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Global relative controllability of fractional stochastic dynamical

systems with distributed delays in control
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abstract: This paper is concerned with the global relative controllability of lin-
ear and nonlinear fractional stochastic dynamical systems with distributed delays in
control for finite dimensional spaces. Sufficient conditions for controllability results
are obtained using the Banach fixed point theorem and the controllability Gram-
mian matrix which is defined by the Mittag-Leffler matrix function. An example is
provided to illustrate the theory.
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1. Introduction

The notion of controllability has played a central role throughout the his-
tory of modern control theory. Conceived by Kalman, controllability study was
started systematically at the beginning of the sixties. Since then various researches
have been carried out extensively in the context of finite-dimensional linear sys-
tems, nonlinear systems and infinite-dimensional systems using different kinds of
approaches (e.g., [3,7,23]).

Recently there has been a great interest to differential equations with fractional
order, that is fractional models are more accurate than integer models. Fractional
calculus provide an excellent instrument for the description of systems with mem-
ory and hereditary properties. Many books, monographs and papers are devoted
to the subject, for more details we refer the reader to [1,8,9,15,28,31]

Stochastic differential equations (SDEs) are used to model diverse phenomena
such as fluctuating stock prices or physical systems subject to thermal fluctuations.
In the literature, there are different definitions of controllability for SDEs, both for
linear and nonlinear dynamical systems [7].
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For linear systems, results were obtained about three types of stochastic con-
trollability: approximate, complete, and S-controllability in Banach spaces and
Hilbert spaces, respectively, in [25,26]. With the help of backward SDEs and
dual technique, Goreac [14] characterized the approximate controllability of linear
SDEs. Sirbu and Tessitore [35] were concerned with the exact null controllability
of infinite dimensional linear SDEs in Hilbert space. In particular, Klamka [21]
generalized the results in [22] from the deterministic case to the stochastic one,
and investigated the controllability of linear SDEs with delay in control.

In the setting of nonlinear SDEs, Arapostathis et al. [4] obtained sufficient con-
ditions that guarantee weak and strong controllability. Assuming the corresponding
linear SDEs are controllable, Mahmudov and Zorlu [24] studied the controllabil-
ity of nonlinear SDEs. Later, Mahmudov [27] gave a characterization of weaker
concept-approximate controllability for nonlinear SDEs. And recently, results in
[17] were generalized by Balachandran et al. [5] about controllability on nonlinear
SDEs with distributed delays in control.

In the theory of dynamical systems with delays in control, it is necessary to
distinguish between two fundamental concepts of controllability, namely relative
controllability and controllability, see [5,17,21] for more details. Controllability
problems for fractional dynamical systems have drawn considerable attention re-
cently. However, to the best of our knowledge, there are no relevant reports on
the global relative controllability of fractional stochastic dynamical systems with
delay in control as treated in the current paper. Very recently, Sakthivel et al. [30]
discussed the approximate controllability for a class of dynamic control systems
described by nonlinear fractional differential equation in Hilbert space by means of
fixed point technique, under the assumptions that the corresponding linear system
is approximately controllable. in [6] Balachandran et al., investigated the control-
lability of linear and nonlinear fractional dynamical systems in finite dimensional
spaces. the authors obtained sufficient conditions for controllability by Schauder’s
fixed point theorem and the controllability Grammian matrix which is defined by
the mittag-Leffler matrix function. Our goal in this article is to study the global
relative controllability for both linear and nonlinear fractional stochastic dynamical
systems with distributed delays in control. The rest of the paper is organized as
follows: In Section 2, some well known fractional operators and special functions,
along with a set of properties are defined which will be of use as we proceed in our
discussion. In Section 3, the linear fractional stochastic system with distributed
delay in control is considered and the controllability condition is established using
the controllability Grammian matrix which is defined by means of Mittag Leffler
matrix function. The corresponding nonlinear fractional system is also considered
and the controllability results are examined with the natural assumption that the
linear fractional system is relatively controllable. The results are established by
using using the Banach fixed point theorem and the fractional calculus. Finally,
Section 4 ends up with an example to illustrate the theory.
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2. Preliminaries

Let (Ω,F, IP) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. right continuous and F0 containing all IP-null sets). Let
α, β > 0, with n − 1 < α < n, n − 1 < β < n and n ∈ IN, D is the usual
differential operator. Let IR

m be the m-dimensional Euclidean space, IR+ = [0,∞),
and suppose f ∈ L1(IR+). The following definitions and properties are well known,
for α, β > 0 and f as a suitable function (see, for instance, [15]):

(a) Riemann-Liouville fractional operators:

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt,

(Dα
0+f)(x) = Dn(In−α

a+ f)(x).

(b) Caputo fractional derivative:

(cDα
0+f)(x) = (In−α

0+ Dnf)(x),

in particular Iα0+
cDα

0+f(t) = f(t)− f(0), (0 < α < 1).

The following is a well known relation, for finite interval [a, b] ∈ IR+

(Dα
a+f)(x) = (cDα

a+f)(x) +

n−1
∑

k=0

f (k)(a)

Γ(1 + k − α)
(x − a)k−α, n = R(α) + 1.

The Laplace transform of the Caputo fractional derivative is

L{cDα
0+f(t)} = sαF (s)−

n−1
∑

k=0

f (k)(0+)sα−1−k.

The Laplace transform of the Caputo fractional derivative is

L{cDα
0+f(t)} = sαF (s)−

n−1
∑

k=0

f (k)(0+)sα−1−k.

The Riemann-Liouville fractional derivatives have singularity at zero and the frac-
tional differential equations in the RiemannŰLiouville sense require initial condi-
tions of special form lacking physical interpretation. To overcome this difficulty
Caputo introduced a new definition of fractional derivative but in general, both
the Riemann-Liouville and the Caputo fractional operators possess neither semi-
group nor commutative properties, which are inherent to the derivatives on integer
order. Due to this fact, the concept of sequential fractional differential equations
are discussed in [15].

(c) Linear Sequential Derivative:
For n ∈ IN the sequential fractional derivative for suitable function f is defined

by
f (kα) := (Dkαf)(x) = (Dα

D
(k−1)αf)(x),
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where k = 1, . . . , n, (Dαf)(x) = f(x), and D
α is any fractional differential opera-

tor, here we mention it as cDα
0+.

(d) Mittag-Leffler Function

Eα,β(y) =

∞
∑

k=0

yk

Γ(kα+ β)
, α, β > 0.

The general Mittag-Leffler function satisfies
∫ ∞

0

e−ttβ−1Eα,β(t
αy)dt =

1

1− y
, |y| < 1.

The Laplace transform of Eα,β(y) follows from the integral

∫ ∞

0

e−sttβ−1Eα,β(±at
α)dt =

sα−β

(s∓ a)
.

That is

L{tβ−1Eα,β(±at
α)} =

sα−β

(s∓ a)
,

for R(s) > |a|1/α and R(β) > 0. In particular, for β = 1,

Eα,1(λy
α) = Eα(λy

α) =

∞
∑

k=0

λkykα

Γ(αk + 1)
, λ, y ∈ C

have the interesting property cDαEα(λt
α) = λEα(λt

α) and

L{Eα(±at
α)} =

sα−1

(s∓ a)
, for β = 1.

For brevity of notation let us take Iq0+ as Iq and cD
q
0+ as cDq and the fractional

derivative is taken as Caputo sense.
Let us consider the linear fractional stochastic differential equation of the form

cDqx(t) = Ax(t) + σ(t)
dw(t)

dt
, t ∈ [0, T ],

x(0) = x0,
(2.1)

where 0 < q < 1, x(t) ∈ IR
n, A is an n × n matrix, w(t) is a given l-dimensional

Wiener process with the filtration Ft generated by w(s), 0 ≤ s ≤ t and σ : [0, T ] →
IR

n×l is appropriate function. In order to find the solution, apply Laplace transform
on both sides and use the Laplace transform of Caputo derivative, we get

sqX(s)− sq−1x(0) = AX(s) + Σ(s)
dw(s)

ds
.

Apply inverse Laplace transform on both sides (see [6]) we have
L−1{X(s)} = L−1{sq−1(sqI−A)−1}x0+L−1{Σ(s)dw(s)

ds }∗L−1{(sqI−
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A)−1}.
Finally, substituting Laplace transformation of the Mittag-Leffler function, we get
the solution of the given system

x(t) = Eq(At
q)x0 +

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds

where Eq(At
q) is the matrix extension of the mentioned Mittag-Leffler functions

with the following representation:

Eq(At
q) =

∞
∑

k=0

Aktkq

Γ(1 + kq)

with the property cDqEq(At
q) = AEq(At

q).

3. Controllability results

Let L2
Ft
(J ×Ω, IRn) be the Banach space of all Ft-measurable square integrable

processes x(t) with norm ‖x‖2L2 = sup
t∈J

IE‖x(t)‖2, where IE(.) denotes the expecta-

tion with respect to the measure IP. Let C = C([0, T ];L2
Ft
) be the Banach space

of continuous maps from [0, T ] into L2
Ft
(J × Ω, IRn) satisfying sup

t∈J
IE‖x(t)‖2 < ∞.

Consider the linear fractional stochastic dynamical system with distributed delays
in control represented by the fractional stochastic differential equation of the form

cDqx(t) = Ax(t) +

∫ 0

−h

dτB(t, τ )u(t+ τ ) + σ(t)
dw(t)

dt
, t ∈ J := [0, T ]

x(0) = x0,

(3.1)
where 0 < q < 1, x(t) ∈ IR

n, and the second integral term is in the Lebesgue-
Stieltjes sense with respect to τ . Let h > 0 be given. For function u : [−h, T ] → IR

m

and t ∈ J , we use the symbol ut to denote the function on [−h, 0], defined by
ut(s) = u(t+ s) for s ∈ [−h, 0). A is an n× n matrix, B(t, τ ) is an n×m matrix
continuous in t for fixed τ and is of bounded variation in τ on [−h, 0] for each
t ∈ J and continuous from left in τ on the interval (−h, 0). Here w(t) is a given
m-dimensional Wiener process with the filtration Ft generated by w(s), 0 ≤ s ≤ t

and σ : [0, T ] → IR
n×m.

The following definitions of complete state of the system (2) at time t and relative
controllability are assumed.

Definition 3.1. The set φ(t) = {x(t), ut} is the complete state of the system (2)
at time t.

Definition 3.2. System (2) is said to be globally relatively controllable on J if

for every complete state φ(0) and every vector x1 ∈ IR
n there exists a control

u(t) defined on J such that the corresponding trajectory of the system (2) satisfies

x(T ) = x1.
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Note that the solution of system (2) ca be expressed in the following form

x(t) = Eq(A(t)
q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t − s)q)

[

∫ 0

−h

dτB(s, τ )u(s+ τ )

]

ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds,

where Eq(A(t)
q) is the Mittag Leffler matrix function. Now using the well known

result of unsymmetric Fubini theorem [10] and change of order of integration to
the last term, we have

x(t) = Eq(A(t)
q)x0+

∫ 0

−h

dBτ

[

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)u(s+ τ )B(s, τ )ds

]

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds

= Eq(A(t)
q)x0 +

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)

B(s− τ , τ )u0(s)ds

]

+

∫ 0

−h

dBτ

[

∫ t+τ

0

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)B(s− τ , τ)u(s)ds

]

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds

= Eq(A(t)
q)x0 +

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ ))q−1Eq,q(A(t − (s− τ ))q)

B(s− τ, τ )u0(s)ds

]

+

∫ t

0

[

∫ 0

−h

(t− (s− τ ))q−1Eq,q(A(t − (s− τ ))q)dτBt(s− τ , τ)

]

u(s)ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds,

(3.2)
where

Bt(s, τ ) =

{

B(s, τ ), s ≤ t

0, s > t

and dBτ denotes the integration of Lebesgue Stieltjes sense with respect to the
variable τ in the function B(t, τ ).

For brevity, let us introduce the following notations:

ϕ(t, s) =

∫ 0

−h

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)dτBt(s− τ , τ ), (3.3)
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and

χ(t) =

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds. (3.4)

Recall the controllability Grammian matrix

ψT
0 =

∫ T

0

ϕ(T, s)ϕ⋆(T, s)ds

where the complete state φ(0) and the vector x1 ∈ IR
n are chosen arbitrarily and

the ⋆ denotes the matrix transpose.

Theorem 3.3. The linear stochastic control system (2) is relatively controllable

on [0, T ] if and only if the controllability Grammian matrix ψT
0 is positive definite

for some T > 0.

Proof: Since ψ is positive definite, it is non-singular and therefore its inverse is
well defined. Define the control function as,

u(t) = ϕ⋆(T, t)ψ−1

(

x1 − Eq(At
q)x0 −

∫ 0

−h

dBτ

[

(T − (s− τ ))q−1

Eq,q(A(T − (s− τ ))q)B(s− τ , τ )u0(s)ds

]

− χ(T )

)

,

(3.5)
where the complete state φ(0) and the vector x1 ∈ IR

n are chosen arbitrarily.
Inserting (6) in (3) and using (4) we get

x(T ) = Eq(A(T )
q)x0 +

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ , τ)u0(s)ds

]

+

∫ T

0

[

∫ 0

−h

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)dτBTB(s− τ , τ )

]

×

[

∫ 0

−h

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)dτBTB(s− τ , τ)

]⋆

ψ−1

(

x1 − Eq(AT
q)x0 −

∫ 0

−h

dBτ

[

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ, τ )u0(s)ds

]

− χ(T )

)

dτ

+

∫ T

0

(T − s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(T − s)q)ds

= x1.

(3.6)
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Thus the control u(t) transfers the initial state φ(0) to the desired vector x1 ∈ IR
n

at time T . Hence the system (2) is controllable.
On the other hand, if it is not positive definite, there exists a nonzero φ such

that φ⋆ψφ = 0, that is

φ⋆
∫ T

0

ϕ(T, s)ϕ⋆(T, s)φds = 0

φ⋆ϕ(T, s) = 0, on [0, T ].

Let x0 = [Eq(AT
q)]−1φ. By assumption, there exists a control u such that it steers

the complete initial state φ(0) = {x(0), u0(s)} to the origin in the interval [0, T ].
It follows that

x(T ) = Eq(A(T )
q)x0 +

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ , τ)u0(s)ds

]

+

∫ T

0

[

∫ 0

−h

(T − (s− τ))q−1Eq,q(A(T − (s− τ))q)dτBTB(s− τ, τ )

]

u(s)ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds

= φ+

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ , τ )u0(s)ds

]

+

∫ T

0

[

∫ 0

−h

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)dτBTB(s− τ , τ)

]

u(s)ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ)dw(θ)

)

Eq,q(A(t− s)q)ds

= 0.

Thus,

0 = φ⋆φ+

∫ T

0

φ⋆ϕ(T, s)u(s)ds

+ φ⋆

(

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ, τ )u0(s)ds

]

+ χ(T )

)

.
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Then, taking into account that both of the terms

∫ T

0

φ⋆ϕ(T, s)u(s)ds

and

φ⋆

(

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ))q−1Eq,q(A(T − (s− τ ))q)

B(s− τ , τ)u0(s)ds

]

+ χ(T )

)

are zero leading to the conclusion φ⋆φ = 0. This is a contradiction to φ 6= 0. Thus
ψ is positive definite. Hence the desired result. ✷

Consider a nonlinear fractional stochastic dynamical system with distributed
delays in control represented by the fractional stochastic differential equation of the
form

cDqx(t) = Ax(t) +

∫ 0

−h

dτB(t, τ )u(t+ τ) + f(t, x(t)) + σ(t, x(t))
dw(t)

dt
,

t ∈ J := [0, T ]
x(0) = x0,

(3.7)
where 0 < q < 1, x(t) ∈ IR

n, u ∈ IR
m, A and B are as above, f : J × IR

n → IR
n

and σ : J × IR
n → IR

n×l, and w(t) is a given m-dimensional Wiener process with
the filtration Ft generated by w(s). Then the solution of the system (8) ca be
expressed in the following form [12]

x(t) = Eq(A(t)
q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(t− s)q)ds

+

∫ t

0

(t− s)q−1Eq,q(A(t − s)q)

[

∫ 0

−h

dτB(t, τ )u(t+ τ )

]

ds.

Using the well known result of unsymmetric Fubini theorem [10] and change of
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order of integration to the last term, we have

x(t) = Eq(A(t)
q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t − s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(t− s)q)ds

+

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ )u0(s)ds

]

+

∫ t

0

[

∫ 0

−h

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)dτBt(s− τ , τ)

]

u(s)ds

(3.8)
where

Bt(s, τ ) =

{

B(s, τ ), s ≤ t

0, s > t

and dBτ denotes the integration of Lebesgue Stieltjes sense with respect to the
variable τ in the function B(t, τ ).

For brevity, let us introduce the notation:

Υ(φ(0), x1;x) = x1 − Eq(A(T )
q)x0 −

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−

∫ T

0

(T − s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(T − s)q)ds

−

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ))q)

B(s− τ , τ)u0(s)ds

]

.

(3.9)
Define the control function

u(t) = ϕ⋆ψ−1Υ(φ(0), x1;x), (3.10)

where the complete state φ(0) and the vector x1 ∈ IR
n are chosen arbitrarily and

⋆ denotes the matrix transpose.
Now, we impose the following conditions on data of the problem:

i. The linear fractional stochastic dynamical system (2) is globally relatively con-
trollable.
ii. f and σ satisfy Lipschitz and linear growth conditions. That is, there exists
some constants N, Ñ, L, L̃ > 0 such that

‖f(t, x)− f(t, y)‖2 ≤ N‖x− y‖2, ‖f(t, x)‖2 ≤ Ñ(1 + ‖x‖2)

‖σ(t, x)− σ(t, y)‖2 ≤ L‖x− y‖2, ‖σ(t, x)‖2 ≤ L̃(1 + ‖x‖2).
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For our convenience, let us introduce the following notations.

a1 =max{‖Eq(At
q)‖2; t ∈ J}, a2 = max{‖Eq,q(A(t − s)q)‖2; t ∈ J}

a3 =max{‖Eq,q(A(t− (s− τ ))q)‖2; t ∈ J}, c1 = max{‖u0(t)‖
2; t ∈ J}

c2 =

∫ 0

−h

(t− (s− τ ))2(q−1)ds, c3 =

∫ 0

−τ

(t− (s− τ))2(q−1)ds

MB =max{‖B(s− τ , τ)‖2; 0 ≤ τ < s ≤ T }, M = max{‖ϕ(t, s)‖2; 0 ≤ s < t ≤ T }

We claim that if i. holds, the operator ψT
0 is strictly positive definite and thus the

inverse linear operator (ψT
0 )

−1 is bounded, say, by l, (see [21] for more details).

Theorem 3.4. Under the conditions i. and ii., the nonlinear system (8) is globally

relatively controllable on J .

Proof: Firstly, from the definition of the control function (11), we can write u as

u(t) = ϕ⋆(T, t)ψ−1Υ(φ(0), x1;x)

= ϕ⋆(T, t)ψ−1

(

x1 − Eq(AT
q)x0−

∫ T

0

(T − s)q−1Eq,q(A(T − s)q)f(s, x(s))ds

−

∫ T

0

(T − s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(T − s)q)ds

−

∫ 0

−h

dBτ

[

∫ 0

τ

(T − (s− τ ))q−1Eq,q(A(T − (s− τ ))q)B(s− τ , τ)u0(s)ds

])

Secondly, we define the operator P : C → C by

P(x)(t) = Eq(A(t)
q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(t − s)q)ds

+

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ ))q−1Eq,q(A(t − (s− τ ))q)B(s− τ , τ )u0(s)ds

]

+

∫ t

0

[

∫ 0

−h

(t− (s− τ ))q−1Eq,q(A(t − (s− τ ))q)dτBt(s− τ , τ )

]

u(s)ds.

In order to prove the global relative controllability of the system (8) it is enough
to show that P has a fixed point in C. To do this, we can employ the contraction
mapping principle. To apply the principle, first we show that P maps C into itself.
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We have

IE‖P(x)(t)‖2 ≤ 5a1IE‖x0‖
2 + 5IE

∥

∥

∥

∥

∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)f(s, x(s))ds

∥

∥

∥

∥

∥

2

+ 5IE

∥

∥

∥

∥

∥

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(t − s)q)ds

∥

∥

∥

∥

∥

2

+ 5IE

∥

∥

∥

∥

∥

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)

B(s− τ , τ)u0(s)ds
]

∥

∥

∥

∥

∥

2

+ 5IE

∥

∥

∥

∥

∥

∫ t

0

[

∫ 0

−h

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)

dτBt(s− τ , τ )
]

u(s)ds

∥

∥

∥

∥

∥

2

It follows from Lemma 2.5, in [30], and the above notation that:

IE‖P(x)(t)‖2 ≤ 5a1IE‖x0‖
2 + 5a2

t2q−1

2q1

∫ t

0

IE‖f(s, x(s))‖2ds

+ 5Lσa2
t2q−1

2q − 1

∫ t

0

(

∫ τ

0

IE‖σ(θ, x(θ))‖2dθ

)

ds+ 5MMBa3c1c3

+ 5M

∫ t

0

IE‖u(s)‖2ds.

Thus we have

IE‖P(x)(t)‖2 ≤ 5a1IE‖x0‖
2 + 5a2

t2q−1

2q1
Ñ

∫ t

0

(1 + IE‖x(s)‖2)ds

+ 5a2Lσ
t2q−1

2q − 1
L̃

∫ t

0

(

∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)

ds+ 5MMBa3c1c3

+ 5M2l2

[

IE‖x1‖
2 + a1IE‖x0‖

2 + a2
T 2q−1

2q1
Ñ

∫ T

0

(1 + IE‖x(s)‖2)ds

+ a2Lσ
T 2q−1

2q − 1
L̃

∫ T

0

(

∫ τ

0

(1 + IE‖x(θ)‖2)dθ

)

ds+ 5MMBa3c1c3

]

.

Hence,

IE‖P(x)(t)‖2 ≤ 5M2l2IE‖x1‖
2 + 5a1IE‖x0‖

2(1 +M2l2)

+ 5MMBa3c1c3(1 +M2l2) + 5a2
T 2q−1

2q1
Ñ(1 +M2l2)(1 + ‖x‖2L2)

+ 5a2LσL̃
T 2q−1

2q1
(1 +M2l2)(1 + T ‖x‖2L2).
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It follows from from the above inequality and the condition ii. that there exists
β > 0 such that

IE‖P(x)(t)‖2 ≤ β(1 + ‖x‖2L2).

Therefore P maps C into itself.
Secondly, we claim that P is a contraction mapping on C. For x, y ∈ C,

IE‖P(x)(t)− P(y)(t)‖2

≤ 3IE

∥

∥

∥

∥

∥

∫ t

0

(t− s)q−1Eq,q(A(t− s)q)(f(s, x(s)) − f(s, y(s))ds

∥

∥

∥

∥

∥

2

+ 3IE

∥

∥

∥

∥

∥

∫ t

0

(t− s)q−1

(

∫ τ

0

(σ(θ, x(θ))− σ(θ, y(θ)))dw(θ)

)

Eq,q(A(t− s)q)ds

∥

∥

∥

∥

∥

2

+ 3IE

∥

∥

∥

∥

∥

∫ t

0

ϕ(t, s)ϕ⋆(T, s)ψ−1[Υ(φ(0), x1;x)−Υ(φ(0), x1; y)]

∥

∥

∥

∥

∥

2

.

Using Lemma 2.5, in [30], condition ii., and the above notations we get

IE‖P(x)(t)− P(y)(t)‖2

≤ 3a2
T 2q−1

2q − 1
(1 +M2l2T )

∫ t

0

IE‖f(s, x(s))− f(s, y(s))‖2ds

+ 3a2
T 2q−1

2q − 1
Lσ(1 +M2l2T )

∫ t

0

(

∫ τ

0

IE‖σ(θ, x(θ))− σ(θ, y(θ))‖2dθ

)

ds

≤ 3a2
T 2q−1

2q − 1
(1 +M2l2T )(N + LLσT )

∫ t

0

IE‖x(s)− y(s)‖2ds.

It results that

sup
t∈[0,T ]

IE‖P(x)(t)−P(y)(t)‖2≤3a2
T 2q−1

2q − 1
(1+M2l2T )(N+LLσT ) sup

t∈[0,T ]

IE‖x(t)−y(t)‖2.

Therefore we conclude that if 3a2
T 2q−1

2q − 1
(1 +M2l2T )(N + LLσT ) < 1, then P is a

contraction mapping on C, implies that the mapping P has a unique fixed point
x(·) ∈ C. Hence we have

x(t) = Eq(A(t)
q)x0 +

∫ t

0

(t− s)q−1Eq,q(A(t − s)q)f(s, x(s))ds

+

∫ t

0

(t− s)q−1

(

∫ τ

0

σ(θ, x(θ))dw(θ)

)

Eq,q(A(t− s)q)ds

+

∫ 0

−h

dBτ

[

∫ 0

τ

(t− (s− τ))q−1Eq,q(A(t− (s− τ))q)B(s− τ, τ )u0(s)ds

]

+

∫ t

0

[

∫ 0

−h

(t− (s− τ ))q−1Eq,q(A(t− (s− τ ))q)dτBt(s− τ , τ)

]

u(s)ds
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Thus x(t) is the solution of the system (8), and it is easy to verify that x(T ) = x1.
Further the control function u(t) steers the system (8) from initial complete state
φ(0) to x1 on J . Hence the system (8) is globally relatively controllable on J . ✷

4. Example

In this section, we apply the results obtained in the previous section for the
following stochastic fractional dynamical systems with distributed delays in control
which involves sequential Caputo derivative

cDqx(t) = Ax(t) +

∫ 0

−1

dτB(t, τ )u(t+ τ) + f(t, x(t)) + σ(t, x(t))
dw(t)

dt
;

0 < q < 1, t ∈ [0, T ]
x(0) = x0,

(4.1)
where

A =

(

0 1
−1 0

)

, B(t, τ ) =

(

eτ cos t eτ sin t
−eτ sin t eτ cos t

)

, u(t+τ ) =

(

u1(t+ τ )
u2(t+ τ )

)

f(t, x(t)) =

(

x1(t) cosx2(t) + 3x2(t)
x2(t) sinx1(t) + 2x1(t)

)

,

σ(t, x(t)) =

(

(2t2 + 1)x1(t)e
−t 0

0 x2(t)e
−t

)

.

Let us introduce the variables x1(t) = x(t) and x2(t) = cD
q

2 x1(t). Then
cD

q

2 x1(t) =
cD

q

2 x(t) = x2.
The Mittag-Leffler matrix of the given system is given by

Eq(At
q) =













∞
∑

j=0

(−1)jt2jq

Γ(1 + 2jq)

∞
∑

j=0

(−1)jt(2j+1)q

Γ(1 + (2j + 1)q)

−

∞
∑

j=0

(−1)jt(2j+1)q

Γ(1 + (2j + 1)q)

∞
∑

j=0

(−1)jt2jq

Γ(1 + 2jq)













.

Further

Eq,q(A(T − (s− τ))q) =













∞
∑

j=0

(−1)j(T − (s− τ))2jq

Γ[(2j + 1)q]

∞
∑

j=0

(−1)j(T − (s− τ ))(2j+1)q

Γ[(j + 1)2q]

−

∞
∑

j=0

(−1)j(T − (s− τ))(2j+1)q

Γ[(j + 1)2q]

∞
∑

j=0

(−1)j(T − (s− τ ))2jq

Γ[(2j + 1)q]













,

and

(T − (s− τ ))q−1Eq,q(A(T − (s− τ))q) =

(

cosq(t) sinq(t)
− sinq(t) cosq(t)

)

,
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where cosq(t) and sinq(t) are given by

cosq(t) =
∞
∑

j=0

(−1)j(T − (s− τ ))(2j+1)q−1

Γ[(2j + 1)q]
,

sinq(t) =

∞
∑

j=0

(−1)j(T − (s− τ ))(j+1)2q−1

Γ[(j + 1)2q]
.

ϕ(T, s) =

∫ 0

−1

(T − (s− τ))q−1Eq,q(A(T − (s− τ ))q)dτBT (s− τ, τ )

=

(

α(s) β(s)
−β(s) α(s)

)

,

α(s) =

∫ 0

−1

eτ [cosq(T − (s− τ )) cos(s− τ )− sinq(T − (s− τ)) sin(s− τ )]dτ

β(s) =

∫ 0

−1

eτ [sinq(T − (s− τ )) cos(s− τ )− cosq(T − (s− τ)) sin(s− τ )]dτ .

By simple matrix calculation one can see that the controllability matrix

ψT
0 =

∫ T

0

ϕ(T, s)ϕ⋆(T, s)ds

=

∫ T

0

[α2(s) + β2(s)]

(

1 0
0 1

)

ds

is positive definite for any T > 0. Further the functions f(t, x(t)) and σ(t, x(t))
satisfies the hypothesis mentioned in Theorem 3.4., and so the fractional system
(12) is globally relatively controllable on [0,T].

5. Conclusion

This paper has investigated the global relative controllability of linear and non-
linear stochastic fractional dynamical systems with distributed delays in control.
With Lipschitz and linear growth conditions, some sufficient conditions have been
presented for global relative controllability of stochastic nonlinear systems in finite
dimensional space. As applications, an example have been also discussed.
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