup of a group
G for some prime p, then Ng(P) > OP(G).

Lemma 2.11 ([27, Lemma 2.4]). Suppose that P is a p-subgroup of a group G con-
tained in Op(Q). If P is S-quasinormally embedded in G, then P is S-quasinormal
in G.

3. Main results

Theorem 3.1. Let p be a prime dividing the order of a group G with (|G|,p—1) = 1.
If G has a Sylow p-subgroup P such that every maximal subgroup of P either has
the semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: Assume that the assertion is false and let G be a minimal counterexample.
We will derive a contradiction in several steps.

(1) Op (G) = 1.

Assume that O, (G) # 1. Then PO, (G)/O(G) is a Sylow p-subgroup of
G/Op (G). Suppose that M/O, (G) is a maximal subgroup of PO,/ (G)/Oy (G).
Then there exists a maximal subgroup P; of P such that M = PO,/ (G). By the
hypothesis of the theorem, P; either has the semi cover-avoiding property or is
E-supplemented in G. Then M/O,(G) = PiO,(G)/O, (G) either has the semi
cover-avoiding property or is E-supplemented in G/O, (G) by Lemmas 2.1 and
2.2. Tt is clear that (|G/O, (G)|,p — 1) = 1. The minimal choice of G implies that
G/O, (G) is p-nilpotent, and so G is p-nilpotent, a contradiction. Therefore, we
have O, (G) = 1.

(2) 0,(G) # 1.

If not, suppose that O,(G) = 1. If there is a maximal subgroup of P which has
the semi cover-avoiding property in G, then G is p-solvable by Lemma 2.3. Since
O, (G) =1 by step (1), we have O,(G) # 1, a contradiction. Thus we may assume
that all maximal subgroups of P are E-supplemented in G. If p # 2, then G is odd
from the assumption that (|G|,p — 1) = 1. By the Feit-Thompson Theorem, G is
solvable. It follows that O,(G) # 1 by step (1), a contradiction. If p = 2, then we
get also G is solvable by [4, Lemma 3.1], the same contradiction.
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(3) If N < O,(G), then G/N is p-nilpotent. Consequently, G is solvable.

Suppose that M/N is a maximal subgroup of P/N. Then M is a maximal
subgroup of P. By the hypothesis of the theorem, M either has the semi cover-
avoiding property or is E-supplemented in G. Then M/N either has the semi
cover-avoiding property or is E-supplemented in G/N by Lemmas 2.1 and 2.2.
Therefore G/N satisfies the hypothesis of the theorem. The minimal choice of G
implies that G/N is p-nilpotent. If p is odd, then G is solvable. If p = 2, then G/N
is solvable, and so G is solvable.

(4) O, (G) is the unique minimal normal subgroup of G.

Let N be a minimal normal subgroup of G. Since G is solvable by step (3), N
is an elementary abelian subgroup. Note that O,/ (G) = 1, then we have N is a p-
subgroup and so N < O,(G). Step (3) implies that G/O,(G) is p-nilpotent. Since
the class of all p-nilpotent groups is a saturated formation, N is a unique minimal
normal subgroup of G and N £ ®(G). Choose M to be a maximal subgroup of G
such that G = NM. Obviously, G = O,(G)M and so O,(G) N M is normal in G
by Lemma 2.4. The uniqueness of N yields N = O,(G).

(5) The final contradiction.

By the proof in step (4), G has a maximal subgroup M such that G = MO,(G)
and G/O,(G) = M is p-nilpotent. Clearly, P = O,(G)(P N M). Furthermore,
PN M < P. Thus, there exists a maximal subgroup V of P such that PN M < V.
Hence, P = O,(G)V. By the hypothesis, V either has the semi cover-avoiding
property or is E-supplemented in G.

Case I: V has the semi cover-avoiding property in G. Since O,(G) is the unique
minimal normal subgroup of G, V' covers or avoids O,(G)/1. If V covers O,(G)/1,
then VO,(G) =V, i.e., O,(G) < V. It follows that P = O,(G)V =V, a contra-
diction. If V avoids O,(G)/1, then V N O,(G) = 1. Since V N O,(G) is a maximal
subgroup of O,(G), we have that O,(G) is of order p and so O,(G) lies in Z(G)
by Lemma 2.5. By step (3), we have G/O,(G) is p-nilpotent. Then G/Z(G) is
p-nilpotent, and so G is p-nilpotent, a contradiction.

Case II: V is E-supplemented in G. Then there is a subgroup 7" of GG such that
G=VT and VNT < V.. Assume that 7" is p-nilpotent. Let T} be the normal
Hall p’-subgroup of T'. Since M is p-nilpotent, we may suppose M has a normal Hall
p'-subgroup M,y and M < Ng(M,) < G. The maximality of M implies that M =
Ng(My) or Ng(M,) = G. If the latter holds, then M, < G and M,, is actually
the normal p-complement of GG, which is contrary to the choice of G. Hence, we may
assume M = Ng(M,). By applying Lemma 2.6 and the Feit-Thompson Theorem,
there exists g € G such that T, = M. Hence, T9 < Ng(T}) = Ng(My) = M.
However, T} is normalized by 7', so g can be considered as an element of V.
Thus, G = VT9 = VM and P = V(PN M) = V, a contradiction. Hence T is
not p-nilpotent. If Voe = 1, then |T'|, = p. By Lemma 2.5, T is p-nilpotent, a
contradiction. Thus we may assume that V.o # 1. Let Uy, Us,...,Us be all the
nontrivial subgroups of V' which are S-quasinormally embedded in G. For every
i€{1,2,...,, s}, then there is an S-quasinormal subgroup K; of G such that U; is a
Sylow p-subgroup of K;. Suppose that for some i € {1,2, ..., s}, we have (K;)g # 1.
Then O,(G) < (K;)e < K; by step (4). It follows that O,(G) < U; <V, and so



THE MAXIMAL SUBGROUPS OF SYLOW 117

P = 0,(G)V = V. This contradiction shows that for all i € {1,2,...,s} we have
(K;)¢ = 1. By Lemma 2.9, U; is S-quasinormal in G. Hence V¢ is S-quasinormal
in G. From Lemma 2.10 we have OP(G) < Ng(Veg). Since Vg is subnormal in
G, we have Vg < O,(G). Thus, Veg < VN O,(G) and 1 < Vg < (Vo) =
(Vog)O"@OF = (Vog)' < (VN O,(G)F = VNO,(G) < 0,(G). Tt follows that
(Vee)¥ =V NO,(G) = Oy(G). Then O,(G) <V and so P =V, a contradiction.O

Corollary 3.2. Let p be a prime dividing the order of a group G with (|G|,p—1) =1
and H a normal subgroup of G such that G/H is p-nilpotent. If there exists a
Sylow p-subgroup P of H such that every maximal subgroup of P either has the
semi cover-avoiding property or is E-supplemented in G, then G is p-nilpotent.

Proof: In view of Lemmas 2.1 and 2.2, every maximal subgroup of P has the
semi cover-avoiding property or is E-supplemented in H. By Theorem 3.1, H
is p-nilpotent. Now, let H, be the normal Hall p’-subgroup of H. Obviously,
Hy 4G.

Case I: H, # 1. We consider G/H,/. Applying Lemmas 2.1 and 2.2, it is
easy to see that G/H,, satisfies the hypotheses for the normal subgroup H/H, .
Therefore, G/H,, is p-nilpotent by induction. It follows that G is p-nilpotent.

CaseII: H, =1, i.e., H = P is a p-group. Since G/P is p-nilpotent, we can let
K /P be the normal Hall p’-subgroup of G/P. By the Schur-Zassenhaus Theorem,
there exists a Hall p’-subgroup K, of K such that K = PK,,. A new application
of Theorem 3.1 yields that K is p-nilpotent and so K = P x K. It is easy to see
that K, is a normal p-complement of GG. Consequently, G is p-nilpotent. O

Corollary 3.3. Let P be a Sylow p-subgroup of a group G, where p is the smallest
prime diwisor of |G|. If every mazimal subgroup of P either has the semi cover-
avoiding property or is E-supplemented in G, then G is p-nilpotent.

Corollary 3.4. Suppose that every maximal subgroup of any Sylow subgroup of a
group G either has the semi cover-avoiding property or is E-supplemented in G.
Then G is a Sylow tower group of supersolvable type.

Proof: Let p be the smallest prime dividing |G| and P a Sylow p-subgroup of G.
By Theorem 3.1, G is p-nilpotent. Let T' be the normal Hall p’-subgroup of G. In
view of Lemmas 2.1 and 2.2, every maximal subgroup of any Sylow subgroup of T’
has the semi cover-avoiding property or is E-supplemented in 7. Thus T satisfies
the hypothesis of the corollary. It follows by induction that 7', and hence G is a
Sylow tower group of supersolvable type. O

Corollary 3.5 ([13, Theorem 3.3]). Let G be a group, p a prime dividing the
order of G, and P a Sylow p-subgroup of G. If (|G|,p — 1) = 1 and every mazimal
subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.

Corollary 3.6 ([11, Theorem 3.2]). Let P be a Sylow p-subgroup of a group G,
where p is the smallest prime divisor of |G|. If P is cyclic or every maximal
subgroup of P has the semi cover-avoiding property in G, then G is p-nilpotent.
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Proof: If P is cyclic, by Lemma 2.5, we have that G is p-nilpotent. Thus we may
assume that every maximal subgroup of P has the semi cover-avoiding property in
G. By Theorem 3.1, G is p-nilpotent. O

Corollary 3.7 ([15, Theorem 3.4]). Let G be a group and P a Sylow p-subgroup
of G, where p is the smallest prime dividing |G|. If all mazimal subgroups of P are
c-normal in G, then G is p-nilpotent.

Corollary 3.8 ([16, Theorem 3.2]). Let G be a group and P a Sylow p-subgroup
of G, where p is the smallest prime dividing |G|. If all mazimal subgroups of P are
c-supplemented in G, then G is p-nilpotent.

Corollary 3.9 ([29, Theorem 3.1]). Let P be a Sylow p-subgroup of a group G,
where p is a prime divisor of |G| with (|G|,p — 1) = 1. If every mazimal subgroup
of P is c-supplemented in G, then G is p-nilpotent.

Corollary 3.10 ([6, Theorem 3.1]). Let p be a prime dividing the order of a group
G with (|G|,p—1) = 1. Suppose that every maximal subgroup of P is c-supplemented
in G and G € Cy, then G/O,(G) is p-nilpotent and G € D,y .

Corollary 3.11 ([19, Theorem 3.1]). Let p be a prime dividing the order of a group
G with (|G|,p—1) = 1. Assume that H is a normal subgroup of G such that G/H
is p-nilpotent. If there exists a Sylow p-subgroup P of H such that every mazimal
subgroup of P is ¢*-normal in G, then G is p-nilpotent.

Corollary 3.12 ([27, Theorem 3.1]). Let p be a prime dividing the order of a group
G with (|G|,p — 1) = 1. If there exists a Sylow p-subgroup P of G such that every
maximal subgroup of P is S-quasinormally embedded in G, then G is p-nilpotent.

Corollary 3.13 ([29, Theorem 3.1]). Let p be the smallest prime dividing the order
of a group G. If there exists a Sylow p-subgroup P of G such that every maximal
subgroup of P is weakly S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.14 ([30, Theorem 3.1]). Let p be the smallest prime dividing the order
of a group G. If there exists a Sylow p-subgroup P of G such that every maximal
subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.15 ([31, Theorem 3.1]). Let p be a prime dividing the order of a
group G with (|G|,p — 1) = 1. If there exists a Sylow p-subgroup P of G such that
every mazimal subgroup of P is weakly S-permutable in G, then G is p-nilpotent.

Corollary 3.16 ([32, Theorem 3.1]). Let p be the smallest prime dividing the order
of a group G. If there exists a Sylow p-subgroup P of G such that every maximal
subgroup of P is S-permutably embedded in G, then G is p-nilpotent.

Corollary 3.17 ([14, Theorem 3.1]). Let p be a prime dividing the order of a
group G with (|G|,p —1) = 1 and H a normal subgroup of G such that G/H is
p-nilpotent. If there exists a Sylow p-subgroup P of H such that every mazximal
subgroup of P is c-normal or S-permutably embedded in G, then G is p-nilpotent.



THE MAXIMAL SUBGROUPS OF SYLOW 119

Theorem 3.18. Let F be a saturated formation containing U, where U is the class
of all supersolvable groups. A group G € F if and only if there is a normal subgroup
H of G such that G/H € F and every mazimal subgroup of any noncyclic Sylow
subgroup of H either has the semi cover-avoiding property or is E-supplemented in

G.

Proof: The necessity is obvious. We only need to prove the sufficiency. Suppose
that the assertion is false and let G be a counterexample of minimal order.

(1) G has a minimal normal subgroup N < H and N is an elementary abelian
p-group, where p is the largest prime in 7(H).

By the hypothesis of the theorem, every maximal subgroup of any noncyclic Sy-
low subgroup of H either has the semi cover-avoiding property or is E-supplemented
in G. Consequently, by Lemmas 2.1 and 2.2 every one also either has the semi
cover-avoiding property or is E-supplemented in H. Applying Corollary 3.4, H is
a Sylow tower group of supersolvable type. Let p be the largest prime divisor of
|H| and P a Sylow p-subgroup of H. Then P is normal in H. Obviously, P is
normal in GG. Therefore, G has a minimal normal subgroup N < H and N is an
elementary abelian p-group.

(2) G/N € F and N = P is the Sylow p-subgroup of H.

First, we want to prove that G/N satisfies the hypothesis of the theorem. In
fact, (G/N)/(H/N) = G/H € J. Let P;/N be a maximal subgroup of the Sylow
p-subgroup P/N of H/N. Then P; is a maximal subgroup of the Sylow p-subgroup
P of H. If P/N is noncyclic, then P is also noncyclic. By the hypothesis of the
theorem, P, either has the semi cover-avoiding property or is E-supplemented in
G. By Lemmas 2.1 and 2.2, P; /N either has the semi cover-avoiding property or is
E-supplemented in G/N. Let M; /N be a maximal subgroup of the noncyclic Sylow
g-subgroup QN/N of H/N, where g # p and @ is a noncyclic Sylow g-subgroup
of H. Tt is clear that M7 = Q1 N, where ) is a maximal subgroup of ). By the
hypothesis of the theorem, Q1 either has the semi cover-avoiding property or is
E-supplemented in G. Hence M;/N either has the semi cover-avoiding property
or is E-supplemented in G/N by Lemmas 2.1 and 2.2. We now have proved that
G/N satisfies the hypothesis of the theorem. By the minimal choice of G, we have
G/N € F. Since ¥F is a saturated formation, N is the unique minimal normal
subgroup of G contained in P and N £ ®(G). By Lemma 2.7, it follows that
P=F(P)=N.

(3) IN| > p.

This follows from Lemma 2.8.

(4) The final contradiction.

Let M be a maximal subgroup of N. By the hypothesis, M either has the semi
cover-avoiding property or is E-supplemented in G.

Case I: M is E-supplemented in G. Then there is a subgroup 7" of G such that
G=MTand MNT < M,g. Thus G = NT and N = NNMT = M(NNT).
This implies that N NT # 1. But since N N7 is normal in G and N is minimal
normal in G, NNT = N. It follows that T' = G and so M = M.g. In view of
Lemma 2.11, M is s-quasinormal in G. By Lemma 2.10, OP(G) < Ng(M). Thus
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M < G,0P(G) = G. It follows that M =1 and so |N| = p, which contradicts step
(3).
Case II: M has the semi cover-avoiding property in G. Then there exists a chief

series of G
1:G0<G1<"'Gn_1<Gn:G

such that M covers or avoids every factor G;/G,_1. Since N is minimal normal
in G, there exists j such that G, NN = N and G;_1 NN = 1. If M covers
Gj/Gj717 then MGJ = MGj,1 and so MGJ NN = MGj,1 N N. Hence M(G] N
N)=M(G;-1NN), i.e., MN = M, a contradiction. If M avoids G;/G;_1, then
MNG;=MNG;_1andso MNG; NN =MNG,;_1NN,ie., M =1. It follows
|N| = p, a contradiction. O

Corollary 3.19 ([13, Theorem 3.6]). Let F be a saturated formation containing U.
If there is a normal Hall subgroup H of G such that G/H € F and every mazimal
subgroup of any Sylow subgroup of H has the semi cover-avoiding property in G,
then G € &.

Corollary 3.20 ([21, Theorem 3.3]). Let H be a normal subgroup of a group G
such that G/H is supersolvable. If every mazimal subgroup of any Sylow subgroup
of H is c-normal in G, then G is supersolvable.

Corollary 3.21 ([16, Theorem 4.2]). Let F be a saturated formation containing
W. If there is a normal subgroup H of G such that G/H € F and every mazimal
subgroup of any Sylow subgroup of H is c-supplemented in G, then G € F.

Corollary 3.22 ([23, Theorem 4.1]). Let F be a saturated formation containing
W. If there is a normal subgroup H of G such that G/H € F and every mazimal
subgroup of any noncyclic Sylow subgroup of H is c-supplemented in G, then G € F.

Corollary 3.23 ([32, Theorem 3.3]). Let F be a saturated formation containing
W. If there is a normal subgroup H of a group G such that G/H € F and every
mazimal subgroup of any Sylow subgroup of H is S-quasinormally embedded in G,

then G € &F.

Corollary 3.24 ([14, Theorem 3.3)). Let F be a saturated formation containing U.
A group G € F if and only if there is a normal subgroup H of G such that G/H € F
and every mazimal subgroup of any Sylow subgroup of H is either s-quasinormally
embedded or c-normal in G.

Theorem 3.25. Let F be a saturated formation containing U. Suppose that G is
a group with a solvable normal subgroup N such that G/N € F. If every maximal
subgroup of each non-cyclic Sylow subgroup of F(N) either has the semi cover-
avoiding property or is E-supplemented in G, then G € .

Proof: Suppose that the theorem is false and let G be a counterexample of minimal
order.
(1) ®(G)NN = 1.
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Assume that ®(G) NN # 1. Then there exists a prime p dividing the order of
®(G) N N. Let Py be the Sylow p-subgroup of ®(G) N N. Then P, I G. Since
(G/Py)/(N/Py) =2 G/N, it follows that (G/FPy)/(N/Py) € F. By [1, p.270 Satz 3.5],
F(N/Py) = F(N)/Fy. Let P/Py be a maximal subgroup of the Sylow p-subgroup
P/Py of F(N)/Py. Then P; is a maximal subgroup of the Sylow p-subgroup P of
F(N). If P/ Py is non-cyclic, then P is non-cyclic. By the hypothesis, P; either has
the semi cover-avoiding property or is E-supplemented in G. Hence P;/P, either
has the semi cover-avoiding property or is E-supplemented in G/P, by Lemmas
2.1 and 2.2. Set Q./Py be a maximal subgroup of the non-cyclic Sylow ¢g-subgroup
of F(N)/Py, where p # ¢q. It is clear that Q. = Q7 Py, where Q7 is a maximal
subgroup of the non-cyclic Sylow g-subgroup of F(N). Then Q7 either has the
semi cover-avoiding property or is E-supplemented in G. Hence Qi Py/P, either
has the semi cover-avoiding property or is E-supplemented in G/ P, by Lemmas 2.1
and 2.2. Now we have proved that G/P, satisfies the hypotheses of the theorem.
Therefore G/ Py € F by minimal choice of G. Since P, < ®(G) and F is a saturated
formation, we have that G € F, a contradiction.

(2) F(N) =Ly x Ly X - - - X L,, where every L; is a minimal normal subgroup
of G with prime order.

If N = 1, nothing need to be proved. So assume N # 1. Then F(N) # 1 by
the solvability of N. By Lemma 2.7, F(N) is the direct product of some minimal
normal subgroups of G. Let P be the Sylow p-subgroup of F(N). We can denote
P =Ry X Ry X -+ X Ry, where every R; is a minimal normal subgroup of G. We
will show that |R;| =p (i = 1,2, -,m). If not, then there exists an index ¢ such
that |R;| > p. Without loss of generality, suppose that i = 1. Since Ry £ ®(G),
there exist a maximal subgroup M of G such that G = R{M and Ry " M = 1.
Then G, = RiM,. Pick a maximal subgroup G; of G, containing M,. Then
|R1: Gy N Ryl = [R1G /Gyl = |Gy : G| = p. Hence R = G N Ry is a maximal
subgroup of R;. This implies that P* = R} Ry - - - R, is a maximal subgroup of P.
Obviously, P is not cyclic. By the hypothesis, P* either has the semi cover-avoiding
property or is E-supplemented in G. Let K = Ry X - -+ X R,,.

Case I: P* has the semi cover-avoiding property in G. By Lemma 2.1, P*/K has
the semi cover-avoiding property in G/K. Suppose that P*/K cover-avoids a chief
series 1 = K<1G/K = G1<---<1G/K = G,, of G/K. Let i be the smallest number
in {1,2,---,n — 1} such that G,;11/G; was covered by P*/K in above chief series.
Then we have G;NP* = K and Gi+1 < G;P* = GzRT Hence Gi+1 = Gz(RTﬁG“rl)
and R{NG;4+1 > 1. Since R; is a minimal normal subgroup of G, we have R; < G411
and R1 NG; = 1. Hence |Ry| = |Gi41/Gi| = |R} N Git1| < |R1|, a contraction.
Therefore, P*/K does not cover any chief factor in above chief series. It follows
that P*/K =1 and |R;| = p, a contraction.

Case II: P* is E-supplemented in GG. Then there exists a subgroup K such
that G = P*T and P* NT < (P*)eg. Obviously, (P*) < G,. By Lemma 2.11,
(P*)ec = (P*)sc. Inview of [12, Lemma 2.10], (P*)s¢ = (P*)g. Denote Ty = KT.
Then G = RiTy and RiNTy = RiNTINP* =R NK(P*NT) < RiNK(P*)g =
Ry N K = 1. Since Ry NT; is normal in G, we have Ry N7} = 1 or Ry by the
minimality of R;. If the former holds, then Ry = Ry N R{Th = R{(R1 NTh) = RY,
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a contraction. Hence R; N1} = Ry, i.e., Ry < Ty. It follows that Rf = 1 and so
|R1| = p, a contraction.

(3) The final contradiction.

It is easy to see that G/Cq(L;) is abelian by step (2). Since Cq(F(N)) =
Ni; Ca(L;), we have that G/Cq(F(N)) is abelian. Hence G/Cq(F(N)) € U C F.
By the assumption, G/N € F, which implies that G/NNCq(F(N)) = G/Cn(F(N))
F by the properties of formations. From the solvability of N, Cn(F(N)) < F(N)
In view of step (2), F(NNV) is abelian. Then F(N) < Cy(F(N)). Thus F(N) =
Cn(F(N)) and G/F(N) € F. By Theorem 3.18, G € F, a contradiction. O

Corollary 3.26 ([24, Theorem 1)). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup N such that G/N € F.
If all mazimal subgroups of all Sylow subgroups of F(N) are c-normal in G, then
GeJ.

Corollary 3.27 ([18, Theorem 4.5)). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup N such that G/N € F.
If all mazximal subgroups of all Sylow subgroups of F(N) are c-supplemented in G,
then G € J.

Corollary 3.28 ([25, Theorem 1.6]). Let F be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup N such that G/N € F.
If all mazimal subgroups of all Sylow subgroups of F(N) are complemented in G,
then G € 7.

Corollary 3.29 ([32, Corollary 3.4]). Let JF be a saturated formation containing U.
Suppose that G is a group with a solvable normal subgroup N such that G/N € F.
If all mazimal subgroups of all Sylow subgroups of F(N) are complemented in G,
then G € F.
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