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Stokes problem with the possibility of controlling the velocity in a

L-shaped domain

Omar Chakrone, Okacha Diyer, Driss Sbibih
ABSTRACT: The movement is studied from a viscous and incompressible homoge-
neous fluid which crosses a field of the channel in the form of L, with the possibility
to exert pressure of known difference between two opposite edges. We extend pre-
vious work in [1] which studies a problem of Stokes in the stationary case and with
one parameter that characterizes the pressure difference between two sides in a spe-
cific domain (symmetric channel). We show existence, unicity and regularity of the

solution of an evolution problem with four parameters that characterize the pressure
difference between two opposite sides of our field.
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Let Q C R? be a bounded domain with boundary 9Q = T' = U§:1 I';, where

'y ={0}x[0,1], Ty = {0} x[1,3],T's = [0,1]x{3}, T4y = {1} x[1,3],T'5s = [1, 5] x

{1},

I'e = {5} x [0,1], I'; = [1,5] x {0} and I's = [0, 1] x {0}, see Figure 1. Given four

real numbers A1, A2, A3 and A4, we consider the problem:
Find U= (Ul,UQ) € V; such that
Z fQ 85‘;1)1 + Z fQ Vu;Vv, =\ fo v1(5,y)dy + Ao fl v1(1,y)dy

S

(51) —l—)\g fo vo(z 3)dm+)\4 fl vo(z,1)dz Vo = (v1,v2) € V1,
ui(x,0) = a01( ) a.e. x inf,
u2(x,0) = agz2(x) a.e. X inf,

where V; is the closing of {v = (v1,v2) € CY([0,T]; H); div v = 6”1 + 8”2 =

0, vilr, = vilrg, vilr, = vilry, vilrs = vilrs, vi

r, = ’Ui|1"7 forz = 1,2} in

C([0,T); H), H is the closing of 9 = {u € (D(Q))?; div v = 0} in (L*(Q))?,
where D counsist of all functions in C'*°(2) which have compact support in Q and
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ag = (a01,a02) € H.

I's
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Figure 1: Vertical plane from the channel

As applications of this problem, we cite the different types of flows for example
see [2,3]. This problem was studied by C. Amrouche, M. Batchi and J. Batina in
the stationary case with only one parameter see [1], we extend the preceding work
to a problem of evolution with four parameters. Our aim is, in first time to prove
the existence, uniqueness and regularity of the solution, second time we show the
equivalence between the variational problem, where the notion of pressure does
not, appear explicitly, and classic problem which highlights the pressure and these
differences between the opposite sides of our field. We cite also a variety of works
in the stationary case see [24].

This paper is organized as follows. In Section 2, we give preliminaries. In
Section 3, we establish existence, unicity and regularity of the solution. In Section 4,
we prove the equivalence between our variational problem and the classical problem
associated.

2. Preliminaries

Let us denote by V the closing of 9 in (H(Q))?. We consider the follow-
ing Banach spaces L?(0,7;V) and C([0,T]; H) with the norms [ju 20, 1,v) =
T 3 :
( I ||u(t)||2vdt) and [[ull¢(o.17.1) = sup l[u(t)||z respectively.
telo,

Proposition 2.1. If u € W(a,b; V, V'), then for all v in V, we have

d

E(U(-)av)v,v = (U (), V) D/ (app,v @ D'(Ja,b]),
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where W(a,b; X,Y) = {u € L?(a,b; X); v’ € L*(a,b;Y)} is a Hilbert space with
the norm Jullw = ([ (u(t) i + o (@3 )t (see [3)).

Proof: Let ¢ € D(Ja,b]), we have fb (t),v)p(t)dt = < "(t)p(t),v)dt. Since
u' € L?(a,b; V'), we deduce that the function t — (u/(t) v) is in L?(a,b) for all

veV.
In the same way, we have

b b b
/ W (Bp(t),v)dt = ( / o (1) (1)t v) = —( / w(t)!(£)dt, v)
a a b a b
=~ [ty @0 = [ w0 @t

Thus [ (u/ (), v)p(t)dt = — [ (u(t),v)¢ (t)dt = [ L (u(t),v)p(t)dt, and therefore
(W' (), 0) = & (u(),v). O

3. Existence, uniqueness and regularity of solution
Theorem 3.1. If the solution of the problem (S1) ewists, it is necessarily unique.
Proof: Let u; and uy be two solutions of the problem (S7). Put w = u; — ua,

(Orw,v) + ((w,v)) =0 Vv € V3 and w(0) =0,

2 2
where (Qyw,v) = 3 [, %UZ‘, (w,v)) = > [ VwiVu;. Then
i=1 i=1

/OT(atw, v)dt + /OT((w, v))dt = 0.

Let us take v = wx (g 4)(t), s € (0,T), thus [ (dyw, w)dt + [ ((w,w))dt = 0.

Hence
/0 (8tw,w)dt:—/0 (w, w))dt = —/O ()2 dt < 0.

Consequently
1 1 1
slw(®)lE = 5llwO)l = 5llw(s)iz <0,

and this shows that w = 0. O
The problem (S7) becomes

Find u € V; such that
Z-(u,0) + ((u,v)) = (Arer, v)rg + (Aser, v)r,

+(Aze2,v)r; + (Ase2,v)r; Yo € V7,
u(x,0) = ap(x) a.e. x in Q,
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where e; = (1,0) and ex = (0,1).
We are looking for an approximate solution (u,,) of the form:

U (t) = Zgi(t)wi, (3.1)

where {w;} is a Hilbertienne basis of H and g; € C([0,T]),9:(0) = gio = (ug, w;).
We have Vj =1,....m

0
¢ (um(£);w5) + ((um (t), w5)) = (Arer, wjrs + (Azer, wy)r, (3.2)
+ (Asez, wj)r; + (Aaez, wj)r;.
Put V,,, = {w1,ws,...,wy}. By replacing (3.1) in (3.2), we obtain
a m m
&(Z git)wi,w;) + (O gi(tyws, wy)) = 7;, (3.3)
=1 =1

where 7; = (A1e1, wj)r, + (A2e1, wj)r, + (Azea, wi)r, + (Aaez, wj)r;.

Thus
a m
5 lz 9i(t)(wi, wy)
1=1

So g} (t) + 2-g;(t) = 7;, where a; are the eigenvalues of ¢ : H — V, f + u, with u
J
is the unique solution of the problem

3 gl wy)) = ;. (3.4)

i=1

ueV;(u,v) = (f,v) Yo e V.

We have the following results: ¢ (w;) = «;w; for all i > 1, all the eigenvalues are
strictly positive and a; — 0 when i — oo, {w;} is an orthogonal system in V and
we have ((w;,w;)) = --8;;, where d;; is the kronocker symbol. We obtain

() { g;(t) + CY%gj(t) =7, Vi=1...,maete(0,T),
9;(0) = gjo
which admits a unique solution. Consequently w,, = > g;(t)w; is the solution of
i=1

the approximate problem and in the same way as previously, we show the unicity
of the solution u,,.

Theorem 3.2. If ug € Vi, the approximate solution u,, satisfies

there exist ¢, ¢’ > 0 such that |uy,||L20,1,m) < ¢ and |[um|c(o,mvy < ¢

Proof: The function u,(z,t) = > g;(t)w; satisfies
i=1
L (tm,v) + (um,v)) = (Aer,v)r, + (Azer,v)r, + (Azea, v)r, + (Aaea, v)r,

= b(Al,)\Q,Ag,A%’U,F) Yv e V.
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Then (u,,v) + ((m,v)) = b(A1, A2, A3, Ag, v, ). For v(t) = ul,(t) = > gi(t)w; €
i=1

V, we have

(ulyul,) + ((wm,uhy)) = b(A1, A2y Ag, Mg, ul,, T) for ae. t € (0,T). (3.5)
Each term of (3.5) is integrable, indeed

Ul ) Z lgi(t)* € L(0,T)
because g/(t) =, — Lg;(¢) and g/(t) € L2(0,T) (g, € C((0,T))).
m m m 1
((ums ) = ((2 giwz',;gjwj)) = Zl a—igigé € L0, 7).

b(A1, A2y Mg, Mgyl T) = Y~ gib(Ar, Ao, A, Mg, wi, T) € L0, 7).
1=1
We deduce that

/ e (B) |22t + / ()t = / (rer s + (aer, ),
0
+</\3627u;n>r3 + <>‘4625u{m>F5)dta VS S (OvT)

If we put A(m,s) = [ un, (O)13dt + 3|um ()| — 5[lum(0)[|?, then we have

A(m,s) = /\1/ / 15, 9)( dydtJr/\g/ / (t)dydt
)\3/ / (x,3)( d:cdt+)\4/ / t)dzdt.

_|_

So

Ams) < nl | 1 / iy (5,) (O)ddy] + ol / 3 / (1, y) ()dtdy
+ |/\3||// (2, 3)( dtdz|+|)\4||// Wl (@, 1)(t)dtda].
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Thus
1
A(m,s) < |/\1||/ um1(5,y)(s)dy — /Um1 (0)dy]
0
3
b el [ o006 [0
0
1
+ |/\3||/ Uma(z, 3)( dxf/ Uma(z,3)(0)dz|
0
bl [ it 06— [t DO
0
So
Alm,s) < ] |umi(s)|do+ [ |umi(0)|do + | |umi(s)|do+ | |um1(0)|do

Ts T Ty Ty

o (9o + / a0 + [ oo + [ e

5 5

< ool [ Jun(@)ldo+ [ fun(0)ldo)
o0 o0

< ol / i ()|2dor) + / o (0)2dor)}] (Holder’s inequality)
o0 o0

= aslllum(s)llzz(a0) + lum(0)[ 200

< call|lum(8)||v + |um(0)|lv] (V < L*(09) a continuous injection ),

where ¢;,7 = 1...4, are positive reals.
On the one hand

/O e ()3

1 1
A(m, s) = S lum(S)V + 5 lum O

< calllum(s)llv + [lum0)lv] = —IIUm( I+ %Hum(o)IIQv-

Let us consider P, the projection of V' on the space span(wg, w1, ..., w,,), we have
ug € V and un,(0) = > (ug, w)w; = Ppug. Hence ||um(0)||v < |Juollv because
i=1
| P < 1.
So
S 2 1 2 , 1 2
; [ )17t < ealllum(s)llv + [luollv] = 5 l[um (s)llv + 5 lluolly- (3.6)

We put ||um(s)||v = Rm(s), then we obtain

s 1
/ llul, (D)]|3dt < caRm(s) — i(Rm(S»Q +¢5, where ¢5 > 0. (3.7)
0
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Consequently there exists ¢g > 0 such that

/ ! (8) |2t < c ¥ m.
0

On the other hand, we have

| T @t + 3 = 5O < allun (@l + V). 63)
So ) .
S lum @I = S lum O < calllum(s) v + lum(0)llv] (3.9)
Thus
1 2 1 2
lum()ly = eallum(s)llv - < 5llum(O)[v + callum(0) v
<

§HU0||%/ + cal|uollv-

Finally there exists ¢; > 0 such that
[|wm (s)]lv < ¢z ¥V m.

d

Theorem 3.3. Ifug € V, then the solution of the problem (Sy) exists, unique and

satisfies u € L>(0,T;V), %7; € L*(0,T; H).

Proof: From Theorem 3.2, we have ||uml|(c(o,m);v) < C. Since L>*(0,T;V) ~
(LY(0,T;V")) and V' is reflexive, separable, we deduce that there exists wm,;
U, =" u when my — oo in L*°(0,T;V), we show also that ||uy, || 20,74y < ¢
Now we can extract (uy,, ) such that u;, —* 1 when m; — oo in L>(0,T; H).
We have

(V) + (U, v)) = b(A1, A2, A3, Mg, 0, 1), Vo e V. (3.10)
Hence
(U V') + ((Umy, v)) = b(A1, A2, Az, Ag, 0, 1), Vo e V. (3.11)

When mj, — oo, we deduce from (3.10) and (3.11) respectively:

(n,v") + ((u,v)) = b(A1, A2, Az, A, v, 1), Vo € V. (3.12)
(', v) + ((u,v)) = b(A1, A2, A3, Ag, 0, 1), Vo e V. (3.13)

Then, according to (3.12) and (3.13) we get (n,v) = (v/,v) Vv € V, thus n = .
When my — oo, we have

(2% )+ (,)) = bAr, Ao, As, AT, Y € V) (3.14)

So w is a solution of the problem (S7) and it is unique according to Theorem 3.1.
O
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4. Classical problem

Theorem 4.1. Let u € C([0,T]; V). w is a solution of (S1) if and only if there
exists p € L*(0,T;R) such that (u,p) is a solution of the problem:

I Aup+ 2 =0 in Q x (0,T),
6“2 - Dug + 5- in Qx(0,7),
dwuf() in Qx(0,7),
ui|F1 = Ui|F67Ui|F2 = ui|F4;ui|F3

—U1|F3;uz|f‘ = wlr, fori=1,2,

(52) Z)W |F1 = 5) |F6’ Z)W |F2 = Z)W |F4 Jori=1,2

m s = - |Fga UI s — 87;1 fOT 1= 172,
p|F6 _p|F1 = )\1,p|1“4 p|F2 = )\2,p|1“3 _p|Fs

= —A3,plr; — Plr, = = A4,

u1(x,0) = ap1 (x) a.e. X in €,
uz(x,0) = ag2(x) a.e. x in €.

Proof: Let us assume that (S2) have a solution (u = (u1, us2),p).
Thus

X

ou; 2 Op dp
E i —E A, vid — v1d — vodx = 0,Vv = (vq, Vi,
/ v;dx i_l/Q w; v quQa 1 x+Qayvgx v=(v1,v2) €WV}

2 2
Ou;

g / —uvidx - g / Au; vidx + / (Vp).vdx = 0,Yv = (v1,v2) € V4.

i=1 i=1 7% Q

Hence Vv € V1, we have

ou;
szder /VuZ Vou;dx— / vszJr/ pv.ﬁdof/ pdivvdx =0,
Z/ﬂ Z Z a0 on a0 Q

where 7j is the unit outward normal to 02. On the other hand, we have

du; wido = Z/ aul wido = 0.

o0 (971

1 3
/ pv-ﬁdtf:*/ plrl(w,y)vl(a’),y)dy*/ plr, (2, y)v1 (1, y)dy
o0 0 1
1 3
+ [ vl eeatos)de + [l e Ly
0 1
5 1
+/ plr5(w,y)v2(w,1)d$+/ plrs (2, y)v1(5, y)dy
1 0

3 1
*/pM@MW@UM*/pM@ww@wﬂ
1 0
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Hence

/ pv.ijdo
29

3

/(—p|r1(ﬂc,y)+p|r6(x,y))vl(5,y)dy+/ (_p|F2($ay)
0 1

+ p|r4(w,y))v1(1,y)dy+/0 (plrs (,y) — plrs (2, y))v2(z, 3)d

5
+ / (bles (2, 9) — pley (2, 9))2 (2 1)de

1 3 1
—)\1/ v1(5,y)dy — )\2/ vi(1,y)dy — )\3/ va(x, 3)dx
0 1 0

5
- )\4/ va(x, 1)dx.
1

And [, p div vdx = 0 because v € V.
Now we assume that (S7) have a solution u. Yv € V;

Z/ aulvldx—i—Z/ Vu;Vu;dx

1 3
v1(5,y dy+)\2/ v1(1,y)dy
1

1 5
+/\3/ x3dz+/\4/v2:c1dz
0 1

(A€, v)rg + (Aeer, v)r, + (Ase2, v)r, + (A2, V),
b()\la )‘2) )\33 )\43 v, F)

I
>
=
S—

Thus

0
o 0) + ((u,0)

Put Vv € V1, Vs € [0,T],

o
—
®
2
I
—
I
—
®
2
e
=
=
=
®
N
Il

((u(s),v)), v(s) :=b(A1, A2, A3, Aq,0,T).

Thus
a'(s) + B(s) —y(s) =0 in D'(0,T).

/Ot o (s)ds + /Otﬁ(S)ds - /Otv(S)dS =0vte(0.7).

As ~(s) is independent of time ¢, we have

So

a(t) — a(0) +/O (u(s), v))ds — th(\1, Ao, Ay, Ag, v,T) = 0.

at) — a(0) = /0 ((u(s),v))ds + tb(A1, A2, Az, Ag, v, T).
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Therefore
t
at) — a(0) = f((/ u(s)ds,v)) + tb(A1, A2, Az, Ag, v, T).
0

Hence Vt € (0,T),Yv € V1, (u(t) —uo,v)+((U(t),v)) = tb(A1, A2, Az, Ay, v, T'), where
U(t) == fot u(s)ds. We have

1
/v1(5,y)dy
0
3
/vl(l,y)dy
1
1
/Ug(ac,S)dx
0

/5 va(z, 1)dx = / eav(z, y)xr, drdy,

where xp, is the charac;eristic function (f)lf Ty, forv=3,...,6. Thus

(u(t) = uo,v) + (VU(t), Vo) = t((Axr, + A2xr,)er + (Asxr, + Aaxry)ez; v) = 0.

In particular for v € 9, we have

(u(t) —uo — AU(t) — t(()\lXFG + )‘2XF4)€1 + ()\3)(1“3 + )‘4XF5)€2’U) =0.

According to [3], there exists Q(t) € D’'(£2) such that

u(t) —ug — AU (t) — t((Axr, + A2xr,)er + (Asxp, + Aaxr, ez = —VQ(t) € D'(Q),
vt € [0,T7.

e1v(z, y)xr drdy,
e1v(z, y)xr,drdy,

eav(x, y)xr, drdy,

:3\:\:\

Thus

u(t) —ug — AU(t) + VQ(t) = t((Aixr, + Aaxr,)er + (Asxr, + Aaxr, ez,
where Q € C([0,T]; L3(Q)).

Thus, cheﬂ)( ), Vt €

Jo(u(t) —uo)p(x)dx  — [, (x)dx — [, Q(t)divp(x)dx

[0 T]

U
= Jo t(( )\1Xr6 + Aaxr,)er + (Asxr, + Aaxr, )e2)p(x)dx.
T)

Consequently, Vi € D(0,

T
- / / E(axr, + Aoxr, er + (axr, + Aaxr, Jea)p () (1) dxdt

/ / t)dxdt + / /Quo '(t)dxdt
/ / t)dxdt + / / Q(t)divp(x)' (t)dxdt,
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and

/ / uo(x "(t)dxdt = 0.

Let Qpr = Q x (0,T), we get

/ /Q tA@(x) (t)dxdt = /Q Ap(x)dx /OTU(t)¢’(t)dt
- [ Ao [ " u o
_ /Q ) Spx)p (et

Thus

t((Axp, + A2xr,Jer + (Asxr, + Aaxr, )e2)p(x)¢ (t)dxdt

/ >\1pr + Xexr,)er + (Asxr, + Aaxr, Je2) o (x)(t)dxdt
=0,
because ¢ € D(N).
/ Q(t)divp(x)y' (t)dxdt = — Q' (t)divp(x)(t)dxdt.
Q

Qr
Put Pi(t) = —Q'(t) € D'(0,T; L*(Q)) and ¢(t,x) = ¢(x)1)(t), we conclude that

—/ u(hx)%(t,x)dxdt—/ u(t,x) Axo(t, x)dxdt + Py (t,x)divkd(t, x)dxdt = 0.
Qr

Qp Qr
Since

/ Py (t,x)divgp(t, x)dxdt :/ Pio(t,x)do — VP ¢(t, x)dxdt
Qr 890 (0,T) Qr

and

/ Pyo(t,x)do =0,
Q% (0,T)

we obtain
9¢
— u(t,x)—(t,x)dxdt — u(t, x) Axd(t, x)dxdt — VPyo(t,x)dxdt = 0.
Qr ot Qr Qr
We know that the set of all finite linear combinations of the functions ¢(¢,x) =
e(x)Y(t) (¢ € D(Q),v € D(0,T)) is dense in D(Qr). Thus

ou

E(t,x) — Au(t,x) + VP =0,
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where P = —P.
From the first two equations of the problem (S7) and (S2), we find

2 1 3
Ou; .
Z/ au vzdof/ Pv.ijdoc = )\1/ 01(5,y)dy+)\2/ v1(1,y)dy
=1 Joa 0T 0Q 0 1
1 5
+ )\3/ vg(z,3)dx+)\4/ va(x, 1)dz.
0 1

Thus
ou .
(@ — Pij,v) = (\1e1,v)r, + (A2e1,v)r, + (Aze2, V)15 + (Aae2, V)1,
and
—ou —0u ou ou
<W + Pey,v)r, + <W + Peq,v)r, + <8_y — Pea,v)r, + (@ — Pey,v)r,
ou ou —0u —0u
+<a—y — P€2, >F5 + <% - P€13U>F6 +< ay +P€2,U>1"7 +< ay + PeQ’U>F8
= (Ae1, v)r, + (A2e1, V)1, + (Aze2, v)r, + (Ase2, )1, - (4.1)

We have u|r, = ulrg, thus ui|r, = u1|r, and ua|r, = uz|rg, as u;(0,y) = u;(5,y) for
all y € [0, 1], we have a“"' (0 y) = 67“ (5 y). Moreover we know that divu =0 in

and u € C1(Q)?%, we conclude that Gu1(0,y) = —% 2(0,y) = %—1;2(5,y) for all
y € 10,1]. Thus 6“1 “1(0,y) = 6“1 “(5,y). We consider the space

1
H121(F1) = {90 € L2(F1); Jv e Hl(Q)7 U|F3 = U|Tsv U|F5 = U|F77 U|F2 = U|F47 U|F1UF6 = ‘P}
M on Fl U Fg
00HF2UF3UF4UF5UF7UF8.

It is clear that v € (H3(I'))? and [, v.fido = 0, so there exists v € (H'(Q2))? such
that dive = 0in Q and v = v on T (see [1,5]), therefore v € V;. According to (4.1),

we have for all p € Hlé1 ()

1
Let u € HE (1), we put v = (0, u;)* where p, :{

a’u,g
rr (Oyudy—/ B 2(5,y) pudy,

thus 5 9
(%) U
5 0y =5-059).

Similarly, we have

ou _ Ou ou ou ou @ |
Oy Lr

%'Fw a_y|F3 =

a_ylrsa a_ylrsz

%ll—é -
According to (4.1), we have
(Pey,v)r, + (Pey,v)r, + (—Pea, v)r, + (—Peq,v)r, + (—Pea,v)p, + (—Pe1,v)r,
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+(Peg, v)r, +(Pe2, v)ry = (Are1,v)r, +(Aze1, v)r, H(Azea, v)r, +( ez, v)r, . (4.2)

3 OHF1UF6,
0 onl'yUl'sul,Ul'sUT'z UTg,

1 1
HZ(Ty) and 7 = (1,0)". We have 7 € (H2(T'))? and [, 7.7jdo = 0. So, there
exists v € (H'(2))? such that divv = 0in Qandv = 7on [ (see [1,5]). In
particular v € V3. According to (4.2),

/Ol(p(O,y) —p(5,y))e = /01 A1€

we conclude that P|p, — P|lp, = A1. In the same way we show the other relations
of pressures. O

On the other hand, let &1 = { where ¢ €
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