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abstract: We prove a fixed point theorem for uniformly locally contractive fuzzy
mapping in a generalized fuzzy metric space.

Key Words: Generalized fuzzy metic space; T -orbitally complete; ε-chainable;
locally contractive; (ε, λ)-uniformly locally contractive.

Contents

1 Introduction 221

2 Definitions and preliminaries 222

3 Main results 223

1. Introduction

The concept of fuzzy set was introduced by L.A. Zadeh in1965. It is the origin
of new theory of uncertainty. After the introduction of fuzzy sets, the scope for
studies in different branches of science and technology where mathematics has been
applied has increased widely. The notion of fuzzy set theory has been applied to
introduce the notion of fuzzy real numbers which helps in constructing the sequence
of fuzzy real numbers. Recently lots of work has been done on applying fuzzyness
by Tripathy and Baruah [9], Tripathy and Borhohain ( [10], [11]) Tripathy and
Dutta ( [12], [13]), Tripathy and Debnath [14], Tripathy and Ray [15], Tripathy
and Sarma [16] and others.

The Banach fixed point theorem stats that each self -mapping T of a complete
metric space (X, d) such that d(Tx, T y) < kd(x, y)(x 6= y, 0 < k < 1) has a unique
fixed point. The assumption k < 1 is non superfluous .With k = 1 the mapping
of this sort need not have a fixed point. However, if X is compact, then T has a
unique fixed point. A lot of generalization of this theorem have been done, mostly
by relaxing the contraction condition and sometimes by withdrawing the require-
ment of completeness or even both.

Recently a very interesting generalization of the concept of metric space was
done by Branciari [1], on replacing the triangular inequality of a metric space by a
more general inequality. Some works have already been done in this direction ( [3],
[6]). In this paper, we take uniformly locally contractive fuzzy mappings and show
that they can have unique fixed point under some general condition in a generalized
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fuzzy metric space.

2. Definitions and preliminaries

LetR+ denote the set of all non-negative real numbers and N denote the set of
all positive integers.

Definition 2.1. A fuzzy set A on X is a function with domain X and values in
[0,1] i.e. A : X → [0, 1].

Definition 2.2. A binary operation *: [0,1]×[0, 1]→ [0,1] is called a continuous
t-norm if ([0,1], *) is an abelian topological monoid with unit 1 such that a1 ∗ b1 ≤
a2 ∗ b2 whenever a1 ≤ a2, b1 ≤ b2 for all a1, a2, b1, b2 ∈[0,1].

Definition 2.3. Let X be an arbitrary set,* be a continuous t-norm and M be
a fuzzy set in X2 × [0,∞) such that for all x, y ∈ X and for all distinct points
z, w ∈ X each of them different from x and y and t1, t2, t3, t > 0; one has

(1)M(x, y, 0) = 0;

(2)M(x, y, t) = 1 if and only if x = y;

(3)M(x, y, t) = M(y, x, t);

(4)M(x, y, t1) ∗M(y, z, t2) ∗M(z, w, t3) ≤ M(x,w, t1 + t2 + t3)

(5)M(x, y, •):[0,∞ )→ [0,1]is left continuous.

Then we say that (X,M, ∗) is a generalized fuzzy metric space (or shortly
g.f.m.s). Any fuzzy metric space is a g.f.m.s but the converse is not true.

Definition 2.4. Let(X,M, ∗) be a g.f.m.s. Then

( ⁀a) A sequence (xn) in X is said to converge to x in X if for each ε ∈(0,1) and
t > 0, there exists n0 ∈ N such that M(xn, x, t) > 1-ε for all n ≥ n0.

(b) A sequence (xn) ∈ X is said to be Cauchy if for each ε ∈ (0,1) and t > 0,
there exists n0 ∈ N such that M(xn, xm, t) > 1-ε, for all n,m ≥ n0.

(c) A g.f.m.s in which every Cauchy sequence is convergent is said to be com-
plete.

Note 2.5. A sequence (xn) in a g.f.m.s is converges to x ∈ X, if and only if
lim

n→∞
M(xn, x, t) = 1.

A sequence (xn) in a g.f.m.s is a Cauchy sequence if and only if

lim

n→∞
M(xn, xn+p, t) = 1 for each t > 0 and p > 0.
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Definition 2.6. Let T be a mapping of a g.f.m.s (X,M, ∗) into itself. (X,M, ∗)
is said to be T -orbitally complete if and only if every Cauchy sequence which is
contained in {x, Tx, T 2x, T 3x, · · · } for some x ∈ X converges in X.

A T -orbitally complete g.f.m.s may not be complete.

Throughout the paper by X we will mean a generalized fuzzy metric space.

We introduce the following definitions in this article.

Definition 2.7. Let (X,M, ∗) be g.f.m.s. A finite sequence x = x0, x1, ..., xn = y

is called ε-chain from x to y if there exists a positive number 0 < e < 1 such that
M(xi−1, xi, t) > ε for every t > 0 and i = 1, 2, ..., n. A g.f.m.s (X,M, ∗) is called
ε-chainable if for any x, y ∈ X there exists ε-chain from x to y.

Definition 2.8. Let (X,M, ∗) be a g.f.m.s. A mapping T : X → X is called
locally contractive if for every x ∈ X there exist εx > 0 and λx ∈ (0,1) such that
for allp, q ∈ y : M(x, y, t) > ε, the relation λxM(T (p), T (q), t) ≥ M(p, q, t) holds.

Definition 2.9. Let (X,M, ∗) be a g.f.m.s. A mapping T : X → X is called
(ε, λ) uniformly locally contractive at all points x ∈ X and ε, λ do not depend on
x, i.e. for ε > 0 andλ ∈ (0, 1) M(x, y, t) > ε ⇒ λM(Tx, T y, t) > M(x, y, t) for all
x, y ∈ X.

Note 2.10. From the definition it is clear that a uniformly locally contractive fuzzy
mapping is continuous.

3. Main results

In this section we establish the main result of this paper.

Theorem 3.1. If T is an (ε, λ) uniformly contractive fuzzy mapping defined on a
T - orbitally complete ε- chainable g.f.m.s. X satisfying the following condition,

forall x, y, z ∈ X and t > 0,M(x, y, t) > ε and M(y, z, t) > ε ⇒ M(x, z, t) > ε.

(3.1)
Then T has a unique fixed point in X.

Proof: Step I Let x ∈ X .Since X is ε-chainable,we can find finite number of
points, x = x0, x1, x2, ..., xn−1, xn = Tx such that M(xi−1, xi, t) > ε for all i =
1, 2, ..., n and t > 0.

Without any loss of generality we can assume that the points x1, x2, ..., xn−1

are distinct (and different from x and Tx if n > 1)
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We show that

M(x, Tx, t) > ε, (3.2)

thereforeM(x, Tx, t) ≥ M(x, x1,
t
n
)∗M(x1, x2,

t
n
)∗M(x2, x3,

t
n
)∗...∗M(xn−1, Tx,

t
n
)

> ε ∗ ε ∗ ... ∗ ε > ε.

Since, T is (ε, λ) uniformly locally contractive fuzzy mapping, we have,

M(xi−1, xi, t) > ε ⇒ λM(Txi−1, T xi, t) > M(xi−1, xi, t) > ε i.e.M(Txi−1,

T xi, t) >
ε
λ
> ε for all i = 1, 2, ..., n

and therefore,

λ2M(T 2xi−1, T
2xi, t) = λ(λM(T (Txi−1), T (Txi), t) > λM(Txi−1, T xi, t) >

λε.

⇒ M(T 2xi−1, T
2xi, t) > ε.

In a similar way, we have

λ3M(T 3xi−1, T
3xi, t) = λ2(λM(T 2xi−1), T (T

2xi), t) > λ2M(T 2xi−1, T
2xi, t) >

λ2ε ⇒ M(T 3xi−1, T
3xi, t) > ε.

. . .

λmM(Tmxi−1, T
mxi, t) = λm−1(λM(T (Tm−1xi−1, T (T

m−1xi), t)
> λm−1M(Tm−1xi−1, T

m−1xi, t) > λm−1ε ⇒ M(Tmxi−1, T
mxi, t) > ε and

M(Tmx0, T
mx2, t) > ε(using equation (3.1)).

Now,

M(Tmx, Tm+1x, t) = M(Tmx0, T
mxn, t)[since, x0 = x and xn = Tx]

> M(Tmx0, T
mx1,

t
n
).

∗M(Tmx1, T
mx2,

t

n
) ∗ ... ∗M(Tmxn−1, T

mxn,
t

n
) > ε forall t > 0 and m ∈ N.

(3.3)
Note that even some of the points Tmx0, . . . . . . , T

mxn are equal than also the
result is obviously true.

Now, for all t > 0 and j < k we have
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M(T jx, T kx, t)
≥ M(T jx, T j+1x, t

k−j
) ∗M(T j+1x, T j+2x, t

k−j
) ∗ . . . ∗M(T k−1x, T kx, t

k−j
)

> ε.

⇒ T jx is a Cauchy sequence in X .

Since X is T -orbitally complete, T jx is convergent in X Let lim

j→∞
T jx = u

Again since T is continuous [by Note 2.10].

T (u) = T (limj→∞T jx = u) = limj→∞T j+1x = u.

This show that u is a fixed point of T .

Step II: To show the fixed point is unique, let us assume that n is another
fixed point of T i.e. Tv = v. Since X is ε-chainable, we can find an ε-chain,
u = x0, x1, x2 . . . . . . xn = v = Tv. Then Proceeding as in step I, we can show that
M(u, v, t) ≥ M(u, x1,

t
n
) ∗M(x1, x2,

t
n
) ∗ ... ∗M(xn−1, v,

t
n
) → 1 ∗ 1 ∗ ... ∗ 1 = 1 as

n → ∞ ⇒ u = v.

This completes the proof of the theorem. ✷

Remark 3.2. We now give a simple example to show that the condition (3.1) in
Theorem 3.1 is strictly weaker than the requirement of a g.f.m.s to be a metric
space.

Example 3.3. Let X = a, b, c, d, a ∗ b = min(a, b) and M : X2× [0,∞) → [0, 1] be
defined by M(a, b, t) = 0.2;M(a, c, t) = M(b, c, t) = 0.25;M(a, d, t) = M(b, d, t) =
(M(c, d, t) = 0.2 and M(x, x, t) = 0 for all x ∈ X Further, let T : X → X be the
mapping

Tx =

{

c, ifx ∈ {a, b, c};
a, ifx = d.

Then it can be easily verified that (X,M, ∗) is a ε-chainable g.f.m.f. where
ε = 0.1 satisfying the condition (1) but it is not a fuzzy metric space,
M(a, b, t1 + t2) = 0.2 < M(a, c, t1) ∗M(c, b, t2) = 0.25 * 0.25 = 0.25 and T has a
unique fixed point c.
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